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Abstract: With increasing attention on the potential overlap between computational thinking (CT)
and mathematical reasoning, STEM education researchers seek to understand how integrating CT
and mathematics can deepen student learning across disciplines. Although there are various profes-
sional development programs that introduce teachers to CT concepts and strategies for curriculum
integration, limited research exists on how teachers might apply this knowledge to create math + CT
activities for use with their students. Additionally, the majority of research on CT integration through
programming has focused on upper elementary grades, leaving the early grades (K-2) relatively
unexplored. This qualitative exploratory study aims to examine how teachers in a graduate STEM
education program collaborated with university STEM faculty to explore and critique a set of in-
tegrated math + CT block-based programming activities designed to build place value conceptual
understanding. In-service elementary teachers enrolled in an online graduate CT course for educators
(n = 13) explored these activities as learners and drew on their experiences as classroom teachers to
offer feedback for program redesign. A sequence of deductive pattern coding and inductive holistic
coding of course transcripts, collaborative problem-solving slides, and individual teacher reflections
provided insights into how teachers were able to establish connections between their mathematical
knowledge related to teaching place value and their emerging understanding of CT concepts, such as
abstraction, algorithms, decomposition, and debugging. Implications for the design of professional
development for elementary teachers on integrating CT and mathematics are offered.

Keywords: computational thinking; mathematics education; curriculum development; early childhood
education; professional development; PK-12 CS education

1. Introduction

As school districts strive to make computing technologies available to more students
in U.S. classrooms, they rely on organizations such as CSforAll and Code.org to provide
coding resources for students. These organizations have emphasized the general value of
the computational thinking (CT) curriculum in PK-12 education [1,2], but there is growing
interest in integrating CT into existing school subjects [3]. While the educational research
community has not adopted a singular definition of CT in PK-12 education, the conceptual-
ization of CT as the practices of computer science that help us to explain and interpret the
world [4] is especially appropriate for designing integrated CT curricula at the elementary
level. CT is more than a computing skill; it is the capacity to think creatively and rationally
about problems that can be solved with or without a computer. Integrating CT into edu-
cational settings should enable students to think abstractly, make conceptual connections,
and express their ideas more effectively during problem-solving [5,6]. Yet the absence of
a unified definition of CT and teachers’ limited experiences with computational concepts
(e.g., algorithms and abstraction), practices (e.g., decomposition and debugging), and tools
(e.g., Scratch, NetLogo, etc.) have contributed to the difficulty of translating CT knowledge
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into classroom practice. Furthermore, without specific alignment of CT with the school
subject curriculum and standards, teachers may struggle to create meaningful opportunities
for students to engage in CT learning related to school subjects such as mathematics.

The natural and historical connection between CT and mathematics [7] stems from a
shared emphasis on pattern-seeking and the generalization of quantitative relationships.
Math + CT integration can facilitate students’ reasoning using abstraction, decomposition,
pattern recognition, and algorithms, thereby enhancing their understanding of mathemat-
ical concepts and skills. Much of the research on teacher professional development for
math + CT integration has focused on developing teachers’ knowledge of programming and
CT skills and providing methods to implement this knowledge in the classroom. Although
teachers can build their understanding of CT concepts and practices through professional
development, studies have indicated that teachers struggle to translate their CT knowledge
in designing CT lessons that enhance mathematics curriculum and instruction [8–11].

Teachers need professional development opportunities to see how computer pro-
gramming can enrich the mathematics experiences they are creating for their students.
In the unique context of early elementary classrooms, the potential of CT as a tool for
sense-making is still in the early stages of exploration and assessment in professional
development programs [12,13]. We argue that facilitating math + CT activities with young
children as early as kindergarten can both foster their CT skills and deepen their mathemat-
ical understandings. As Yadav and colleagues [14] recommended, the teacher education
faculty should work closely with the computer science faculty to design productive profes-
sional development opportunities for teachers. To that end, we, as research faculty from
the computer science and teacher education departments at one southeastern university,
partnered with in-service teachers enrolled in a graduate CT education course (n = 13). We
developed a set of Scratch place value programming activities aligned with grade-level
mathematics standards, relying on teachers’ mathematical representations and reflections
to iteratively revise the activities. We sought to better understand how teachers might use
Scratch programs to build early number sense through student-driven representations of
place value decomposition. Teachers experienced these activities as mathematical problem
solvers and reflected on how they would adapt the Scratch programs for use with their
own students. This exploratory qualitative study describes how this collaborative effort
between researchers and teachers shed light on how teachers utilized their emergent CT
knowledge to represent their place value reasoning in Scratch. It further describes how
researchers can leverage teachers’ expertise to design math + CT activities that build on
teachers’ unique knowledge of the learning needs of their students. The following research
questions guided this study:

• How do early childhood teachers enrolled in a graduate STEM education program
apply the facets of CT to represent their mathematical thinking about place value in a
block-based programming activity?

• What insights do early childhood teachers offer about how a place value programming
activity could be changed for use in their own mathematics classrooms?

2. Literature Review

While there is no scholarly consensus on the definition of computational thinking [15],
we find that the Cuny et al. [16] definition of CT as “the thought processes involved in
formulating problems and their solutions so that the solutions are represented in a form
that can be carried out by an information-processing agent” (p. 1) captures the potential to
connect mathematical thinking with computational artifacts as dynamic visual represen-
tations. CT is a problem-solving process with specific characteristics related to problem
formulation, organization and analysis of data, use of models and simulations, and the
efficiency and generalizability of solutions [17]. These contemporary definitions of CT
support the performance of mathematics through computing, as originally conceptualized
by Papert [18] and his constructionist approach to learning mathematics through computer
programming. The natural connection between CT and mathematical practices has moti-
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vated investigations into the integration of CT into K–12 mathematics education and the
impact on teachers’ approaches and students’ learning outcomes [19].

Shute and colleagues [20] synthesized the expansive research base on CT in primary,
secondary, and post-secondary education to provide a general model for both assessing
and supporting CT learning. This framework is composed of six facets: (1) decomposition,
(2) abstraction, (3) algorithms, (4) debugging, (5) iteration, and (6) generalization. These
components guided not only our structuring of the graduate CT education course but also
our analysis of how early childhood teachers applied these facets of CT as they engaged in
a mathematics activity. Ye et al.’s [21] recent systematic literature review on the integration
of CT and mathematics further describes this disciplinary relationship as an interactive and
cyclical process of reasoning mathematically and reasoning computationally to generate
mathematical knowledge in parallel with the development of CT.

The integration of CT and mathematics has been applied to various elementary math-
ematical domains, including but not limited to geometry, algebra, and number theory [22].
Research on the integration of CT into elementary mathematics has often focused on
evidence of process-oriented activities (such as engagement, communication, and creativ-
ity) [23]. There is a need for more research on how teachers apply the facets of CT in the
context of the mathematics standards that they are responsible for teaching.

2.1. Computer Programming as a Tool for Teaching Mathematics

Calls to integrate computer programming in school subjects, particularly science
and mathematics, are growing [3,24]. Teachers can leverage the structure of computer
programming to design integrated activities that assist students in representing their
mathematical thinking and deepening their understanding of mathematics. Rich et al. [25]
identified several contexts within the mathematics curriculum where CT ideas related to
repetition, sequence, and conditionals could be explored. Similarly, teachers can use CT
content to teach mathematics in fully integrated lessons [26].

Programming can serve as an intermediary tool for understanding basic mathematics
disciplines, such as number sense, algebra, and geometry [27]. Moreover, programming
goes beyond aiding in understanding mathematics but also helps in developing algorithmic
thinking and problem-solving skills in both disciplines together [28,29]. The use of pro-
gramming platforms to engage students in problem-solving and mathematical reasoning
has been shown to positively influence students’ learning of mathematics [30]. The synergy
between programming and mathematics enhances students’ abilities to think logically,
solve complex problems, and apply mathematical concepts to real-world situations.

Block-based programming platforms like Scratch have been utilized to facilitate stu-
dents’ participation in mathematical reasoning activities [31]. Scratch provides a more
accessible interface for elementary students than traditional text-based programming lan-
guages. Through the interaction with its customizable blocks and sprites, students have
the opportunity to develop their mathematical thinking [32]. Scratch can be described as
a mathematical action technology, as it engages students in programming a computer to
perform mathematical tasks and represent mathematical concepts [33]. As students explore
these new ways of representing mathematical ideas and relationships, they acquire not
only mathematical knowledge but also knowledge of basic programming concepts, such
as loops, sequences, and events [21]. They also apply computational concepts such as
abstraction, decomposition, and debugging [34–36].

2.2. Using Block-Based Programming as a Mathematical Representation of Place Value

Understanding place value is essential in developing early childhood number sense
and fluency with arithmetic operations [37]. Place value refers to the numerical value of
a digit based on its position in the number (e.g., ones, tens, hundreds, etc.). It serves as
the foundation for students’ construction of flexible methods of numerical grouping and
multi-digit arithmetic operations [38]. Reasoning about place value can be challenging as
students try to integrate abstract ideas of quantity, place names, and written numerals [39].
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Benton and colleagues [40] have used Scratch programming to support elementary students
in making sense of the concept of trading or exchanging equal quantities (e.g., ten ones
for one ten) by using ones and tens sprites to represent place value digits. Their Scratch
program models the action of incrementing a number in the tens place to represent an
exchange of 10 ones for 1 ten.

In early childhood mathematics, students use physical manipulatives (base 10 blocks)
to begin to make sense of place value. The physical action of interacting with multiple
representations builds students understanding of the correspondence between numerical
symbols and concrete or pictorial representations of numbers. Mathematics education
researchers (e.g., [41]) have further described how computer-based, or virtual, manipu-
latives can be used instead of concrete blocks to develop integrated concrete knowledge,
particularly in relation to place value. Sarama and Clements [42] highlighted the unique
affordances of digital environments in linking concrete representations and symbolic repre-
sentations. They used place value as an illustration of this affordance.

Physical base-ten blocks can be so clumsy, and the manipulations so disconnected from
one another, that students see only the trees—manipulations of many pieces—and miss
the forest—place-value ideas. In addition, students can break computer base-ten blocks
into ones, or “glue” ones together, to form tens.

Incorporating programming into place value teaching approaches may offer further
opportunities for making sense of place value because of the computational affordances of
automation and efficiency in how students use mathematical manipulatives. Students are
not limited by the available quantity of physical blocks or space for modeling. The computer
program can also display symbolic equivalents of the virtual model, thereby telling the student
how many tens and ones they have modeled along with the base 10 numerical representations.

2.3. Supporting Elementary Teachers in Teaching Mathematics Using Block-Based Programming

The integration of block-based programming into mathematical teaching can facilitate
students’ development of both mathematical and CT knowledge [6,43,44]. Teachers play
a pivotal role in guiding students to develop mathematical knowledge through program-
ming. When teachers integrate programming and mathematics, students are less focused
on memorizing mathematical information and instead develop a deeper conceptual un-
derstanding of mathematical concepts through decomposition and debugging [45]. To
facilitate the incorporation of CT into the mathematics curriculum, it is essential for teachers
to build not only CT knowledge and pedagogical skills but also methods for relating CT
to reasoning about and representing mathematical concepts. Therefore, teachers need
educational experiences that equip them with the necessary skills in order to achieve this
objective [23,46]. CT can be introduced to teachers in a variety of ways, including profes-
sional development, technology integration programs, computing education, and teacher
educational programs [47].

Traditional professional development programs are primarily focused on equipping
teachers with content knowledge of programming rather than providing them with the ped-
agogical content knowledge needed for integrating programming into their subjects [48,49].
The majority of the programming experiences for teachers have focused on the higher
grades, with less emphasis on early elementary teachers [50,51]. Prior research has shown
that teachers who experience CT-focused professional development may feel unprepared
to integrate programming into their core curriculum [52]. They may also have difficulty in
establishing a connection between programming and mathematics, developing integrated
activities without clear guidance on how to use block-based programming, or recognizing
the value of integrating programming into their subjects [53–56].

Teachers have described multiple barriers to CT integration, including a lack of pro-
gramming experience, limited time for integration, and limited access to professional
development and continuous support [57,58]. Additionally, they may feel challenged
in assessing and supporting students in their different approaches to programming and
addressing individual needs [59,60]. Teachers have identified additional challenges specific
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to mathematics integrated activities, including students’ difficulties with decomposing
word problems, creating and recognizing loop sequences in word problems, as well as
gaining a clear understanding of variables and control flow [61].

To effectively prepare teachers to embed programming into their teaching, profes-
sional development should emphasize building teachers’ capacity in terms of content
knowledge, pedagogical knowledge, and technology knowledge [62]. Teachers need
engaging experiences that encourage them to explore multiple ways for learning and in-
tegrating programming into their teaching practices [63]. Furthermore, there should be
ongoing mentorship-based professional development programs rather than relying solely
on one-time events [64]. Each of these design expectations for integrated CT professional
development motivated the design of the math + CT experience in our graduate CT course
for practicing teachers.

3. Method

In this qualitative study, we analyzed course artifacts in the form of discussion tran-
scripts, in-class programming activities, and out-of-class teacher reflections to describe
how teachers applied the facets of CT [20] in their representations of place value in Scratch
programming activities. We also synthesized evidence of teachers’ feedback during the
activities to explore the redesign of the Scratch programming activities to reflect teachers’
ideas about how to best support student learning.

3.1. Participants

The study was conducted in an online graduate-level STEM education course designed
to build elementary teacher capacity to integrate CT concepts in their disciplinary instruc-
tion. The second author (education faculty) was the course instructor. The participants
taught pre-kindergarten (n = 4), first grade (n = 4), second grade (n = 4), and third grade
(n = 4) in schools in one large urban district. We used convenience sampling for this study
as all teachers were participants in Project InTERSECT, a United States Department of
Education grant to support early childhood STEM professional development in high-needs
schools. The goal of this project was to deepen pedagogical content knowledge in mathe-
matics, CT, and STEM integration through teacher inquiry into classroom implementation.
The CT course was the second in a series of three courses required to earn a certificate in
elementary STEM teacher leadership. The courses were designed to build experienced
teachers’ capacity to integrate STEM in their classroom teaching.

3.2. Research Context

We selected place value as a critical and challenging mathematics concept at the early
elementary level with potential for modeling decomposition with virtual manipulatives
with an accessible block-based computer program. Students usually engage with these
concepts using physical manipulatives, ten frames, and place value mats in accordance
with the state-level mathematics standards and curriculum (Table 1).

Table 1. Adaptation of state-level mathematics standards document.

Relevant Mathematics Standards Sample Mathematics Questions Aligned with
Standards

Kindergarten
Represent whole numbers from 10 to 20, using
a unit of ten and a group of ones, with objects,
drawings and expressions or equations.

Sample Task
Have students provide a different way to fill
in the blanks. Students should give more than one
answer when possible. 16 is the same as ____ tens
and ____ ones
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Table 1. Cont.

Relevant Mathematics Standards Sample Mathematics Questions Aligned with
Standards

First Grade
Compose and decompose two-digit numbers
in multiple ways using tens and ones. Demonstrate
each composition or decomposition with objects,
drawings, and expressions or equations.

Sample Task
Part A. Look at each equation in the table be-
low. Circle true or false for each expression.
2 tens + 4 ones = 1 tens + 14 ones
4 tens + 0 ones = 40 tens
6 tens + 13 ones = 83
8 tens + 16 ones = 96

Second Grade
Compose and decompose three-digit numbers
in multiple ways using hundreds, tens, and ones.
Demonstrate each composition or decomposition
with objects, drawings, and expressions or equations.

Sample Task
The number 317 can be expressed as 3 hun-
dreds + 1 tens + 7 ones or as 31 tens + 7 ones.
Explain using objects or drawings
how both expressions equal 317.
Sample Task
Use a place value model to show how the num-
ber 134 can be represented as 13 tens and 4 ones.
Express the number 783 using only hundreds and ones.
Express the number 783 in multiple ways using only
tens and ones.

3.2.1. Designing the Scratch Place Value Programs

A series of Scratch programs were developed to align with the Grade K, 1, and 2 place
value standards. The programs differed from one grade level to the next with respect to
the maximum number that students would be modeling with base ten blocks. Our design
goal was to integrate opportunities to apply the facets of CT in a Scratch programming
context (e.g., abstraction, decomposition, and algorithmic thinking) with opportunities
to reason deeply and flexibly about place value and numerical decomposition [65]. The
program used multiple sprites and custom blocks to represent the physical base 10 blocks
that students typically access in the classroom when they are making sense of place value.
The programs were designed so that students could modify parameters to designate the
number of ones, tens, and hundreds to create visual representations of “unit” sprites (each
with a value of 1), “rod” sprites (each with a value of 10), and “flat” sprites (each with
a value of 100). These sprites are virtual “units” and “rods” analogous to physical place
value manipulatives. This program supports teachers and students in building a flexible
concept of place value. They can use code to efficiently generate multiple decompositions
of decimal numbers. For example, they can represent the number 27 with 2 tens and 7 ones
or 1 ten and 17 ones.

The main program (Figure 1) uses two repeat Scratch blocks to iterate the creation
of “unit” sprites and “rod” sprites (each with a value of 10). The first repeat block takes
the number of ones as an input from the student, while the second repeat block takes the
number of tens as an input from the student. As the first repeat block executes, “unit”
sprites appear on the screen one at a time until the user-entered number of ones is reached.
Simultaneously, the program updates both the ones counter and the counter displayed at
the top of the stage to reflect the current value of the number represented by the sprites.
If the number of ones entered by the student exceeds ten, the set of ten individual “units”
changes color to show equivalence to a “rod”. Following the completion of the first repeat
block, the program executes the second repeat block, iterating a number of times equivalent
to the user-entered count of tens. With each iteration, a “rod” sprite appears on the stage,
and the “tens” counter is incremented. The total value of the number represented by
the sprites is displayed in the top right-hand corner. The remaining blocks in the main
program are custom Scratch blocks with the functionality needed to create and position
each individual sprite and to group sets of 10 “units”. This design decision hides the
complexity of generating these representations from the students. By applying the CT
concept of abstraction in the algorithmic design, students only need to understand the
functionality of the main program.
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Figure 1. Place value programming activity.

3.2.2. Piloting the Place Value Programs with a Kindergarten Teacher

Prior to exploring the place value programming activity with the teachers in the CT
course, we shared the pilot version of the Grade K program with one elementary teacher
who had experience facilitating CT professional development courses. We asked her to
provide feedback on whether the activities provided opportunities for students to apply CT
concepts while reasoning about mathematics in the context of Scratch programming. Her
feedback about balancing the complexity of the visual representations and the complexity
of the code supported our first cycle of revisions. She emphasized the mathematical
importance of representing ones, bundles of 10 ones, and tens at scale for young learners.
She recommended color and orientation revisions to replicate the physical base 10 blocks
students were accustomed to using in the classroom.

She also observed that the program exhibited unusual behavior when the number
of ones exceeded twenty. We had originally designed the Scratch program to align with
kindergarten standards for representing numbers up to 20 using tens and ones. The
program would only bundle two groups of ten ones. When she tried to decompose a
number using more than 20 ones, there was a discrepancy between the value displayed
on the counter in the bottom right part of the stage and the actual number of one blocks
shown on the stage. Additionally, she observed that only the first two sets of ten “units”
were bundled as one “rod”.

Our rationale for setting the maximum value for the ones counter to twenty was based
on the program’s alignment with kindergarten standards. In this context, students are
expected to compose and decompose numbers from 11 to 19 into tens and ones. Although
the program would execute for numbers greater than 20, there would be a mismatch
between the symbolic display and the counter sprite. We chose to leave this logic error in
place so that we could assess teachers’ debugging skills.

3.2.3. Facilitating the Place Value Program with Participants

Prior to the lesson on integrating mathematics and CT in Week 7 of the 11–week online
graduate STEM education course, teachers engaged in CT in both unplugged (without a
computer) and plugged (with a computer) activities. The Week 2–5 modules introduced
teachers to the CT facets of algorithmic thinking, decomposition, abstraction, debugging,
iteration, and generalization. As part of these modules, the teachers collaboratively modi-
fied two Scratch programs: (1) creating a short story with dialogue between sprites; and
(2) drawing a a brick wall using mathematical patterns.
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3.3. Data Collection

We collected data across four phases of the place value programming activity in Week
7 of the CT course. In the first phase, teachers examined the main program to share their
predictions about the functionality of the program. We captured these predictions in a
Zoom recording of the whole group discussion. In the second phase, teachers worked in
small groups in Zoom breakout rooms to explore and make sense of the Scratch program.
Teachers were positioned as learners as they modified the code to represent the number 34
using “units” and “rods” in at least two different ways. They recorded their representations
by using screenshots of the coding blocks and the Scratch stage in Google Slides. In
the third phase, teachers collaboratively responded to prompts in Google Slides about
opportunities for students to learn CT and mathematics from their perspective as educators.
They discussed what adjustments they would make to the Scratch program if they were
to use this activity in their classroom instruction. The fourth phase of the place value
programming activity was completed outside of class as teachers responded to written
instructor feedback about their coding decisions and suggested program adjustments.
This feedback was documented in teachers’ digital interactive notebooks (DINbs) [66] as a
formative assessment of math + CT content knowledge and pedagogical content knowledge.
The DINbs included copies of the teachers’ problem-solving slides from the class meeting.
The instructor and the teacher used Google comments to provide feedback to one another
about the integration of CT and mathematics [67].

The sources of qualitative data collected from the four phases of this study were
artifacts of teachers’ interactions with the Scratch program in their group Google Slides,
teachers’ reflections on the activity in their individual DINbs, transcripts of in-class discus-
sions, and researcher observations of teachers’ interactions with the Scratch program.

3.4. Data Analysis

We engaged in iterative, collaborative coding of the qualitative data, using both cate-
gorizing and connecting strategies [68] to reason deductively about teachers’ application of
CT knowledge (RQ1) and to reason inductively about teachers’ ideas for modifying the
Scratch programming activity for classroom use (RQ2). For our first cycle of coding [69]
of transcripts of in-class discussion, we used the six facets of CT [20] as a priori codes
(decomposition, abstraction, algorithms, debugging, iteration, and generalization).

Based on this first cycle of coding, we narrowed the six a priori codes to four anchor
codes of abstraction, decomposition, algorithms, and debugging because these codes were
most prevalent in teachers’ interpretations and usage of the Scratch place value program as
a tool for mathematical reasoning and representation.

To answer our first research question, we analyzed the small group slides and indi-
vidual reflections using the four anchor codes. We assigned the abstraction code when
teachers recognized layering to hide complexity in the computer program and identified
relationships between functions. We coded for decomposition when teachers dissected
the program into manageable parts. We assigned the algorithms code when teachers inter-
preted the program as a series of logical, ordered instructions. We coded for debugging
when teachers identified errors and discussed how the computer program was not func-
tioning as they expected. For example, we interpreted the following teacher statement as
debugging: “When the program was running, we noticed that when it went to the third
set of tens the numbers counted oddly”. We then conducted a second cycle of pattern
coding [69] to look for differences across groups in how they were engaging in these four
facets of CT. We further collapsed the anchor codes into three themes related to teachers’
application of CT knowledge.

To answer our second research question, we collaboratively used holistic coding [69]
to describe teachers’ ideas for redesigning the Scratch place value program for use with their
students. We analyzed each of the teachers’ DINbs and the instructor’s feedback to describe
these ideas. This inductive approach allowed us to look for broad topics describing the
additional opportunities that teachers wanted to create for students to learn mathematics.
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Our analysis of these broad topics yielded two themes related to teaching addition and
subtraction and managing errors or exceptional situations that might occur during the
execution of the program.

4. Results

In this section, we present the findings from our analysis of the qualitative data. The
results are structured in accordance with the research questions.

4.1. RQ1: Teachers’ Use of CT in the Place Value Programming Activity

Teachers varied in their application of CT knowledge in both their initial predictions
about what the program would do and in representations of the number 34 using “unit” and
“rod” Sprites in Scratch. We identified three themes related to teachers’ understanding of
decomposition and abstraction in the context of Scratch, teachers’ abilities to generate place
value representations using the main program in Scratch, and teachers’ debugging skills.

4.1.1. Theme 1—Applying Decomposition and Abstraction in Block-Based Programming

During the initial prediction phase of the place value programming activity, teachers
offered different interpretations of how the Scratch program functioned and what math-
ematical representations it created by examining the main program and the output. A
pre-kindergarten teacher (Denise) described the program from a higher-level perspective as
a black box that accepted input, processed it, and generated output by stating, “It looks like
the program takes a number and then gives you units and flats that make that number”.
Denise did not illustrate her understanding of decomposition as a CT skill when she pre-
dicted that the computer would create the visual representation by interpreting the digits
in the ones place and the tens place. Her response suggests that she may only have been
looking at the stage in Scratch and not the coding blocks as she predicted the functionality
of the code. She connected the “11” as the value of the variable “Number” to the visual
representation of one “rod” and one “unit” on the screen.

A Grade 3 teacher (Maria) interpreted the program to be a sequential counter that
bundled ten ones. She suggested, “The program composes the ones until it goes until a 10
and then makes a ten rod and then it leaves the one in the ones place to make one”. Maria
relied on her own mathematical knowledge for teaching place value to make her prediction.
She understood the code could simulate the action of grouping ten ones and replacing the
group with one ten. However, she was not applying her CT knowledge of algorithms as a
sequence of steps to explain the functionality of the code. She did not communicate that the
main program was creating one “unit” to represent 1 one and one “rod” to represent 1 ten.

A Grade 3 teacher (Paula) was able to interpret the repeat blocks in the main program
to recognize the decomposition of place value representations.

“You’ve only told it to draw one and draw one, so it’s only going to draw a one and a ten.
It’s going to make 11. So as you change the numbers on the repeat you’re changing the
numbers that it’s going to create.”

Paula applied her understanding of algorithms, decomposition, and abstraction in
computer programming to predict the functionality of the code. She understood that the
student could change the parameters for the number of ones and the number of tens to
represent place value in multiple ways. Her explanation of changing the number of ones
followed by the changing number of tens suggests that she was interpreting the coding
blocks in the sequence in which they were written.

During the second phase of the place value programming activity, each group adopted
a different approach to interact with the code to create two visual representations of the
number 34 using “units” and “rods”. Three groups were able to use the Scratch program
to decompose 34 into three “rods” and four “units” and two “rods” and fourteen “units”
(Figure 2). They represented this mathematical decomposition by adding screenshots of the
Scratch programming stage with the correct numbers of “units” and “rods” blocks. Only
two of the four groups placed screenshots of the main program with modified parameters
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alongside the screenshots of the sprites on the Scratch programming stage. Their decision to
connect coding blocks to mathematical representations using Sprites provides evidence of
their use of CT decomposition and abstraction to represent their place value understanding.

Figure 2. Examples of teachers representations of 34.

We saw variations in each of the four groups’ abilities to communicate their under-
standing of CT decomposition and abstraction in the context of mathematics. One group
decomposed the number 34 in two distinct ways (3 tens + 4 ones, 2 tens + 14 ones). Two
other groups attempted to express the number 34 in three different ways (3 tens + 4 ones,
2 tens + 14 ones, and 34 ones). Moreover, they demonstrated an advanced application of
CT by determining that the code would not display the sprites correctly if the number of
ones exceeded 20. The fourth group struggled to represent the number 34. They did not
translate their knowledge of decomposition to identify that the ones and tens were encoded
with two distinct custom blocks. Renee, a Grade 3 teacher, offered an outside-of-class
reflection explaining the challenges that her group had faced with abstraction along with
the affordances of exploring existing code to understand decomposition.

“We spent so much time missing huge chunks that I now understand the need to ensure
all relevant parts of the code are showing. But the struggle did get us to play with a lot of
blocks we wouldn’t have otherwise.”
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Renee’s reflection provided additional evidence of the challenge that her group faced
in differentiating the main program from the custom blocks that created and positioned
sprites. They were not able to translate their understanding of abstraction as a CT skill to
interpret which parameters they should manipulate in the code. She further described her
challenge in making sense of abstraction.

“I have a better understanding of the pink blocks. I understood the concept, but in
tinkering, I can now apply it and manipulate it. I will be honest, this code is still escaping
me. I still do not fully understand what it is doing and how it works. For me, there is so
much going on, it is hard to follow. I think there are several separate things going on with
the visual numbers and the counting. I think what would have helped me to understand
it better is to have practice with a program that did one of those things, then practice with
a code that did the other. Then, practice with code that does both.”

During this second phase of the place value programming activity, three of the four
groups effectively applied their CT decomposition skills, leading to the understanding
that the program is broken down into multiple blocks. Each of these blocks implements a
specific functionality within the program. Furthermore, by employing their CT abstraction
skills, they understood that each custom block abstracts a specific functionality and they
were not required to delve into the details of its implementation. On the other hand, one
group struggled to apply abstraction CT skills. This group focused more on understanding
the details of each custom block. With the challenges they had in finding the main program
and changing parameters to represent the number 34, one of the teachers in this group
expressed hesitancy about adopting integrated activities in her classroom.

4.1.2. Theme 2—Applying Algorithms in Concrete Representations of Place Value

Three groups were able to understand the algorithm employed in the main program
to represent 34. They understood that the algorithm requires two inputs, representing the
number of ones and the number of tens, and that the visual representation on the stage
serves as the output. Furthermore, their understanding extended to recognizing the three
main steps of the algorithm: clearing the screen, representing the ones as “unit” sprites
based on the number given to the first repeat block, and subsequently representing the tens
as “rod” sprites using the number provided to the second repeat block. The fourth group
did not apply their knowledge of algorithms to modify the Draw Tens custom block and
Draw Ones custom blocks in the main program. Rather than initially understanding the
algorithm in the main program to represent the number 34 in multiple ways, they started by
modifying the custom blocks in a way to visually represent 34. They were able to correctly
display the number 34 in the upper right corner, but the “unit” sprites and “rod” sprites
and tens blocks displayed a different value.

4.1.3. Theme 3—Applying Debugging to Identifying Logic Errors in Symbolic and
Concrete Representations of Place Value

Three groups debugged the logic error in the program that we had identified during
the pilot implementation with a kindergarten teacher. The symbolic display and the counter
sprite did not match when attempting to represent the number 34 using either 1 ten and
24 ones or 34 ones (Figure 3). One group observed that the counter sprite was reset to zero
when the number of ones exceeded 20. The other two groups observed that when 34 ones
were used to represent the number, the number was displayed correctly as a symbol in
the upper right corner of the stage. However, they noticed an error in the ones counter
sprite in the lower right corner of the stage as they wrote, “The numbers counted oddly so
it actually went up to 20 and then it started over at the numbers zero and so and it counted
up 13”.
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Figure 3. Representing the number 34 as 34 ones.

Two groups used their knowledge of elementary mathematics, CT debugging, vari-
ables, and conditions to attempt to fix the error. They modified the code to bundle three
groups of ten ones. However, after running the modified program, they observed that it
only bundled the first and third groups of ten ones (Figure 4). Because of the limited class
time for this activity, the groups did not debug the program further. They wrote, “We did
not have time to troubleshoot and figure out why. I think our big realization was watching
it count up and seeing that it did not play by the rules that we thought it would play with”.

Figure 4. Programming activity modified to bundle three groups of ten ones.

4.2. RQ2: Teachers’ Ideas for Revising the Place Value Programming Activity

Teachers were able to apply their pedagogical content knowledge for teaching math-
ematics and their emerging CT skills to recommend changes to the Scratch place value
program. They suggested modifications to the program to better support the learning
trajectory of elementary students. They appreciated that the program allowed for flexible
representation of place value with virtual base 10 blocks and gave students the opportunity
to use code to represent the same number in multiple ways. They recognized the power of
a computer program as a digital manipulative to create concrete representations of place
value more quickly and efficiently than with physical manipulatives.

Based on our analysis of teachers’ recommendations and reflections in their group
problem solving slides and in their individual DINbs, we found that teachers saw the
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potential to enhance the Scratch representations of place value to teach regrouping for
addition and subtraction operations. They also extended conversations with the instructor
about the maximum number of ones and tens that students should be able to specify to
avoid errors in the number of “ones” and “tens” sprites on the stage.

4.2.1. Teaching Addition and Subtraction using CT

One of the groups suggested automating regrouping in to model addition and sub-
traction in code. They saw the potential for a Scratch programming activity to help early
elementary students to see exchanging 1 ten for ten ones supports subtraction and how
exchanging 10 one for one ten supports addition. The course instructor challenged these
teachers to think about the distinction between the original place value programming
activity, where the students were making the mathematical decisions about representations,
and the functionality they were proposing. An automated regrouping program would
demonstrate mathematics instead of supporting students in reasoning mathematically.

Instructor: “We would love to write a program for these operations. Tell us more about
what you would like the stage to look like (in terms of sprites or code blocks).”

Alyssa (Grade 2 Teacher): “I am not really sure? I have been thinking about it for a
few weeks. I like how in this place value program it shows the blocks for the number. I
think it would be helpful for students to see the blocks for the numbers they are adding
and then see how they are bundled to make a 10 or 100. My second graders struggle with
the concept of making a bigger unit when adding. I keep thinking about a lasso grabbing
10 ones and trading it for 1 ten.”

Instructor: “I am still thinking about your ideas. Let’s continue to think about how much
the computer should do and how much the student should do. In our other program, the
computer is automating students’ ideas about decomposing numbers.”

The teachers’ recommendations for developing computer programs for mathematical
concepts were often focused on designing a program that demonstrates mathematical oper-
ations rather than developing a tool that allows students to make sense of the mathematical
concept and consequently deepen their understanding of the concept.

4.2.2. Theme 2: Managing Errors or Exceptional Situations

Teachers drew upon both their CT knowledge and their mathematics knowledge as
they described how to modify the program to accept larger numbers as inputs without
creating errors. Alyssa suggested a closer alignment of the program with the Grade 1
standard of representing place value for numbers with up to 99 ones. The original program
allowed for a maximum of 20 ones. She acknowledged that representing the number 86
with 86 ones was less efficient than using 8 tens and 6 ones, but she believed it was valuable
for students to create inefficient representations as part of their sense-making. She also
related the space limitations of the Scratch stage to her own classroom experiences with
a limited number of physical manipulatives. She proposed writing code to say that the
Scratch cat is unable to draw this number of ones and to prompt the student to represent
the number in a different way. Her suggestion provided evidence that she was ready
to understand exception handling as a programming concept, even though neither the
course nor the study addressed this topic. The teacher and the instructor were engaging in
programming design together.

Instructor: “What number of ones would you like the program to be able to count up to
in this program? What would be your rationale?”

Alyssa: “I think to meet the first grade standard, the program would need to be able
to count up to 99 ones. First grade students need to be able to compose and decompose
two-digit numbers in multiple ways using tens and ones. Second grade students need to
be able to compose and decompose three-digit numbers in multiple ways using hundreds,
tens, and ones. The number 241 can be expressed as 2 hundreds + 4 ten + 1 one or as
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24 ten + 1 one or as 241 ones. 241 ones would be too many ones for the program to draw.
Maybe have the sprite say, “That is a lot of ones to draw, can you think of another way to
represent the number?”

Instructor: “You are echoing the same conversations we as researchers had around the
program design! May we have the sprite say your exact words? We also think we will set
a limit at 9 tens for the same reason.”

Alyssa: “That is what I tell my students when they are drawing quick tens and ones to
solve a problem. It will take them a long time to draw so many ones. I always tell them
that the drawing would be correct with that many ones but it would not be efficient.”

Helen, another second grade teacher, offered another perspective on the value of being
able to specify up to 99 ones for numbers up to 100 in the program, even though it was
not efficient. “We have students that truly need that experience of counting it out by ones.
Conceptually, they need to be able to manipulate by ones before they can swap out to tens”.
She recognized the potential for students to make sense of these ideas with virtual “units”
and “rods” in a computer program.

5. Discussion and Implications

Our goal in this study was to describe how researcher–teacher collaborations support
teachers in applying the facets of CT as they both experience a math + CT activity as
learners and critically consider its potential for use with early elementary students. In our
analysis, we found differential evidence of teachers’ application of knowledge of abstraction,
decomposition, and debugging as they thought creatively about mathematics in the context
of a Scratch program designed to align with Grades K-2 mathematics standards. We also
reported on how teachers would want to modify a block-based place value programming
activity to better support student mathematics learning.

Although all teachers had prior experiences in applying and identifying the facets of
CT in both standalone unplugged and plugged CT activities, there were variations in how
they applied their knowledge of abstraction, algorithms, and debugging in the integrated
Scratch math + CT activity. Some teachers struggled to apply their understanding of CT to
represent place value, while others demonstrated a strong understanding of abstraction,
algorithms, and debugging to create multiple representations. These understandings were
made more explicit because teachers were engaging with Scratch as a mathematics action
technology [33] and making sense of program functionality in the context of mathematics.
Teachers’ experiences as learners with Scratch were consistent with Benton et al.’s [40]
findings about how students can learn to program for the purpose of moving beyond
procedural knowledge about place value. Scratch programs can foster learners’ deeper
conceptual understanding of the meaning of the tens digit and the ones digit with visual
representations of quantity.

The teachers’ experiences as learners also serve as evidence that the place value
programming activity aligned with state-level mathematics standards offers promising
opportunities for students to enhance their computational thinking skills in decomposi-
tion and debugging while learning mathematics. The open-ended nature of the activity
promoted teachers’ ability to make sense of mathematical concepts through code and to
diagnose errors when the program did not create the mathematical representations they ex-
pected. These findings are consistent with prior research about the interactive and cyclical
nature of reasoning both mathematically and computationally in integrated activities [21].

Evidence from this study raises new questions for us about how to deepen teachers’
understanding of CT in an integrated mathematics context. These questions are important
to consider in the design of teacher professional development. As we facilitated this
place value programming activity with teachers, we debated how much to explain to
them about the functionality and organization of the code. We understand that teachers
learn to apply CT knowledge when they have opportunities to collaboratively tinker and
explore unfamiliar activities [67]. However, they also need support to explicitly connect CT
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ideas to mathematics teaching and learning. For elementary teachers, prior experiences
with mathematics and technology often involve activities where students mainly provide
answers to questions. However, as teachers learn to use and modify computer programs
from a learner’s standpoint, they start recognizing the creative possibilities of coding in
relation to mathematical reasoning.

Professional development for teachers in CT integration should provide opportunities
for tinkering, exploration, and modification of existing code followed by reflection on the
use of code to teach mathematics. This sequence of experiencing programming as learners
followed by reflection on how the program might fit into their mathematics curriculum equips
them with the expertise needed to design similar open and creative learning experiences for
their students. When teachers have the opportunity to experiment with code as learners in
professional development contexts, they think more deeply about how coding can become
a representation of mathematical sense-making. As they engage in program design with
university faculty, they can be challenged to reflect on how much demonstration is required
versus how much they want students to tinker and explore independently.

We also have new questions about how to better encourage teachers to see the con-
ceptual distinction between a program that requires students to use and modify code to
represent mathematical thinking instead of executing code that does the mathematics for
them. The teachers’ ideas about modifying the program to model regrouping in addition
and subtraction are more consistent with a demonstration of a concept. Professional de-
velopment for teachers should emphasize that integrating CT should support students
in making sense of mathematics concepts through programming. Another challenge that
should be explored is how to prepare teachers to formulate questions about what students
see in order to enhance their sensemaking process. Teachers need to anticipate the mistakes
students might make while interacting with the program. They should view both their
own mistakes and their students’ mistakes as learning opportunities that will aid in the
expansion of their understanding of CT concepts. University faculty who facilitate profes-
sional development for teachers should model both productive questioning and positive
responses to mistakes.

Each of these implications for the design of professional development (opportunities
for exploration, distinguishing between using code to represent student thinking and using
code to demonstrate concepts, and modeling productive questioning strategies) has the
potential to change how students experience both CT and mathematics. Using block-based
programming could help students reinforce their understanding of mathematical concepts
by making abstract ideas more tangible. It also motivates students to dynamically and
interactively explore mathematical concepts, allowing them to navigate activities at their
own pace and gain a more comprehensive understanding of concepts.

As program designers, we learned that feedback from in-service teachers is critical in
the design of integrated math + CT activities. Our initial design of the Scratch program
aligned with the kindergarten grade level standard and allowed students to correctly
represent a maximum of 20 ones because that was the upper limit of the standard. We were
aware that this design decision would result in incorrect representations if the teachers
tried to represent a number of ones in excess of 20, but we decided to share this version
with teachers to increase their opportunities for CT learning. While this design decision
was valuable for us as professional development facilitators because it deepened the quality
of debugging and CT learning during the class session, the mixed reactions of the teachers
to this design decision were informative. Some of the teachers appreciated the opportunity
to learn more about the underlying functionality of the various sprites within the Scratch
program as they tried to understand why it was not possible to represent 37 ones. Melissa
applied this debugging knowledge in her recommendation to build in an exception handler.
Other teachers were frustrated that they were not able to correctly create all possible
place value representations of the number 34. While we hesitate to conclude from this
experience that we should include this type of debugging challenge in integrated activities
for elementary students, we also do not discount the instructional value of this experience.
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We acknowledge several limitations in this research. The study was conducted as part
of one online graduate STEM course, and all 13 participants were practicing teachers with at
least three years of experience in one urban school district. The homogeneity of this sample
limits the transferability of the findings to other elementary mathematics teaching contexts.
Because these teachers volunteered to be part of a study with full tuition and a participation
stipend, they may have been more motivated to explore CT integration. Moreover, the
study specifically focused on a single programming activity within the number sense
mathematical domain. Further research should explore faculty–teacher collaboration in
math + CT integration in other mathematics domains, including patterns and geometry.

Our future research on professional learning for teachers would also benefit from a more
robust data set. The transcript data collected in this study from discussions among teachers
was limited to whole group conversations. Recordings of the four Zoom breakout room
conversations among small groups of teachers as they engaged in abstraction, decomposition,
algorithmic thinking, and debugging would offer deeper insight into how they were drawing
on their CT knowledge as they explored the place value programming activity. Our data col-
lection was limited to artifacts generated in the graduate course in which teachers experienced
the place value programming activity as learners. Research on professional development for
CT + math integration should include both interviews with participating teachers about their
professional development experiences and classroom observations as teachers facilitate these
integrated CT + math activities with their own students.

6. Conclusions

The evolution of computing involves incorporating computational skills into elemen-
tary education to prepare children for a technologically driven world. Scratch programming
activities that automate mathematical representations that are typically constructed with
physical manipulatives have the rich potential to change the ways in which students experi-
ence mathematics in the classroom. Teachers must be partners in this activity development
so that they are prepared to facilitate CT and problem solving. We facilitated the place
value programming activity with teachers to model how they could use programming in
mathematical problem solving with their own students. The teachers were not passive
recipients of our curriculum; instead, they actively engaged as learners and collaborators
in both our design and research on integrating CT in elementary mathematics. Teachers
made the mistakes that we might expect students to make related to abstraction and al-
gorithms. They identified errors in our programming designs. They proposed redesigns
to the place value programming activity, extending its applicability across multiple grade
levels, incorporating additional mathematical functionality, and handling errors for user
input that exceeded the possible values in the program.

This exploratory research study was conducted in the context of an online graduate STEM
education course for practicing teachers. Future research should focus on lesson planning and
classroom implementation to better understand how teachers facilitate learning and how to
enhance their understanding of place value in a programming context while fostering their
creativity and problem-solving skills. The integration of mathematics and CT can also be
further explored by introducing programming in mathematics content and pedagogy courses
for prospective teachers. By expanding this work in both pre-service and practicing teacher
education, the education research community will create more equitable opportunities for
students to deepen their learning in both mathematics and in CT in the classroom.
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