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Abstract: The use of technology in education has experienced significant growth in recent years. In
this regard, computational chemistry is considered a dynamic element due to the constant advances
in computational methods in chemistry, making it an emerging technology with high potential for
application in teaching chemistry. This article investigates the characteristics and perceptions of
in-service chemistry teachers who participated in an e-learning educational computational chemistry
course. Additionally, it examines how educational data mining techniques can contribute to optimis-
ing and developing e-learning environments. The results indicate that teachers view incorporating
computational chemistry elements in their classes positively but that this is not profoundly reflected
in their teaching activity planning. On the other hand, generated statistical models demonstrate
that the most relevant variables to consider in the instructional design of an e-learning educational
computational chemistry course are related to participation in various course instances and partial
evaluations. In this sense, the need to provide additional support to students during online learning
is highlighted, especially during critical moments such as evaluations. In conclusion, this study offers
valuable information on the characteristics and perceptions of in-service chemistry teachers and
demonstrates that educational data mining techniques can help improve e-learning environments.

Keywords: educational computational chemistry; in-service chemistry teachers; data mining; technological
pedagogical science knowledge (TPASK); e-learning

1. Introduction

Continuing education and professional development for chemistry teachers are essen-
tial for improving the quality of teaching and preparing students to face the challenges
of the current and future worlds [1]. This training should include updating pedagogical,
scientific, and technological knowledge. In other words, teachers need to develop the nec-
essary expertise to use emerging scientific technology to implement learning environments
that promote scientific learning in students [2].

1.1. Educational Computational Chemistry and E-Learning Environments

Computational Chemistry (CC) arises as an update of theoretical chemistry and is
based on various computational tools such as mathematical algorithms, statistics, and
databases to model systems or calculate properties at the molecular level [3].

From the framework of Technological Pedagogical Science Knowledge (TPASK) [4], CC
represents a body of knowledge that emerges from the interaction between technological
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knowledge (TK) and science knowledge (SK), that is, technological science knowledge
(TSK). In this sense, CC is positioned as a dynamic element since advances in computational
methods represent a form of emerging technology that has the potential to be used in
teaching chemistry. In this regard, Tuvi-Arad and Blonder [5] highlight the importance
of chemical compound databases, which can serve as valuable resources for teaching
chemistry. Similarly, Lehtola and Karttunen [6] acknowledge that CC now offers a vast
array of open-source and freely available software, enabling its integration with Massive
Open Online Courses and thus reaching a wide range of students.

Based on the TPASK framework, Rodríguez-Becerra et al. [7] propose the Techno-
logical Pedagogical Chemistry Knowledge, which allows for the direct linking of CC, or
Technological Chemistry Knowledge, with Pedagogical Chemistry Knowledge. The inter-
section of these bodies of knowledge accounts for the educational CC construct, which is
understood as the knowledge that a teacher possesses to design learning environments
based on activities, resources, and educational strategies that incorporate CC tools and
allow for the learning of chemistry in their students.

One way to acquire this emerging knowledge is through e-learning courses, which
have become a key tool in modern education, offering a wide range of opportunities for
distance education, which gained greater prominence during the COVID-19 pandemic [8].
E-learning environments allow users to access educational content from anywhere and
anytime using only the internet. In addition, they enable teachers to design courses using
various tools to manage learning by integrating innovative technologies and multimedia
content [9].

E-Learning Educational Computational Chemistry Course

The e-learning Educational Computational Chemistry Course (EECCC) took place
in January 2023 and lasted five weeks. This free and self-paced course is hosted on
https://mooc.umce.cl (accessed on 1 January 2023) and was promoted through social
media platforms (Facebook) in science teacher discussion groups. It attracted 180 en-
rollments, of which 108 participants completed at least one activity in the course. Upon
entering the EECCC, teachers agreed to an informed consent form, which outlined utilising
all information generated during the course for research purposes. This consent form
underwent evaluation and approval by an accredited ethics committee in Chile.

The instructional design of the EECCC has been published by our research group [9]
and consists of three specific modules (Table 1):

• Module I: CC for Science Education is based on using research-grade computational
chemistry software (RGCCS) to edit, create, and test 3D chemical structures linked to
drug design.

• Module II: Use databases of chemical compounds, visualisers, and virtual screening to
solve problem scenarios.

• Module III: Development of experiences using the Problem-Based Learning (PBL)
methodology, problem scenarios, and pedagogical aspects.

The closing evaluation of the course reported on the preparation and planning of
learning activities framed in a PBL environment. For this, it was suggested to consider the
following aspects:

(a) Description of the stages of the PBL methodology for future implementation.
(b) Approach to a problem scenario, which should contemplate a socio-scientific theme

that could be solved through CC, main background, and research question.
(c) Identification of the educational sector in which it will be applied, indicating subjects

and learning objectives according to the local curricula, the number of students,
technical requirements, application time, etc.

(d) All the necessary information must be provided to help an instructor implement the
elaborated activity and the evaluations that she will use during the process.

(e) It must incorporate all the necessary reference material to complement the activity: videos,
websites, computer programmes, articles, book chapters, and other documents.

https://mooc.umce.cl


Educ. Sci. 2023, 13, 796 3 of 16

Table 1. E-learning Educational Computational Chemistry Course design.

Module Specific Topics/Contents Activity Type Evaluation

I
Introduction to computational

chemistry for science education.

• Introduction to computational
chemistry tools for teaching sciences.

• Molecular editing and visualisation
with Avogadro software.

• Discovery and design of new drugs.

• Draw a structure with
Avogadro software.

• Identify hydrogen
donors/acceptors.

• Lipinski rule application.

Identification of
potential drugs for

the treatment of
COVID-19.

II
Virtual screening, visualisers, and

molecular editors in
pedagogical contexts.

• Online databases of
protein structures.

• Introduction to molecular docking.
• Molecular docking with Autodock

software and MGLTools.
• Visualisation of results with

Autodock and Discovery
Studio software.

• Molecular docking

– File preparation.
– Results.
– Analysis of results.

III
Fundamentals of PBL.

• Introduction to PBL.
• PBL design.
• Role of teacher and students.

• PBL scenario example

“Requirement of the World Health
Organization in Chagas disease”.

– Stages of development of
PBL.

– Expected results.

Planning of learning
activities framed in a

PBL environment.

An example of a learning activity plan is presented in Supplementary Materials (Tables S1–S5).
Each module included various activities as well as interactive challenges and evalua-

tions. The course aimed to provide teachers with comprehensive knowledge and practical
skills for incorporating CC into their teaching practises. Offering a flexible and accessible
learning environment allowed participants to engage in self-directed learning, fostering
their professional development in the field of educational computational chemistry and
contributing to the development of their TPASK.

1.2. Educational Data Mining in E-Learning Environments

Data mining is a discipline that uses computational tools to analyse massive datasets
to identify patterns, trends, and relationships that can be used for decision-making. This
discipline has been highly relevant due to the high rate of information generation in all
areas of society, encompassing economic, governmental, medical, and educational aspects,
among many others.

Educational Data Mining (EDM) in e-learning environments has generated increasing
interest due to the large amount of information generated in learning management sys-
tems, including participant characteristics, learning outcomes, and event records [10,11].
Analysing this information can improve the quality of online education by providing valu-
able information about the effectiveness of educational strategies, predictive performance
models, student satisfaction, or technology tools [12]. There are various methods and tools
for EDM [13], but they can be classified into three types:

1. Classification is a procedure that consists of grouping individual elements into cate-
gories based on the analysis of quantitative information on one or more characteristics
inherent to these elements using a training set composed of previously labelled com-
ponents. Predicting student performance or retention/dropout in a particular course
is possible from these categories. Some of the most commonly used classification
algorithms are K-Nearest Neighbours, Decision Tree (DT), Naïve Bayes, Support
Vector Machine (SVM), and Random Forest (RF).

2. Clustering is a technique that classifies students based on their learning and interaction
patterns. This technique has recurrent applications in various fields, such as resource
recommendation, understanding learning processes, and preventing academic failure,
especially in the university environment. Some of the most commonly used clustering
algorithms are Hierarchical clustering and K-means.
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3. Regression is a technique that allows predicting a range of numerical values from
a specific dataset. The regression analysis has been used in various applications,
including predicting student academic performance and how accurately they will
answer particular questions. Additionally, regression has been applied to model
user learning behaviour, making it a valuable tool for understanding the cognitive
processes associated with knowledge acquisition.

Regarding the student success rate, Gaftandzhieva et al. [12], using a database of the
performance of 105 students in an e-learning programming course, reported a significant
correlation between the final grades of the students and their activity in the e-learning
course, as well as between the final marks and their participation in virtual classes. The RF
algorithm showed a prediction accuracy of 78%, a practical approach to predicting which
students might fail after a given time. In line with Al-Kindi and Al-Khanjari’s [14] proposal,
using a database of a course supported in Moodle with more than 250,000 records, we
carried out a comparative study between the Naive Bayes algorithm and RF and determined
that the latter has an accuracy of 97% of correctly predicted instances, thus determining
that it is an ideal algorithm to predict the performance of course participants.

Concerning the learning environment, Davies et al. [11], using a database of an e-
learning course on information systems together with the K-means clustering algorithm,
identified the strategies used by the students in their participation in the course, observing
that during the simplest activities, they did not use resources such as videos or explanatory
texts. However, during the most complex activities, they used all available tools. These
findings can serve as a basis for the development of new orientations in the optimisation of
the instructional design of the course.

Based on the above, this research focuses on a case study that reports on the results
obtained in an e-learning training instance for in-service chemistry teachers that focused on
using Educational Computational Chemistry and whose design can be optimised using data
mining techniques and the participant’s perception of the course. The research questions
for this study are as follows:

RQ1. How do in-service chemistry teachers integrate the design principles that guide
them to use CC tools in planning learning activities wherein they “teach with” rather than
“from” CC?

RQ2. How can data mining techniques assist in the design of e-learning environments
for in-service chemistry teachers?

2. Methods
2.1. Sample Characterisation

The characterisation of the sample was conducted by applying an initial questionnaire
completed by the course participants. The questionnaire was designed by the researchers
and consisted of four main sections: (i) personal and demographic information, (ii) aca-
demic information, (iii) employment information, and (iv) information regarding the use
of Information and Communication Technologies, based on the proposal by Esfijani and
Zamani [15] (for the whole questionnaire, review Supplementary Materials Table S6).

• Demographic information

The 108 teachers who participated in the EECCC course are geographically located on
the American continent and come from the countries of Chile, Colombia, the United States,
Ecuador, Uruguay, and Venezuela. Of these countries, Chile hosts 93.5% of the participants,
followed by Ecuador with 1.9%, and the remaining countries with 0.9% each.

• Gender, age, and education

The sample is predominantly composed of female teachers, accounting for 67.6%. In
terms of age range, the entire sample falls within the 25- to 40-year-old bracket (91.6%).
Regarding educational aspects, 54.6% have not pursued any postgraduate programmes
after completing their undergraduate studies, while the remaining 45.4% have undertaken
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diploma programmes (19.4%), postgraduate studies (6.5%), or master’s degrees (19.4%).
Concerning years of service, 73.1% have less than ten years of professional experience.

• Knowledge, use, and technological access

Regarding their initial training, 46.3% of the participants have not completed any
courses related to the use of technology. However, during their professional practise, 47.2%
reported having participated in courses related to the use of technology. In terms of general
knowledge about the characteristics of the computer they regularly use, such as memory
capacity or speed, 70.3% of the participants claimed to be familiar with them.

All participants had 100% access to a computer and the internet at home, while 91.6%
reported having access at their workplace. As for other peripherals, such as printers or
scanners, 81.2% reported having access to them.

Regarding the most frequent use of technologies, participants predominantly men-
tioned the use of email and file sharing (84.2%), chat platforms and social networks (80.6%),
and slideshow presentations (80.2%).

2.2. In-Service Chemistry Teachers’ Perception (RQ1)

A content analysis was conducted on the learning activity plans generated by the
teachers who participated in the EECCC. Furthermore, a methodological triangulation was
performed with the teachers’ perceptions regarding the constructs associated with TPASK
framework and the integration of CC. A survey and a focus group were used to assess
these dimensions:

1. The survey consists of 48 questions evaluated on a five-point Likert scale, aiming
to obtain balanced responses and avoid the possibility of neutral answers, thereby
compelling participants to take definite positions when responding. Using the Likert
scale allowed for quantitatively measuring attitudes, opinions, and perceptions [16].

An example of one of the questions included in the survey focused on evaluating
Technological Pedagogical Knowledge (TPK). The question was: “Can I adapt the dig-
ital technologies I am learning to different teaching activities, such as designing and
planning activities, classroom management and organisation, and evaluation processes,
among others?” In response to this question, participants were required to indicate their
level of agreement or disagreement based on constructs related to the TPASK frame-
work. The complete set of questions and their corresponding constructs is presented in
Supplementary Materials Table S7.

This instrument was developed based on the proposals of Habibi et al. [17],
Lin et al. [18], and Schmidt et al. [19], and presented the following Cronbach’s Alpha coeffi-
cient values for each construct: 0.840 (Pedagogical Knowledge, PK), 0.826 (SK), 0.915 (TK),
0.860 (Pedagogical Science Knowledge, PSK), 0.967 (TSK), 0.950 (TPK), and 0.968 (TPASK).
Additionally, the instrument presented a weighted Cronbach’s alpha of 0.977, indicating
high internal consistency.

The results were compiled from the responses for each indicator and organised into
the previously mentioned constructs.

2. The focus group was conducted to gather information about participants’ perceptions
of the e-learning module on educational computational chemistry and its impact on
learning and future teaching endeavours. The focus group allows for an in-depth
and detailed exploration of the topic, as discussions and idea exchanges among
participants can provide new perspectives, perceptions, and nuances. The focus group
included open-ended and closed-ended questions related to the TPASK framework.
For example, regarding knowledge in the sciences, a question used was, “Did you
acquire or develop scientific skills during the completion of the module? If so, what
were those skills?” [9].

This focus group was conducted virtually once the EECCC concluded and was moder-
ated by an independent researcher. The proceedings were recorded on video and meticu-
lously transcribed to ensure the precision and reliability of the collected data.
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The research participants comprise a cohort of 108 in-service teachers who participated
in the EECCC. A subsample of participants was selected to conduct the focus group.
Participants were chosen based on the following criteria: participants with over three years
of teaching experience, participants with a limited level of knowledge associated with
elements of CC [9], and participants who completed at least 90% of the activities proposed
in the course. Ultimately, the focus group consisted of six teachers identified using a code
(Id_i; i = 1–6).

The data analysis was conducted using qualitative content [20], categorising the ex-
pressions of the participants based on the research question. The analysis process’s validity
and reliability were confirmed by having another researcher repeat the categorisation
process using the interrater reliability method. The interrater reliability was calculated as
the average Kappa value among three reviewers (J.H.-R., L.C.-J. and J.R.-B.). An interrater
reliability value above 0.8 is considered a strong agreement [21].

2.3. Compilation of Records and Database

This study used all the records from teachers’ interactions with the Learning Manage-
ment System (Moodle). These records incorporate information related to the frequency of
access to the platform, interactions with each section, and learning results. This information
was compiled, generating a database of 9046 entries.

Likewise, additional variables were incorporated that address aspects related to the
sample characterisation described in Section 2.1.

This methodology generated a comprehensive database containing detailed informa-
tion about the participants’ characteristics and interactions during the course (Table 2).

Table 2. List of the variables used in this study.

Variable Data Type Description

V1 Numeric Final grade of the course
V2 Numeric Participation in course activities
V3 Categorical Gender, Female = 1, Male=0
V4 Numeric Age
V5 Categorical No further study, Yes = 1, No = 0
V6 Categorical Diploma studies, Yes = 1, No = 0
V7 Categorical Postgraduate studies, Yes = 1, No = 0
V8 Categorical Master’s studies, Yes = 1, No = 0
V9 Categorical Years in service (0 a 2), Yes = 1, No = 0
V10 Categorical Years in service (3 a 5), Yes = 1, No = 0
V11 Categorical Years in service (6 a 10), Yes = 1, No = 0
V12 Categorical Years in service (>10), Yes = 1, No = 0
V13 Categorical Access to computer at home, Yes = 1, No = 0
V14 Categorical Access to internet at home, Yes = 1, No = 0
V15 Categorical Access to computers at work, Yes = 1, No = 0
V16 Categorical Access to internet at work, Yes = 1, No = 0
V17 Categorical Hardware knowledge, Yes = 1, No = 0
V18 Categorical Technology courses (pre-service), Yes = 1, No = 0
V19 Categorical Technology courses (in-service), Yes = 1, No = 0
V20 Numeric Total courses taken
V21 Numeric Computer use
V22 Numeric Event log (Total)
V23 Numeric Event log (M1) *
V25 Numeric Event log (M1.1) *
V25 Numeric Event log (M1.2) *
V26 Numeric Event log (M2) *
V27 Numeric Event log (M2.1) *
V28 Numeric Event log (M2.2) *
V29 Numeric Event log (M2.3) *
V30 Numeric Event log (M2.4) *



Educ. Sci. 2023, 13, 796 7 of 16

Table 2. Cont.

Variable Data Type Description

V31 Numeric Event log (M3) *
V32 Numeric Event log (M3.1) *
V33 Numeric Event log (M4) *
V34 Categorical Performance, If scores ≥ 5.50, High; Low otherwise

* “Event Log (M.X)” gives an account of the activity/assessment number X belonging to each module (M).

2.4. Educational Data Mining (RQ2)

The database indicated in the previous point was processed using the R statistical soft-
ware package (v.4.1.0) [22] together with the R Analytical Tool To Learn Easily (Rattle) [23]
and RGtk2 [24] packages, which incorporate a series of functions that allowed data mining
computations through a graphical interface.

The database was loaded into the Rattle package interface, followed by an initial
verification to determine the variables to consider in the modelling stage. Specifically,
the variables that presented constant values were discarded, and the variable V34, which
reflects the success of the course, was selected as the objective variable. In addition, the
database was partitioned into three sets using a random strategy: a training set that covered
70%, a test set that represented 15%, and a validation set with 15% remaining.

Subsequently, the algorithms were used: (i) Classification and regression trees (CART),
(ii) RF, and (iii) SVM, to generate models that allow predicting the level of achievement of
the participants as well as reveal guidelines that contribute to improving the instructional
design of the EECCC.

3. Results and Discussion

At the end of the course, the group of participants with the lowest results and who
left the course early was made up of teachers with an average age of 39 years, of whom
44.4% have more than ten years of teaching experience and 55.6% have not continued
higher education than their initial training. This group is made up mostly of women, who
represent 88.9%.

The group of participants who passed the course are mainly young teachers with an
average age of 32 years, of whom 44.4% have less than five years of teaching experience and
55.6% have not studied beyond their initial formation. Regarding Gender, 55.6% of those
approved were men. In this last group, their planning of learning activities was analysed.

3.1. Integration of CC in the Planning of Learning Activities (RQ1)
3.1.1. Examination of Teaching Plans

The problem scenario presented by the participating teachers in the course mainly
revolved around socio-scientific issues related to health topics, such as diseases caused by
HIV, the Dengue virus, and other infectious agents. Consistent with the findings previously
reported by our research group, this highlights that the health field provides an important
source of real-world problems with significant educational potential [2]. In these scenarios,
teachers contextualise the problem and invite their students to develop potential solutions.

For example, one of the questions proposed by a participating teacher to guide the
learning activity was:

“Are there other candidate compounds to block the binding of HIV to the CCR5 recep-
tor? As a working group, generate scientific evidence that answers this research question.”

To address this question, the teacher suggests the use of various computational chem-
istry tools, such as databases of chemical compounds like PubChem (https://pubchem.
ncbi.nlm.nih.gov, accessed on 1 January 2023) and DrugBank (https://go.drugbank.com,
accessed on 1 January 2023), as well as 3D structure visualisation software (Avogadro,
https://avogadro.cc, accessed on 1 January 2023) and molecular docking (AutoDock,
https://autodock.scripps.edu, accessed on 1 January 2023). In terms of supporting informa-
tion for future teachers applying this material, elements related to potential objectives that

https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov
https://go.drugbank.com
https://avogadro.cc
https://autodock.scripps.edu
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can be pursued are incorporated, along with a comprehensive molecular docking protocol
that indicates the use of protein structures extracted from the Protein Data Bank website
(https://www.rcsb.org, accessed on 1 January 2023).

In general, the participating teachers suggested in their lesson plans that they use the
same CC tools originally introduced in the EECCC. While it is interesting to apply these
tools to new problem scenarios, it also highlights the lack of knowledge among teachers
regarding new tools. Therefore, it becomes evident that teachers need to understand the
computational tool they intend to use. They should experiment with different datasets,
explore additional functionalities, and only employ them with their students when they
feel adequately prepared.

3.1.2. TPASK Survey

The teachers’ perception of the development of the constructs associated with the
TPASK framework is shown in Table 3, which shows the total percentage of adherence for
each construct based on the responses of the EECCC participants.

Table 3. Perception of teachers in the TPASK framework.

Knowledge
Type

Strongly
Agree Agree

Neither
Agree nor
Disagree

Disagree Strongly
Disagree

PK 27.8% 61.1% 9.7% 1.4% 0.0%
TK 42.2% 42.2% 11.1% 4.4% 0.0%
SK 31.1% 55.6% 13.3% 0.0% 0.0%

PSK 26.4% 59.7% 12.5% 1.4% 0.0%
TPK 25.0% 68.1% 6.9% 0.0% 0.0%
TSK 20.6% 28.6% 25.4% 25.4% 0.0%

TPASK 30.2% 58.7% 11.1% 0.0% 0.0%

Regarding the survey described in Section 2.2, teachers perceive extensive dominance
around PK, TK, and SK, expressing substantial unanimity in the two categories with the
best scores, with an approval rate of 88.9%, 84.4%, and 86.7%, respectively. Following the
characterisation mentioned in Section 2.1, in-service teachers generally present an important
perception in accordance with the elementary constructs of the TPASK framework, such as
PK, TK, and SK, separately.

Concerning the PSK, this construct presents an approval level of 86.1%. The relation-
ship between pedagogical and scientific aspects is established directly, as evidenced in the
sample analysis, where the presence of teachers with experience in the educational system
is verified. Furthermore, this correlation is supported by information documented in the
literature, which maintains that PSK improves with teaching experience. In this sense, it
is observed that more experienced teachers have a stronger PSK compared with novice
teachers [25].

Regarding the TPK, various authors have highlighted its importance for developing
digital skills in education. According to Rodríguez-Becerra et al. [7], “TPK is a knowledge
about the possibilities and challenges implied on different ways to teach and learn”. In this
sense, it is relevant to highlight the high level of assessment observed in this category, with
93.1% approval in its two highest Likert categories. This value agrees with the findings
reported by teachers in post-pandemic service because the need to reorganise traditional
classes into online classes motivated teachers to incorporate and develop elements linked to
TPK that enhanced their skills in incorporating technologies in their teaching practise [26].

On the other hand, according to the TSK, there is evidence of an approval level of
49.2%, accompanied by 25.4% of disapproval. This result suggests the existence of a
low perception regarding the use of technologies that allow the development of different
aspects of scientific knowledge. It is pertinent to highlight that, despite the participation of
teachers in the instruction instance and their approval of the course, they still express the

https://www.rcsb.org
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feeling of requiring greater support in terms of technological aspects associated with the
teaching objectives.

Regarding the development of the TPASK of teachers, it is evident the importance
that is given to the integration of different skills and knowledge to optimise the teach-
ing and learning process in the scientific field mediated by technologies. In this sense,
the high degree of approval of 88.7% that is evidenced in teachers’ assessments of the
TPASK is significant. This indicates that, for the most part, teachers perceive that they
have the necessary skills and knowledge to use methodologies or pedagogical strategies
that allow the integration of knowledge of science, the use of digital technologies, and
scientific computing.

3.1.3. Focus Group

Regarding the integration of CC tools in the development of the EECCC, the authors
categorised the following text passages in the TPASK framework. This categorisation
presents a Kappa value of 0.814, which indicates excellent agreement between the authors.

• TK and TPK

It is evident that several participants presented difficulties when trying to install one
of the computer programmes used: “(. . .) When I had to install the programs, some complexities
arose and I had to ask the teacher for help”. (Id_5). “(. . .) It happened to me too”. (Id_2) and
(Id_4). However, the teachers did not try to solve the problem independently but requested
technical support through internal messaging. Finally, the problem accounted for the
absence of a dynamic-link library (dll) that could be easily solved based on TK. This
evidence contrasts with what was reported through the survey, which accounted for a high
percentage of perceptions of this body of knowledge.

On the one hand, there has been an excellent reception of the technological resources
used in the educational field, such as videos mediated by artificial intelligence and chemical
modelling. These tools have been positively received by teachers, who recognise their
potential to enrich the teaching and learning processes: “(. . .) I loved the use of artificial
intelligence in the videos because it brings not only us but also the students closer to an artificial
intelligence where interpretation is sought in the videos, which was also very in vogue (. . .) a little
while ago, I don’t know if today or yesterday I reminded myself that there was a presenter in the
United States based on artificial intelligence, so each time it is going to be inserted more into our
society and what better way to do it through education”. (Id_3). “(. . .) I believe that the most
essential skills that I can take away from the course are the use of models, the use of digitisation itself
(. . .) is to put a new learning modality in front of a computer and front of the student, that it is not
only in the notebook, in the book or even in the laboratory (. . .) now with digitisation everything is
easier.” (Id_3).

However, a certain reservation has also been identified regarding content creation due
to the time required to plan and prepare the materials supporting a possible implementation
of similar activities. It is important to emphasise that the quality and relevance of the
pedagogical resources play a fundamental role in the success of an implementation: “(. . .)
it is relevant to have the time available to generate all the materials such as the video tutorial to use
the software, the didactic material to be used or the evaluation instruments (. . .) so I feel that these
are like the difficulties that could have”. (Id_2).

“(. . .) as difficulties, I think it is time to design a module (. . .) the fact that one has to do
all these activities from scratch and plan them, it could be a bit exhausting (. . .) there is a
lot of work behind the implementation of a PBL environment”. (Id_4)

In this context, the level of development of the TPK becomes a determining factor
for the generation of effective pedagogical resources. Although the initial survey results
indicated that teachers have adequate mastery of this construct, it is essential to continue
promoting its further development due to the dynamic nature of technological tools.

• PSK
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Concerning these categories, the teachers realise the multiple application options of
the aspects evidenced in the development of the course: “(. . .) I was thinking of moving it to
sciences for citizenship course, since they are cross-cutting issues, the use of medicines and then
emphasising chemistry”. (Id_4). In the same way, the linkage of aspects linked to the course’s
instructional design is evident, such as the methodology that incorporated some aspects of
PBL, as was the work with learning scenarios based on socio-scientific problems: “(. . .) in
science for citizenship course, it works perfectly because it works with active learning methodologies,
and that is where the PBL is doing super well”. (Id_6).

In addition, teachers have expressed their positive perception of the interconnection
of the contents addressed in the course, which are intrinsically linked through a socio-
scientific problem. This perspective generates greater value and meaning in instruction
since it allows students to understand the relevance and application of the knowledge
acquired in real-world situations: “(. . .) The module had intermolecular forces, organic chemistry
with the visualisation. It also had a topic of stoichiometry and how to calculate molar mass with
the program. So, although perhaps it is content we see regularly at school, integrating or linking
them to teach everything together was very enriching”. (Id_2). “(. . .) For me, the Lipinski rule was
fascinating (. . .) One knows that drugs go through certain stages before being administered orally or
in another way, but I had no idea about this rule (. . .) For me, it was a novelty”. (Id_3).

The articulation of contents is revealed as a fundamental element to ensure adequate
course development. By intertwining different concepts and themes, a deeper and more
holistic understanding of the content is fostered for students. In addition, this integra-
tion promotes critical thinking and the ability to solve complex problems by addressing
situations in which it is necessary to apply knowledge from various areas.

• TSK

On the use of RGCCS, the participants give an account of their knowledge and use of
these tools: “(. . .) I only knew the chemsketch, and now I realised that it was completely outdated
with respect to all the ranges of programs that exist in general”. (id_2). “(. . .) The different stages of
the modules will allow us to do different things, such as acquiring knowledge of technology with
this autodock software or the use of these databases” (id_3). “(. . .) I liked working with real data,
having to search in some specialised chemistry database, seeing the subject of Lipinski’s rule and all
that”. (id_5). “(. . .) We are using technologies that are already available, we are using data that is
available published on web pages, specialised in scientific dissemination with real data, data that at
some point other scientists obtained in various ways and published” (id_4).

Similarly, there is notable recognition of free and open-access software, which is of
significant value in the educational context. This strategic choice is based on the elimination
of economic barriers and the possibility of accessing emerging technologies without the
need to incur additional costs to acquire specific programmes:

“(. . .) all the software was open access (. . .) anyone could access the specific scientific
information, totally free, they did not require registration or anything (. . .) it was down-
loaded from the official page and used immediately (. . .) even, the issue of databases
could be done directly by accessing the internet (. . .) it can even be done with a mobile
phone”. (Id_4)

Using technological tools such as Avogadro, Autodock, and Databases of chemical
compounds expands the possibilities of exploration and experimentation, promoting critical
thinking and creativity in learning chemistry: “(. . .) I think that the most useful thing was the
visualisation using Avogadro (. . .) I had already used it a long time ago, but I couldn’t remember”.
(Id_2). “(. . .) I think that where I learned the most was in the docking section, using Autodock
(. . .) now, I have the confidence to use Autodock and follow the entire flow of the docking process”.
(Id_1). “(. . .) search for data in a specialised chemistry database. Searching for a particular data of a
compound and obtaining its properties no longer has any complexity. It is the minimum complexity
of using a browser or a web page (. . .). When one uses scientific software, you can develop many
skills that sometimes go beyond the specific contents of chemistry or biology, and it has to do with
the use of technologies, which can be enriching”. (Id_4).



Educ. Sci. 2023, 13, 796 11 of 16

These findings are relevant since, in previous investigations, our research group has
reported the importance of the development of TSK [7,27] since it is directly related to the
development of scientific skills such as the interpretation of computational models, the
use of scientific protocols, the work with databases and the visualisation in 3D, these tools
allow to understand abstract knowledge and visualise through a complex screen process
such as molecular docking.

• TPASK

The projection towards new formative instances in the particular contexts of the
teachers is evident, mainly from the TSK to the PSK: “(. . .) Now I can project the visualisation
of molecules in a class and explain a content” (Id_2). “(. . .) Since we are all teachers, we are all
thinking about how to modify this, according to the technological tools or the resources we have
in each school to implement it in the future” (Id_3). “(. . .) The fact of being able to complement
my knowledge with the use of different software to be able to teach will be exciting for the students.
They will be able to interact with some models and understand abstract concepts” (Id_5). “(. . .)
In my class, I would start with the topic of databases and the calculation of properties using the
software” (Id_4).

Finally, the integration of the bodies of knowledge is evidenced, as is how these inter-
actions enable enriched learning environments: “(. . .) This was to connect technology with the
class in a super coherent line of deepening” (Id_6). “(. . .) It helped me to learn computational chem-
istry, software and databases, and then move from that to teaching chemistry with computational
tools” (Id_2).

Furthermore, one of the participants reports a significant contrast relating the classical
practises of chemistry with the use of new emerging technologies, hitting the nail on the
head: “(. . .) We totally got out of the paradigm of the scientist in the laboratory, but we made
them do laboratory activities with a computer, and it is totally different from science class, with the
teacher who wears the white coat here it was the same. Finally, we are using a computer that was
our laboratory material, the computer” (Id_4). A temperature sensor in the laboratory was
once cutting-edge technology. Nowadays, the use of RGCCS is at the forefront. Its use,
together with active learning methodologies, is undoubtedly the path towards which the
professional development of teachers should be directed.

3.1.4. Final Section Considerations

Based on the three inputs presented in Section 3.1 (survey, focus group, and lesson
planning), it is possible to observe the integration of CC tools in the planning of learning
activities in a concrete manner and through the teachers’ discourse.

In this regard, the PSK is significantly developed among the teachers. The selection
of socio-scientific problems and adherence to a PBL methodology, with all its challenges
(scenario generation, formulation of challenging questions, tool selection, among others),
indicate that the teachers have educational experience. This assertion is supported by the
high percentage presented by the construct in Table 3 and the highlighted passages of text
in Section 3.1.3.

On the other hand, the use of computational chemistry tools is still at an early stage.
While technological advancements have greatly contributed to the development of the
field, these advancements are not aligned with the usability of computational tools related
to science in educational environments. Currently, teachers appreciate the accessibility
and the potential technological, pedagogical, and scientific contributions of computational
chemistry. However, their usage is minimally evident in the planning of learning activities.

3.2. Model Generation Using Educational Data Mining (RQ1)

Models were generated from the three algorithms used for each model. The results
obtained are described as follows:
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3.2.1. Classification and Regression Trees

The model generated by the CART algorithm presented the following rules, where
each rule corresponds to a path through the decision tree (Figure 1).

Figure 1. Decision Tree was made using the CART algorithm. This algorithm selected the variable
V30 as the most important factor that determines the division of the data, and therefore its value
determines the level of success in the course.

• Rule number: 3 [V34.perf = Low cover = 28 (80%) prob = 1.00] V30.Log.M2.4 < 10.5.
• Rule number: 2 [V34.perf = High cover = 7 (20%) prob = 0.14] V30.Log.M2.4 ≥ 10.5.

The CART algorithm accounts for a relevant stage in obtaining success in the develop-
ment of the course. It is evident that the variable V30, which corresponds to the closing
evaluation of modules I and II of the EECCC, is a key factor in the success of the course. This
evaluation corresponds to developing a PBL module whose problem scenario is positioned
towards the “identification of potential drugs for the treatment of COVID-19” through CC
techniques. In this regard, the final evaluation of the course shows that only 10.7% of the
participants completed this activity. Along the same lines, the events log indicates that
73.1% of all events recorded in this evaluation correspond to interactions carried out by
teachers who completed the course.

The decision rules derived from the analysis indicate that success will be low for
100% of the sample (probability = 1.0) when the variable V30 has less than 10.5 points.
Furthermore, this rule covers 80.0% of the training set, with a total of 28 observations that
satisfy this condition. Consequently, it is necessary to generate more content and various
supports or guides before the evaluation so the participants can solve it correctly.

3.2.2. Random Forest and Support Vector Machine

The model generated by the RF algorithm used 500 DT and presented an estimated
error rate of 2.86%. Additionally, a confusion matrix that registers the disagreement between
the final model’s predictions and the training set observations’ results was recorded. It can
be observed that the model and the training dataset coincide in high performance for five
comments and in low performance for 29 observations. However, there is one observation
where the model predicts low performance and the observation reports high performance,
resulting in an error rate of 16.7% of the observations. This contrasts with the 0% error rate
when predicting high performance (Table 4).
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Table 4. Confusion matrix for the Random Forest model.

Performance High Low Class.Error

High 5 1 0.1666667
Low 0 29 0.0000000

Additionally, a classification was generated to evaluate the importance of the variables
(Table 5). Each input variable has four importance measures, with higher values reflecting
the relatively greater importance of the variable. Table 5 is ordered by the precision of
importance measure, where the variable “Mean decrease accuracy” expresses how much
accuracy the model loses by excluding each variable, while the variable “Mean decrease
Gini” is a measure of how each variable contributes to the homogeneity of the nodes and
leaves in the resulting RF.

Table 5. Variable importance based on Mean Decrease Accuracy for the ten best-scored variables (If
scores ≥ 5.50, High; Low otherwise).

Variable High Low Mean Decrease Accuracy Mean Decrease Gini

V2 8.43 8.27 8.46 1.18
V32 8.23 6.73 7.64 0.83
V33 7.88 5.25 7.33 0.68
V31 6.78 5.25 7.04 0.62
V30 6.03 4.81 5.91 0.51
V1 5.11 4.89 5.48 0.90
V22 4.33 2.84 3.91 0.34
V28 3.13 3.33 3.63 0.25
V29 3.60 1.76 3.49 0.32
V26 2.97 1.37 2.69 0.18

For the full table, review Supplementary Materials Table S8.

Concerning the model generated by the RF algorithm, a high precision was observed
(97.1%), which made it possible to determine the relative importance of the variables in the
study. According to the results obtained, the five most relevant variables are the general
participation in the course (V2), the final evaluation corresponding to the planning of a PBL
environment (V32), the final perception of the teachers (V33), the complete PBL module
(V31), and the V30 that the DT had previously identified. This finding suggests that the
active participation of the students, the final evaluation, and the teachers’ perception are
crucial factors for the success of the e-learning courses.

The result of the SVM algorithm indicates the creation of 22 support vectors and a
general prediction error of 0.0% on the training dataset. All predictions made for variable
V34 in the training dataset are accurate.

3.2.3. Model Evaluation and Guidelines for EECCC Redesign

The models are evaluated using the dataset that was not considered in constructing
the prediction models. Since the prediction was based on a binary variable (Performance),
the evaluation of the models presents a two-by-two matrix of the predicted and actual
values for the indicated variable (Supplementary Materials Table S9).

The overall prediction error for the decision tree-based model was 28.5%, and the
average error of the variable categories (High/Low) was 20.0%. The error matrix shows
that the “High” category prediction was accurate, while the “Low” category prediction
was vague. On the other hand, the evaluation of the models proposed by RF and SVM did
not present prediction precision errors for both variable categories (0.0% error).

The evaluation of the models generated by the RF and SVM algorithms revealed
the best performance in predicting the participants’ success levels. This finding agrees
with what was proposed by Bulut and Yavuz [28], who account for these algorithms’ high
reliability and precision.
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Based on these generated models, it is possible to establish guidelines that optimise the
EECCC based on the trends reported by the algorithms. In this regard, the most important
variables (see Table 5) are mainly related to event logs consistent with evaluations. This
may seem trivial, but it is essential in an e-learning course because, unlike face-to-face or
synchronous courses, this modality relies on participants’ self-learning, where their self-
efficacy, time management, motivation, and persistence become crucial. These results are
consistent with previous studies that have found a positive relationship between student
engagement and success in online learning [29]. In addition, they highlight the need to
provide additional support to students in online learning, especially at critical moments
such as assessments [30,31]. For example, regarding event logs, participants who completed
the course had an average of 342 logs. In contrast, the average for students who were
unsuccessful in the course was 145 logs, meaning they achieved approximately a 42%
success rate.

To prevent this amount and promote success in the course’s development, it is neces-
sary to strengthen the instances before evaluations. Although the course design includes
intermediate assessments (such as identifying compounds with pharmacological properties
using databases of chemical compounds), it is necessary to reinforce their completion and
ensure participants review the feedback generated through the internal messaging system
to create a sense of accompaniment. Additionally, reviewing all evaluation instances is
fundamental to determining specific difficulties in their completion.

4. Conclusions

The quality of student learning is related to the training and experience of teachers,
which highlights the importance of continuous training and professional development to
improve the quality of teaching. Therefore, it is necessary to consider practical strategies to
promote teachers’ participation in constant education and professional development, such
as e-learning courses.

The present study focused on an online learning experience aimed at young teachers
who lack experience in the school system and have a limited level of continuous training.
It was observed that these teachers exhibited low usage of science-related technology
tools, instead opting for office-related technological tools such as email and presentation
slide applications.

Upon completion of the course, participants were surveyed about the constructs associ-
ated with Technological Pedagogical Science Knowledge, revealing significant development
in terms of the potential integration of technological tools and research-grade computa-
tional chemistry software, as well as an interest in the potential use of problem-based
learning as a methodology to enhance the quality of teaching and students’ comprehension
of scientific concepts. However, it is acknowledged that the practical application of this
knowledge remains a challenge for many teachers. It is important to note that the mere
use of these tools does not necessarily indicate a deep understanding of the potential of
technology in teaching and learning. Therefore, it is crucial for teachers to acquire technical
skills and a critical understanding of the use of technology in the classroom and its impact
on student learning. In this context, computational chemistry emerges as a discipline that
offers a wide range of valuable tools and resources for teaching chemistry.

Regarding improving and optimising the course, the analysis of educational data
through data mining reveals the importance of evaluative instances and teachers’ commit-
ment and active participation in course development. The need for ongoing monitoring of
the course’s progress by teachers is emphasised. Educational data mining enables the iden-
tification of the precise inflexion point that determines the success or failure of the course.
In this regard, it is essential to identify these emerging patterns and focus on them during
the redesign, analysis, and optimisation of future e-learning educational computational
chemistry course implementations.



Educ. Sci. 2023, 13, 796 15 of 16

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/educsci13080796/s1, Table S1: Learning activity planning—
Overview. Table S2: Learning activity planning—Didactic sequence. Table S3: Learning activity
planning—Problem scenario. Table S4: Learning activity planning—Instructor Support Information.
Table S5: Learning activity planning—Evaluation rubric, investigation report. Table S6: Characteri-
sation questionnaire. Table S7: TPASK Survey. Table S8: Variable importance for all variables used
in this study. Table S9: Error matrix for the generated models. References [32–34] are cited in the
Supplementary Materials.

Author Contributions: Conceptualization, J.H.-R. and J.R.-B.; methodology, J.H.-R. and J.R.-B.;
formal analysis, J.H.-R., L.C.-J. and J.R.-B.; writing of the first draft of the manuscript, J.H.-R.; writing-
revising and editing of the manuscript, L.C.-J. and J.R.-B.; supervision, J.R.-B.; project administration,
J.R.-B.; funding acquisition, J.R.-B. and L.C.-J. All authors have read and agreed to the published
version of the manuscript.

Funding: The author J.H. thanks the Programa Extraordinario de Becas de Postgrado—Doctorado
en Educación—UMCE and the Proyecto FONDECYT Regular–1221942 and FONDECYT Regu-
lar 1221634.

Institutional Review Board Statement: The study was approved by the Comité de Ética Institucional,
Universidad Santiago de Chile, approval code 158/2022, approved on 19 April 2022.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cannon, A.S.; Anderson, K.R.; Enright, M.C.; Kleinsasser, D.G.; Klotz, A.R.; O’Neil, N.J.; Tucker, L.J. Green Chemistry Teacher

Professional Development in New York State High Schools: A Model for Advancing Green Chemistry. J. Chem. Educ. 2023, 100,
2224–2232. [CrossRef]

2. Hernández-Ramos, J.; Pernaa, J.; Cáceres-Jensen, L.; Rodríguez-Becerra, J. The Effects of Using Socio-Scientific Issues and
Technology in Problem-Based Learning: A Systematic Review. Educ. Sci. 2021, 11, 640. [CrossRef]

3. Parrill, A.L.; Lipkowitz, K.B. Reviews in Computational Chemistry; Wiley Online Library: Hoboken, NJ, USA, 2022; Volume 32.
4. Jimoyiannis, A. Designing and implementing an integrated technological pedagogical science knowledge framework for science

teachers professional development. Comput. Educ. 2010, 55, 1259–1269. [CrossRef]
5. Tuvi-Arad, I.; Blonder, R. Technology in the Service of Pedagogy: Teaching with Chemistry Databases. Isr. J. Chem. 2019, 59,

572–582. [CrossRef]
6. Lehtola, S.; Karttunen, A.J. Free and open source software for computational chemistry education. Wiley Interdiscip. Rev. Comput.

Mol. Sci. 2022, 12, 33. [CrossRef]
7. Rodríguez-Becerra, J.; Cáceres-Jensen, L.; Díaz, T.; Druker, S.; Bahamonde, V.; Pernaa, J.; Aksela, M. Developing technological

pedagogical science knowledge through educational computational chemistry: A case study of pre-service chemistry teachers’
perceptions. Chem. Educ. Res. Pract. 2020, 21, 638–654. [CrossRef]

8. Adedoyin, O.B.; Soykan, E. COVID-19 pandemic and online learning: The challenges and opportunities. Interact. Learn. Environ.
2020, 31, 863–875. [CrossRef]

9. Hernández-Ramos, J.; Rodríguez-Becerra, J.; Cáceres-Jensen, L.; Aksela, M. Constructing a Novel E-Learning Course, Educational
Computational Chemistry through Instructional Design Approach in the TPASK Framework. Educ. Sci. 2023, 13, 648. [CrossRef]

10. Hachicha, W.; Ghorbel, L.; Champagnat, R.; Zayani, C.A.; Amous, I. Using Process Mining for Learning Resource Recommenda-
tion: A Moodle Case Study. Procedia Comput. Sci. 2021, 192, 853–862. [CrossRef]

11. Davies, R.; Allen, G.; Albrecht, C.; Bakir, N.; Ball, N. Using Educational Data Mining to Identify and Analyse Student Learning
Strategies in an Online Flipped Classroom. Educ. Sci. 2021, 11, 668. [CrossRef]

12. Gaftandzhieva, S.; Talukder, A.; Gohain, N.; Hussain, S.; Theodorou, P.; Salal, Y.K.; Doneva, R. Exploring Online Activities to
Predict the Final Grade of Student. Mathematics 2022, 10, 3758. [CrossRef]

13. Williams, G. Data Mining with Rattle and R: The Art of Excavating Data for Knowledge Discovery; Springer Science & Business Media:
Berlin, Germany, 2011.

14. Al-Kindi, I.; Al-Khanjari, Z. A Comparative Study of Classification Algorithms of Moodle Course Logfile using Weka Tool. Int. J.
Comput. Their Appl. 2022, 29, 202–211.

15. Esfijani, A.; Zamani, B.E. Factors influencing teachers’ utilisation of ICT: The role of in-service training courses and access. Res.
Learn. Technol. 2020, 28, 2313. [CrossRef]

https://www.mdpi.com/article/10.3390/educsci13080796/s1
https://doi.org/10.1021/acs.jchemed.2c01173
https://doi.org/10.3390/educsci11100640
https://doi.org/10.1016/j.compedu.2010.05.022
https://doi.org/10.1002/ijch.201800076
https://doi.org/10.1002/wcms.1610
https://doi.org/10.1039/c9rp00273a
https://doi.org/10.1080/10494820.2020.1813180
https://doi.org/10.3390/educsci13070648
https://doi.org/10.1016/j.procs.2021.08.088
https://doi.org/10.3390/educsci11110668
https://doi.org/10.3390/math10203758
https://doi.org/10.25304/rlt.v28.2313


Educ. Sci. 2023, 13, 796 16 of 16

16. Jebb, A.T.; Ng, V.; Tay, L. A Review of Key Likert Scale Development Advances: 1995–2019. Front. Psychol. 2021, 12, 637547.
[CrossRef]

17. Habibi, A.; Yusop, F.D.; Razak, R.A. The dataset for validation of factors affecting pre-service teachers’ use of ICT during teaching
practices: Indonesian context. Data Brief 2020, 28, 104875. [CrossRef]

18. Lin, T.; Tsai, C.; Chai, C.; Lee, M. Identifying science teachers’ perceptions of technological pedagogical and content knowledge
(TPACK). J. Sci. Educ. Technol. 2013, 22, 325–336. [CrossRef]

19. Schmidt, D.A.; Baran, E.; Thompson, A.D.; Mishra, P.; Koehler, M.J.; Shin, T.S. Technological pedagogical content knowledge
(TPACK) the development and validation of an assessment instrument for pre-service teachers. J. Res. Technol. Educ. 2009, 42,
123–149. [CrossRef]

20. Forman, J.; Damschroder, L. Qualitative content analysis. In Empirical Methods for Bioethics: A Primer; Emerald Group Publishing
Limited: Bingley, UK, 2007; Volume 11, pp. 39–62.

21. McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Medica 2012, 22, 276–282.
22. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021.
23. Williams, G. Rattle: A data mining GUI for R. R J. 2009, 1, 45–55.
24. Lawrence, M.; Lang, D.T. RGtk2: A graphical user interface toolkit for R. J. Stat. Softw. 2010, 37, 1–52. [CrossRef]
25. Krepf, M.; Plöger, W.; Scholl, D.; Seifert, A. Pedagogical content knowledge of experts and novices—What knowledge do they

activate when analysing science lessons? J. Res. Sci. Teach. 2018, 55, 44–67. [CrossRef]
26. Duc, T.; Hop, N.; Dung, T.; Ha, V. The Effectiveness of Chemistry e-Teaching and e-Learning during the COVID-19 Pandemic in

Northern Viet Nam. Int. J. Inf. Educ. Technol. 2022, 12, 240–247. [CrossRef]
27. Cáceres-Jensen, L.; Rodríguez-Becerra, J.; Jorquera-Moreno, B.; Escudey, M.; Druker-Ibañez, S.; Hernández-Ramos, J.;

Díaz-Arce, T.; Pernaa, J.; Aksela, M. Learning Reaction Kinetics through Sustainable Chemistry of Herbicides: A Case Study of
Preservice Chemistry Teachers’ Perceptions of Problem-Based Technology Enhanced Learning. J. Chem. Educ. 2021, 98, 1571–1582.
[CrossRef]

28. Bulut, O.; Yavuz, H.C. Educational data mining: A tutorial for the rattle package in R. Int. J. Assess. Tools Educ. 2019, 6, 20–36.
[CrossRef]

29. Shea, P.; Bidjerano, T. Learning presence: Towards a theory of self-efficacy, self-regulation, and the development of a communities
of inquiry in online and blended learning environments. Comput. Educ. 2010, 55, 1721–1731. [CrossRef]

30. Garrison, D.R.; Vaughan, N.D. Blended Learning in Higher Education: Framework, Principles, and Guidelines; John Wiley & Sons:
Hoboken, NJ, USA, 2008.

31. Kizilcec, R.F.; Piech, C.; Schneider, E. Deconstructing disengagement: Analysing learner subpopulations in massive open online
courses. In Proceedings of the Third International Conference on Learning Analytics and Knowledge, Arlington, TX, USA,
13–17 March 2013; pp. 170–179.

32. Rao, P.K. CCR5 inhibitors: Emerging promising HIV therapeutic strategy. Indian J. Sex. Transm. Ted Dis. AIDS 2009, 30, 1–9.
[CrossRef]

33. Tan, Q.; Zhu, Y.; Li, J.; Chen, Z.; Han, G.W.; Kufareva, I.; Li, T.; Ma, L.; Fenalti, G.; Li, J.; et al. Structure of the CCR5 chemokine
receptor-HIV entry inhibitor maraviroc complex. Science 2013, 341, 1387–1390. [CrossRef]

34. Motivational Video. Available online: https://www.youtube.com/watch?v=v2PcQ-449p4 (accessed on 1 January 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3389/fpsyg.2021.637547
https://doi.org/10.1016/j.dib.2019.104875
https://doi.org/10.1007/s10956-012-9396-6
https://doi.org/10.1080/15391523.2009.10782544
https://doi.org/10.18637/jss.v037.i08
https://doi.org/10.1002/tea.21410
https://doi.org/10.18178/ijiet.2022.12.6.1651
https://doi.org/10.1021/acs.jchemed.0c00557
https://doi.org/10.21449/ijate.627361
https://doi.org/10.1016/j.compedu.2010.07.017
https://doi.org/10.4103/0253-7184.55471
https://doi.org/10.1126/science.1241475
https://www.youtube.com/watch?v=v2PcQ-449p4

	Introduction 
	Educational Computational Chemistry and E-Learning Environments 
	Educational Data Mining in E-Learning Environments 

	Methods 
	Sample Characterisation 
	In-Service Chemistry Teachers’ Perception (RQ1) 
	Compilation of Records and Database 
	Educational Data Mining (RQ2) 

	Results and Discussion 
	Integration of CC in the Planning of Learning Activities (RQ1) 
	Examination of Teaching Plans 
	TPASK Survey 
	Focus Group 
	Final Section Considerations 

	Model Generation Using Educational Data Mining (RQ1) 
	Classification and Regression Trees 
	Random Forest and Support Vector Machine 
	Model Evaluation and Guidelines for EECCC Redesign 


	Conclusions 
	References

