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Abstract: Within STEM (Science, Technology, Engineering, and Mathematics) education, integrating
real-world problem scenarios is paramount. Within interdisciplinary education, modeling is an
approach to fostering student learning and skill development in a student-centered learning environ-
ment. This study focuses on an integrated physics and mathematics course in STEM education based
on modeling for first-year engineering students. The main objectives of this study are to analyze
students’ models, assess the effectiveness of the pedagogical approach, and evaluate the benefits of
integrative education. This study uses a Model-Application Activity as a closure for the quadratic
model and extends the models built to a two-dimensional motion situation. The core activity in-
volves a real-world experiment where students attempt to roll a ball down a ramp into a cup. While
most groups successfully constructed theoretical models, only a few hit the target, highlighting the
complexities of applying theoretical knowledge to real-world scenarios. The study also emphasizes
the seamless integration of physics and mathematics, enriching the learning experience and making
the models more robust and versatile. Despite the promising results, the study identifies a gap
between theoretical understanding and practical application, suggesting the need for more hands-on
activities in the curriculum. In conclusion, this study underlines the value of integrating physics and
mathematics through modeling and a student-centered approach, setting the stage for future research
to enhance the effectiveness of STEM education.

Keywords: innovative education; integrative education; interdisciplinary education; model-eliciting
activities; STEM education; higher education

1. Introduction

As evidenced by prior research, model development sequences comprise a series of
interconnected activities designed to cultivate a framework of generalizable and reusable
relationships [1,2]. According to Gifford and Finkelstein [3] and Lo et al. [4], it is crucial for
educators to tailor their instructional approaches in mathematical modeling to align with
their students’ individual needs and capabilities. This involves incorporating a variety of
objectives and learning tasks that offer varying levels of learning experiences. Within engi-
neering mathematics, understanding the role of modeling in facilitating student learning
and skill development is paramount [5–7]. In the following theoretical framework, we will
address the significance and scope of student-centered learning, STEM (Science, Technology,
Engineering, and Mathematics) education, and mathematical modeling through real-world
problem scenarios.
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2. Framework
2.1. Active Learning and STEM Education

In Latin American countries, the shift towards a more active classroom teaching
paradigm has been a slower process compared to First World countries. Nevertheless,
the efforts have yielded positive results, and nowadays, more institutions are joining
this paradigm shift [8]. It is well-documented that active learning is a highly positive
teaching alternative for students’ learning and skill development in STEM areas [9,10]. The
use of strategies that promote this approach is based on peer interaction, collaborative
learning, collective and individual reflection, constructive discussion, feedback, and critical
thinking [11–13]. These strategies serve as frameworks to enhance students learning in
traditionally challenging disciplines, such as physics and mathematics [14–19].

On the other hand, Quezada-Espinoza et al. [20] compared student samples from two
countries, Chile and Mexico, and demonstrated in their research that in university settings
that promote student-centered education, students’ perceptions of the relevance of physics
to their engineering studies, and even their future as professionals, significantly improve.
Beliefs and perceptions of the relevance of physics and mathematics are related to learning
and can be enhanced through classroom activities [21–24]. This literature review leads us
to reflect on placing the student at the center of their learning, both inside and outside the
classroom, by encouraging activities that enable them to engage meaningfully.

As we have seen, several research studies focus on addressing conceptual challenges
within specific disciplines. Traditionally, in STEM fields, courses are taught separately,
which has led to the compartmentalization of concepts and issues, making it difficult for
students (and even educators) to perceive the interconnections among these disciplines.
Martín-Páez et al. [25] mention that STEM education is a cross-disciplinary field that not
only integrates four disciplines but also communicates results from the teaching, as well
as the cognitive, procedural, and attitudinal benefits for students. It engages students at
various levels, enhancing problem-solving, analytical, and communication skills through
experiential learning. Likewise, according to Zhao et al. [26], collaborative learning in
STEM education enhances communication and elevates student satisfaction in teaching and
learning activities. This approach promotes group discussions, facilitating the exchange
of ideas among students. Furthermore, students recognize that technology-based STEM
education involves complex experiments often best accomplished through collaboration to
achieve success.

We acknowledge that as generations change, the methodologies employed within
academic institutions should adapt accordingly. It is imperative to explore new horizons,
and this endeavor is facilitated by the instructional approach we employ in our dynamic
classrooms, exemplified here by using mathematical models applied to real-world scenarios.
As articulated by Martynenko et al. [27], our students encompass a diverse array of learning
preferences and inclinations, and it is our responsibility as educators to discern the most
effective means to prepare them for the demands of the professional world.

2.2. Modeling Activities and Real-World Scenarios

Zhai’s work underscores that proficiency in scientific modeling necessitates reasoning,
abstract thinking, and the ability to construct models that elucidate or forecast real-world
phenomena [28]. The study revealed that high-achieving students often find representing
information more challenging than grasping and applying scientific principles. This obser-
vation accentuates the need for targeted educational strategies to bolster students’ scientific
competencies [28]. Complementing this, Zwickl and colleagues identified a strong correla-
tion between students’ limited pre-existing conceptual understanding and their difficulties
in model construction within physics laboratory settings [29]. In this context, Lo et al. [4]
also recommended that modeling activities be carried out precisely with students with
prior physics and mathematics knowledge. Incorporating data-driven modeling across
diverse academic disciplines can amplify mathematical problem solving and investigative
capabilities, particularly when applying engineering design principles [5,30–32].
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For effective modeling, the scenarios must be rooted in real-world contexts. This
assertion is not only accurate but also of critical importance. Real-world challenges are
optimal for stimulating student motivation and creativity [4–6,9,33–36]. Several research
studies exemplify the application of analysis to model real-life situations. For instance,
Langman [37] presents a study that employs tissue engineering and regenerative medicine
concepts to model real-world scenarios. Riyanto et al. [6] use a nutrition context to perform
modeling activities. For their part, Peretz et al. [38] use the chocolate production process as
a real scenario for modeling.

Similarly, Zhai [28] explores the dynamics of sinking stones within the framework of
Newton’s laws, offering another example of research that models everyday phenomena.
English [31] investigates the flow times of simulated lavas of different viscosities, providing
valuable insights for students’ reasoning. Borish and colleagues [39] extend this line
of inquiry by examining various physical phenomena to model real-world situations.
Researchers have noted that the specific attributes of projects can substantially influence
students’ approach to model construction, affecting both the necessity for and the success of
such efforts [39]. Therefore, educators have the opportunity to strategically guide students
toward projects with particular characteristics, customizing them to encourage desired
learning outcomes.

Furthermore, students can engage in modeling activities without costly equipment,
democratizing access to hands-on learning experiences [40]. Research indicates that stu-
dents often encounter more significant difficulties when applying their knowledge to
problem-solving tasks, a phenomenon highlighted in previous studies [28,41]. Students
tend to default to mathematical concepts they are already comfortable with rather than
utilizing newly acquired knowledge. This behavioral pattern highlights a significant chal-
lenge in seamlessly incorporating authentic engineering-focused curricula into existing
mathematics courses, as elaborated upon in prior research [37].

In the context of the integrated Physics and Mathematics course (Fis-Mat, for its
acronym in Spanish), which served as the foundational framework for the developmental
sequences examined in this study, the course structure actively promotes the formulation
of mathematical and physical models [41]. This pedagogical approach is especially apt,
given that applying mathematical concepts naturally complements the study of kinematics,
the core subject matter of the physics component. As articulated by Wang et al. [42],
integrating STEM education offers students an invaluable opportunity to engage in learning
within authentic, real-world scenarios instead of accumulating fragmented knowledge
that requires later synthesis. Echoing this sentiment, Ryu et al. [43] and Bostic et al. [44]
advocate for classroom experimentation centered on real-world challenges. Students can
delve into interdisciplinary research initiatives addressing pressing global issues such as
food security, bioenergy, and climate change. Industry-based case studies can further enrich
their understanding. This holistic educational strategy facilitates a deeper comprehension
of the intricate interrelationships among STEM disciplines, which the mere acronym ‘STEM’
fails to convey adequately [4].

One pedagogical approach facilitating such group-based learning experiences is model-
eliciting activities (MEAs) [1,2,7,24,34,41]. In this framework, clients present engineering
challenges that require tailored solutions for specific scenarios, such as optimizing produc-
tion or developing mathematical models. When these challenges focus on model elicitation,
students are guided away from unproductive tangents often encountered in open-ended
problems. This focus simultaneously fosters the generation of diverse yet viable solutions
within predefined constraints [44–51]. Dominguez et al. [52] argue that successfully ap-
plying classroom-learned mathematical techniques to solve these real-world problems is a
compelling demonstration of the practical utility of classroom mathematics, extending its
relevance beyond academic settings into real-world problem-solving contexts.

Within the context of the established research framework, this study aims to achieve
three objectives:
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Objective 1: To analyze students’ models when solving an activity that requires the
integration and extension of previous concepts and models constructed.

Objective 2: To assess the effectiveness of the pedagogical approach of integrating
physics and mathematics through modeling instruction in translating theoretical knowledge
into practical application.

Objective 3: To evaluate the benefits of integrating physics and mathematics in educa-
tional settings.

The ensuing section will thoroughly explore the educational experiences aligned with
these objectives. This will be succeeded by an exhaustive presentation of the research
methodology employed, followed by the unveiling of the study’s findings. The manuscript
will culminate in a comprehensive discussion and conclusion, providing in-depth insights
into the research implications.

3. Methodology

The present study was implemented in an integrated first-year engineering course,
Fis-Mat, to close the gap between calculus and physics [24,41]. It involved redesigning the
course content, combining teaching strategies, reshaping the classroom setting, and using
technology. The course is in the first semester for engineering students in a large private
university in the northern part of Mexico. Students from different engineering majors take
this course, such as mechanical, mechatronics, and industrial engineering. The course
combined the first-semester calculus class with the introductory physics course and its
associated laboratory [41]. Before the redesign, the students used to take the calculus and
physics courses separately. The separated courses focused on solving calculus or physics
end-of-the-chapter problems. After the redesign and integration, it emphasized using
mathematical principles to examine physical phenomena and underscored the practical ap-
plication of mathematical concepts in physics. The main objectives of the integrated course
were to improve students’ abilities to make connections between physics and mathematics,
increase students’ motivation to advance in their engineering studies, and develop diverse
competencies, such as critical thinking and the ability to work collaboratively [24]. The
following section explains the modeling experience students have during the semester.

3.1. The Modeling Experience

The modeling development sequence (Figure 1) starts with a Model-Eliciting Activity
(MEA) [50] that serves dual purposes: gauges students’ pre-existing knowledge and it acts
as a catalyst for formalizing the quadratic model and the concept of motion with constant
acceleration [53]. During the exploration phase, a series of activities enable students to
delve into various aspects of quadratic functions, including their graphical representations,
equations, derivative functions, and qualitative and quantitative analyses. These activities
also extend to applications in physical contexts, addressing problem-solving scenarios in
one-dimensional (1D) and two-dimensional (2D) spaces. The 2D exercises incorporate
elements of vector analysis and foundational trigonometry. Throughout this phase, using
multiple representations empowers students to construct more robust models. This model
development sequence spans two weeks and culminates in a Model-Application Activity
(MAA), which challenges students to synthesize, connect, and extend their knowledge in
real-world problems. By the time the Model-Application Activity took place (4th week of
the semester), the students had worked with the first two iterations (cycles); see Table 1.

Simultaneously, the students are encouraged to construct mathematical and physi-
cal models, fostering an integrative approach. This methodology promotes a seamless
interaction between the mathematical and physical models, ensuring that both are equally
prioritized over the other.
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Table 1. Description of the nine modeling cycles (iterations) during the Fis-Mat 1st semester.

Model Physics Objective Mathematics Objective

1D motion

Build how position, velocity, and
acceleration graphs relate, and build a
specific model for constant
acceleration.

Introduce different types of functions
and how they relate to the graphical,
equation, and verbal ways of
representing them.

2D motion

Realize that displacement, velocity,
and acceleration are vectors.
Generalizing the previous model from
1D to 3D. Students should now be able
to explain how things move given
certain conditions. This cycle ends in
the ball-in-cup problem.

Functions

Energy

Through analysis of the bounce of a
ball, students can find that energy is
conserved and will be the first reason
things move.

Euler

Forces Part 1

Using force sensors builds the
relationships between acceleration
and forces—a second way of
understanding why things move.
Students should be able to explain the
movement of individual objects.

Derivatives

Forces Part 2

Adding a second object to the
interactions builds how forces are
applied between objects. Now,
students can analyze more than one
object interacting. All of Newton’s
three laws have been covered.

Derivatives and their applications.

Other Forces

Other forces are analyzed; the force on
a spring is the most common. The
student performs different
measurements in building how they
relate to other variables.

It is a great place to play with the sine
function. Both how they work and
their derivative and integral relations.
They can play with a mass-spring
oscillation system.

Circular motion

Use various experiments to
understand how the direction of the
forces applied to an object can create
specific kinds of motion. Build the
particular case of how radius and
velocity relate to the acceleration
towards the center.

Integrals

Momentum

A new unit that can easily explain
what happens when a collision is
introduced. Notice it is a vector and
should be treated as such.

Integrals

Rotational motion

Students realize that all we have built
until now is in a Cartesian system.
Use angle instead of position to relate
it to a circular system and prove that
everything is the same. Introduce
rotational inertia, rotational forces
(torque), rotational energy, and
rotational momentum. Prove
relationships are still the same as in a
Cartesian system.

Integrals
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This study’s foundation for constructing and applying physical models is rooted in
Modeling Instruction [54]. Within this pedagogical framework, physical scenarios are
primarily introduced as investigative exercises [55]. These exercises allow students to
explore, deduce, test, refine, and report findings. When necessary, the instructor intro-
duces new representational tools to aid the investigation. Students then apply these new
representations with their existing knowledge base during the model construction phase.
Throughout the problem-solving process, students engage in ongoing dialogues within
small groups. Periodic whole-class discussions are interspersed to ensure that all the groups
are progressing cohesively. By the session’s conclusion, each group presents its model and
articulates its underlying rationale to the class. The newly introduced representations are
assimilated at this juncture, culminating in an incrementally developed and more robust
model. The specific instructional approach employed in the classroom [24] is visually
depicted in Figure 1.

For the authors, representations are the media used to depict a situation, express the
relationship between variables, communicate an idea, and synthesize specific situation
characteristics. It is understood that “different media emphasize (and deemphasize) differ-
ent aspects of the systems they were intended to describe” [56] (p. 12). During the process
of constructing a model, the more representations used, the more robust the model is, and
this involves the use of different representations in a coherent and articulated way.

Nine complete iterations of this process are followed during the semester, each adding
more complexity to the built model. Each cycle focuses on one of the topics typically
covered in a physics course. Table 1 shows the nine different cycles.

By the fourth week of the semester, when this investigation takes place, the students
have access to various representational tools. These include (a) drawings for visualizing
the phenomena under study, (b) motion graphs that capture position, velocity, and accel-
eration, (c) tables that enumerate the coordinate values of functional relationships, and
(d) motion maps that offer qualitative velocity vectors to indicate both the magnitude and
direction of motion. The students have also gained proficiency in vector addition and
the derivation of kinematic equations from graphs. They have constructed models for
one-dimensional motion with constant velocity and acceleration, recognizing the former as
a specialized instance of the latter. Leveraging this understanding, they are prompted to
extend their reasoning to two-dimensional models with constant acceleration, analyzing
each component independently. In the mathematical realm, students are equipped to
analyze and graph both linear and quadratic functions, solve corresponding equations,
compute derivatives and antiderivatives of polynomial functions, and apply fundamental
trigonometric relationships in the context of right triangles.

The students apply their constructed models to real-world scenarios in the Model-
Application Activity (MAA) featured in this study. They engage in intellectual activities
throughout this process, including conjecture, discussion, strategic planning, computation,
and empirical testing. The MAA serves as a platform for students to validate the efficacy of
their models, thereby reinforcing the connection between the abstract modeling processes
and their tangible applications in real-world contexts.

3.2. Data Collection

The study focuses on the second cycle (see Table 1) of the Fis-Mat course. There
were 54 engineering students from different fields, e.g., mechanical engineering, chemical
engineering, bioengineering, etc. The students were divided into 18 collaborative groups
of three to tackle the activity. For the group formation, we used the following criteria:
(1) three groups of three students per table, (2) at least three women per table, (3) different
engineering programs per group as much as possible, and (4) high school GPA (mixing
high-score students with middle- and low-), as much as possible. The first cycle centers on
constant acceleration in one dimension, while the second delves into constant acceleration
in two dimensions. Both scenarios align with a mathematical quadratic model and can be
simplified to a linear model under specific constraints.
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In the first scenario, the students learn to represent position, velocity, and acceleration
within a week through graphical means. The focal point of this activity is the application
of their graph-based understanding to formulate equations for one-dimensional motion
under conditions of constant acceleration, corresponding to a quadratic model.

The study’s objective focuses on analyzing students’ models within a Model-Application
Activity (MAA) that involves using the quadratic model to understand motion under con-
stant acceleration. Specifically, the activity asks students to determine the optimal positions
for a ball on a ramp and a cup on the floor, such that the ball will roll down the ramp and
land inside the cup (as illustrated in Figure 2). The teacher built the ramp and measured
h1 (height of the table), h2 height of the cup, and two sides of the triangle formed by the
ramp (students calculated the angle). All the groups worked with the same information;
they needed to determine the ball’s initial position on the ramp (d) and the position of
the cup for the ball to fall inside (D). This activity occurred during the fourth week of
the semester, during which students had already developed linear and quadratic models
and could apply them to one-dimensional and two-dimensional motion scenarios. They
achieved this using various representational tools in a productive and conceptually co-
herent manner. Notably, while this stage had theoretically deduced the two-dimensional
motion model, it had yet to be empirically validated; this activity served as the inaugural
test of its real-world applicability.

Given that the problem is grounded in a real-world context, it commences with
measuring essential parameters. The instructor measures variables as requested by the
students, including the cup’s height, the table’s height, and the dimensions of the ramp,
to compute the angle (marked in blue in Figure 2). The two unknowns (marked in red in
Figure 2), d and D, are interrelated: the position of the cup on the floor (D) is contingent
upon the ball’s initial position on the ramp (d). To prevent trivial solutions (d = 0), a
minimum value for d is established (70 cm ≤ d ≤ 121 cm). A classroom sketch depicting
the scenario, complete with the actual measured values, is presented in Figure 2.
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Since the classroom setting has big round tables that seat nine students, we have three
groups per table. Therefore, the students can see and interact with students from other
groups. Also, the students are in a free-movement classroom; there are interactions among
groups, although those interactions are not promoted [41]. The Model-Application Activity
(MAA) is designed to be completed within a single session. After 40 min of collaborative
work, each team submits a sheet detailing their calculated values for d and D. Once all the
submissions are collected, the empirical testing phase commences. The students congregate
around the ramp setup, and each team takes turns implementing their specific values. They
place the ball—a steel marble—at the predetermined position on the ramp and position
the cup at the calculated location on the floor where they anticipate the ball will land
(as illustrated in Figure 3). The testing phase becomes particularly emotive as the ball
approaches the cup, either narrowly missing, striking the edge, or cleanly entering the
target. To ensure that all the students have an optimal vantage point for this crucial phase,
the ramp setup is projected onto four screens distributed throughout the classroom.
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3.3. Data Analysis

The students’ work was preserved on whiteboards for subsequent analysis. The anal-
ysis followed a qualitative approach with search criteria that emerged organically. Our
primary focus was to understand how the model was developed. To approach the analy-
sis of the whiteboards, we initiated the process by systematically generating, observing,
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and thoroughly scrutinizing the comprehensive solution model. Following this initial
examination, we analyzed each student group’s whiteboards to identify and categorize the
prevailing qualitative errors. Subsequently, we conducted a meticulous, image-by-image
examination of the teams’ work to unearth elements that resonated with the established
qualitative error categories.

Throughout the semester, it became customary for the teams to capture photographs of
their whiteboards and upload them to a private digital repository. This digital space served
as a resource for both reviewing and researching purposes. Notably, we “randomized” the
group numbers to ensure no direct connection, thus preserving the students’ anonymity
and identity, a crucial facet of our qualitative research methodology.

The identified errors in the analysis are as follows:

- Angle: This involves disregarding the directional aspect of velocity, particularly
overlooking that the ball’s initial velocity begins at a particular angle when it descends
in the air.

- Acceleration: This involves computing the ball’s acceleration along the ramp (1D).
- Quadratic model: The initial stage involves a consistent one-dimensional (1D) acceler-

ation, which is described by a quadratic model.
- Final/initial velocity: Identifying that the final velocity at the end of the ramp is the

initial velocity for the free ball motion.
- Quadratic+linear model: The second stage comprises constant acceleration within a

two-dimensional (2D) framework, employing a linear model along the horizontal axis
and a quadratic model along the vertical axis.

- Hit: Whether the ball enters the cup or not.

4. Results

This section presents the analysis results conducted on the groups of students’ re-
sponses displayed on the whiteboards. It is worth noting that the students sometimes
return days later, either after identifying their errors or harboring uncertainties about poten-
tial mistakes. A standard error among students is the inconsistent use of units for distance
measurements, such as mixing centimeters and meters. This often results in seemingly
plausible answers that only reveal their inaccuracies when the physical test is conducted.
Another frequent oversight is neglecting to account for the directional component of veloc-
ity, mainly ignoring that the ball’s initial velocity starts at a specific angle when it falls in
the air.

To successfully navigate the problem, students must scrutinize two distinct phases of
motion: (1) the ball’s descent along the ramp, and (2) its subsequent trajectory through the
air. The first phase involves constant acceleration in a one-dimensional (1D) context, which
is modeled quadratically (as indicated in the fourth column of Table 1). The preliminary cal-
culations require determining the precise angle of the ramp (utilizing the triangle depicted
in Figure 2) and ascertaining the ball’s rate of acceleration while on the ramp (outlined in
the second and third columns of Table 1). The second phase involves constant acceleration
in a two-dimensional (2D) context, represented by a linear model on the horizontal axis
and a quadratic model on the vertical axis (as shown in the sixth column of Table 1). The
terminal velocity attained in the first phase serves as the initial velocity for the second
phase (referenced in the fifth column of Table 1). Table 2 comprehensively summarizes the
students’ models as captured on their whiteboards.

Five of the eighteen participating teams had their ball land in the cup. A closer
examination of the specific errors reveals that most students could construct appropriate
models for each scenario. The teams that failed to arrive at the correct solution primarily
did so due to either a flawed interpretation of the problem or a failure to consistently apply
units in their equations, such as inadvertently combining centimeters with meters. The
term ‘No’ in Table 2, in the Final/Initial Velocity column, means the anticipated quadratic
model was not successfully formulated. One team erred in applying the quadratic formula,
neglecting to include the initial negative sign, thereby affecting the calculation of the
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ball’s point of impact with the ground. The detailed work of two representative groups is
illustrated in Figure 4.
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Figure 4. Two whiteboards of students’ groups showing their work in solving the Model-Application
Activity.

The two whiteboards depicted serve as comprehensive examples of the group’s work,
clearly delineating the two sections being solved. Of the 16 whiteboards submitted by the
students, 11 are well-organized and easily legible, while the remaining five need to be more
organized and are difficult to interpret.

Observations of student discussions during the activity reveal that once students
grasp the ball’s behavior, they have little difficulty recalling or applying the appropriate
equations. Teams that struggle are generally those that prematurely attempt to solve the
problem without first meticulously constructing the model, necessitating several rounds of
revision and backtracking.
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Table 2. Results for the 2D cup model. Interpretation and values were taken from students’ whiteboards.

Team Angle Accel. Quadratic Model Final/Initial Velocity Quadratic+Linear Model Hit

1 Yes No No, Units No, Units No, Units No
2 Yes Yes Yes Yes Yes Yes
3 Yes Yes Yes, Units Yes, Units No, Units No
4 Yes No No, Units No, Units No No
5 Yes Yes Yes Yes Yes Yes
6 Yes Yes Yes, Units Yes, Units Yes, Units No
7 Yes Yes Yes Yes Yes Yes
8 Yes Yes Yes, Units Yes, Units Yes, Units No
9 Yes Yes Yes No, Units No No
10 Yes Yes No No No No
11 Yes Yes Yes Yes Quadratic formula error No
12 Yes Yes No No No No
13 Yes Yes Yes Yes No No
14 Yes Yes Yes Yes Yes Yes
15 Yes No No No No Yes
16 Yes Yes Yes Yes No No
17 Yes N/A N/A N/A N/A No
18 Yes N/A N/A N/A N/A No

5. Discussion
5.1. Interpretation of Results

Our study’s results indicate that the students successfully applied theoretical models
to real-world scenarios, such as the ball-on-ramp experiment. Five teams used the models
and completed the task by having their ball land inside the cup (Objective 1). This success
suggests that the pedagogical approach of integrating physics and mathematics through
modeling instruction is effective in helping students translate theoretical knowledge into
practical application (Objective 2). However, three other groups applied complete and
correct models but failed to have the ball land inside the cup. These mistakes were related
to the mix of units and an algebraic error in their equation. This highlights the importance
of meticulous attention to detail in real-world applications, which often involve multiple
variables and units. Additionally, six other groups were partially successful in applying
their models, indicating that while the theoretical understanding is present, the practical
application is not straightforward. This complexity could be due to various factors, such as
the models’ limitations or the students’ understanding of how to apply them.

Another noteworthy observation is the role of collaboration in the study. The stu-
dents worked in groups to construct and apply their models, likely contributing to the
overall success rate. Figure 3 shows the students collaborating in the process. As in Hunter
et al. [57], students engage in the solution process during the collaborative activity. How-
ever, the varying degrees of success among different groups also raise questions about how
collaborative dynamics and individual contributions impact the effectiveness of the models.
It would be interesting to explore whether the groups’ size or composition significantly
impacts the outcomes. Furthermore, the study could delve into the psychological aspects
of group work, such as the role of leadership, communication styles, and conflict resolution
in the effectiveness of collaborative learning.

5.2. Importance of Modeling Instruction

Our findings underscore the importance of modeling instruction in physics and math-
ematics education. The pedagogical approach allowed students to explore, deduce, test,
refine, and report findings, thereby fostering a deeper understanding of the subject matter.
Evidence shows that students participate in their own learning (Figure 3) by discussing,
collaborating, and experiencing a real-world scenario to solve, similar to the reflective dis-
course that the activities foster [58,59]. There is also evidence that students use a high-level
thinking process (Figure 4) above what is usually used in a traditional classroom. This
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method of instruction encourages active learning and critical thinking, which are essential
skills for students in these disciplines.

Modeling instruction inherently promotes collaborative learning. Our study ob-
served that the students engaged in ongoing small-group dialogues and participated
in periodic whole-class discussions. This collaborative environment helped students con-
struct more robust models and facilitated peer-to-peer learning, which is invaluable in
educational settings.

The study also highlighted the interdisciplinary benefits of modeling instruction. By
integrating physics and mathematics, the students could construct models that were both
theoretically sound and practically applicable. This interdisciplinary approach enriches the
learning experience and prepares students for real-world challenges that often require a
multifaceted understanding of problems.

While the study revealed some challenges in applying theoretical models to real-world
scenarios, it also demonstrated that modeling instruction is a valuable tool for addressing
this complexity. As suggested by Yildirim et al. [60], modeling activities can improve
conceptual understanding and be a means for assessing the problem-solving process.
However, these benefits will only be successful if the activities are correctly implemented.
The iterative process of exploring, deducing, testing, and refining allows students to adapt
and improve their models in response to real-world variables, thereby bridging the gap
between theory and practice. This suggests that modeling instruction could be further
optimized to address these challenges, perhaps by incorporating more real-world examples
or providing additional guidance on navigating the complexities of real-world applications.

5.3. Integration of Physics and Mathematics

The study also demonstrated the seamless integration of physics and mathematics
through modeling (objective 3). This interdisciplinary approach enriched the learning
experience by allowing students to see the interconnectedness of these two fields. Instead
of treating physics and mathematics as isolated subjects, the integration helped students
understand how mathematical concepts can be applied to solve physical problems and
vice versa. This has significant implications for curriculum design, suggesting that more
integrated courses could provide a more holistic educational experience. The students faced
a real scenario with equipment in a classroom, with space to work together and experiment
with equipment. To solve the task, they had the physics model to understand which
physical laws to apply, but also, in each part of the ball’s motion, a mathematical model to
represent the experiment and to calculate the actual variables for the experiment. However,
the challenges faced in real-world applications suggest that while interdisciplinary learning
is beneficial, it may not prepare students for all the complexities they may encounter in
practical scenarios.

Following Sands [61], who emphasizes the importance of understanding how math-
ematical operations connect to and describe physics concepts, and the need for students
to be able to connect physical and mathematical models to effectively use mathematics in
solving physics problems, the interdisciplinary nature of this study made the constructed
models more robust and applicable to various scenarios. For instance, the students could
apply mathematical concepts like derivatives and integrals in understanding physical
phenomena like forces and motion (Figure 4). This versatility is crucial for preparing stu-
dents for real-world challenges that often require a multifaceted approach. It also suggests
that interdisciplinary approaches could benefit other scientific disciplines, not just physics
and mathematics.

The integration of physics and mathematics also facilitated a deeper conceptual under-
standing. For example, mathematical representations let students grasp the vector nature
of forces and momentum. This solidified their understanding of individual concepts and
provided a toolkit of integrated knowledge more readily applicable in practical scenarios.
This raises the question of how such integrated learning experiences could be scaled to
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more extensive educational settings and what resources would be necessary to facilitate
this kind of deep, interdisciplinary learning.

6. Conclusions

The Model-Application Activity consisted of predicting where to locate a ball rolling
down a ramp so it falls into a cup on the floor (position to be defined); solving this activity
fulfills two purposes. The first one applies and integrates the knowledge built until that
point in the semester concerning the physical and mathematical models. The second is to
empower the students by bridging the gap between models built from ideal situations and
those used in solving problems from real-life situations. The attitude of the students at
the end of the session, finding whether (or not) their calculations and model work, makes
this activity engaging and challenging. The satisfaction of the teams whose ball enters
the cup makes them realize that constructing a model to represent real-life situations is
doable. It paves the ground for building more complex models (or their refinement). The
teams whose model made the ball hit the edge of the cup came to realize the importance
of significant figures in their calculations. The teams that missed the target realized the
importance of working with congruence units and coherence among representations.

The students also realized that sometimes, a drawing or combining different repre-
sentations can help them better understand specific situations. Trying to use particular
formulas without understanding (as often occurs when solving problems from the end
of a textbook chapter) does not help when presented with more complex situations that
can be approached with more than one strategy. This allows students to use different
representations and calculations to reach the same answer, corroborating its correctness. In
our experience, a student can rarely make the same mistake by solving a problem graph-
ically and using equations. Moreover, moving from one representation to the other and
back allows students to verify their reasoning and assumptions. That resonates with the
statement by Lesh and Doerr [56] (p. 12): “Solution processes for model-development
activities (or other types of problem-solving experiences) often involve shifting back and
forth among a variety of relevant representations”.

The findings have significant implications for pedagogy in science and engineering
education. The study underscores the importance of modeling as a vital skill for enhancing
students’ research and problem-solving abilities. However, the challenges students face in
real-world applications suggest that more hands-on activities and practical experiments
should be incorporated into the curriculum.

The study successfully demonstrated the seamless integration of physics and math-
ematics, enriching the learning experience and making the models more robust. This
interdisciplinary approach is particularly beneficial for engineering students, who often
need to apply a multifaceted understanding of problems in their future careers.

The collaborative nature of the activities enhanced the learning experience. The
students could engage in meaningful dialogues within small groups, which likely con-
tributed to the successful construction of models. However, the varying degrees of success
among different groups also raise questions about how collaborative dynamics impact the
effectiveness of the models.

One limitation of our study is the relatively small sample size of first-year engineering
students. Future research could involve a more diverse set of participants to generalize the
findings. Further studies could also focus on identifying the areas where students struggle
and developing targeted instructional methods to address these challenges.

In conclusion, our study underlines the value of integrating physics and mathemat-
ics through modeling and a student-centered approach in STEM education. While the
study provides valuable insights into the effectiveness of this pedagogical strategy, it also
highlights areas for improvement. It sets the stage for future research to enhance the
effectiveness of STEM education.
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