
Citation: Castro, V.d.S.; Oliveria,

S.R.B. Diversity in Software Design

and Construction Teaching: A

Systematic Literature Review. Educ.

Sci. 2023, 13, 303. https://doi.org/

10.3390/educsci13030303

Academic Editor: Neil Gordon

Received: 21 December 2022

Revised: 10 March 2023

Accepted: 10 March 2023

Published: 14 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

education 
sciences

Systematic Review

Diversity in Software Design and Construction Teaching:
A Systematic Literature Review
Vitor de Souza Castro * and Sandro Ronaldo Bezerra Oliveira *

Graduate Program in Computer Science (PPGCC), Federal University of Pará, Belém 66075-110, PA, Brazil
* Correspondence: vitor@unifesspa.edu.br (V.d.S.C.); srbo@ufpa.br (S.R.B.O.)

Abstract: Teaching in computing faces challenges concerning technological changes and strategies
to encourage student engagement with the teaching–learning process. In software engineering,
specifically in the construction of the solution, these challenges are even greater due to technological
changes and the evolution of applications. Based on this context, the objective of this work is
to present the results of a systematic literature review on the knowledge areas that are central to
the software construction process, the Software Design and Construction. The methodology for
developing the systematic literature review followed a review protocol in which 51 studies were
selected out of 302 studies found by executing a search string in the Association for Computing
Machinery and Institute of Electrical and Electronic Engineers databases. As a main result, the
diversity of teaching strategies applied to the teaching of Software Design and Construction was
identified. In addition, amongst the selected studies, we identified that active methodologies are
more frequent in the literature.

Keywords: teaching practices; software design and construction; systematic literature review

1. Introduction

Teaching in computing faces challenges concerning technological changes and strate-
gies to encourage student engagement with the teaching–learning process. One of the
pillars of computing is software development, its content providing students with knowl-
edge and practices for the construction of quality software. In this context, Software
Engineering serves as a pillar for the construction of quality software [1]. Bourque and
Fairley [2] defined the areas of knowledge in the construction of software, among which
are Software Design and Software Construction.

Higher education courses in Computer Science, Software Engineering, Information
Systems and Computer Engineering present content and practices in the areas of software
construction at different levels. According to Force [3], Computer Science and Software
Engineering courses have more content related to software development than other Com-
puter courses.

Teachers of software construction have a responsibility to make the teaching–learning
process efficient, so as to enable the students’ training to be successful. In this context,
identifying teaching strategies, tools, and forms of alignment with the course are essential
elements to ensure efficiency in the process.

The use of differentiated teaching–learning strategies enhances students’ motivation
and understanding of certain content [4,5]. In addition, making the student the protagonist
of this process can be decisive for learning [6].

Understanding how, and which, teaching strategies can be applied to the teaching
of computing, specifically in the software design and construction process, was the main
motivation for the development of this work. Furthermore, the objective was also to
understand how curricula are structured to support these teaching strategies.

Educ. Sci. 2023, 13, 303. https://doi.org/10.3390/educsci13030303 https://www.mdpi.com/journal/education

https://doi.org/10.3390/educsci13030303
https://doi.org/10.3390/educsci13030303
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/education
https://www.mdpi.com
https://orcid.org/0000-0003-3209-3806
https://orcid.org/0000-0002-8929-5145
https://doi.org/10.3390/educsci13030303
https://www.mdpi.com/journal/education
https://www.mdpi.com/article/10.3390/educsci13030303?type=check_update&version=2


Educ. Sci. 2023, 13, 303 2 of 22

Based on the context presented, this work aimed to present the results of the Systematic
Literature Review (SLR) on the knowledge areas central to the process of constructing
software, namely, Software Design and Construction, hereafter referred to as SDC. To this
end, a review protocol was developed covering the fundamental research questions to
identify the scenario that involves the teaching of SDC, detailed in Section 3. The SLR
results present the context of teaching SDC of 51 selected studies and the diversity of
strategies, forms of evaluation and tools used.

In addition to this introductory section, this article is organized as follows. Section 2
presents the theoretical foundation of this work. Section 3 presents the methodology,
research questions and the SLR protocol used. In Section 4, the results obtained by executing
the review protocol are presented. Section 5 presents reflections and discussions on the
results. Section 6 presents threats to the validity of the study, and, finally, Section 7 presents
final considerations, limitations and future work.

2. Background
2.1. Teaching in Software Engineering

Software Engineering (SE) is a subject that is part of Bachelor’s degrees in Computer
Science, Software Engineering, Information Systems and Computer Engineering. In the
Pedagogical Projects of these courses, Software Engineering is a subject that aims to ap-
proach the main concepts of software conception, elaboration and development. According
to Pressman, in [1], Software Engineering is about applying a systematic, disciplined and
quantifiable approach to software development, operation and maintenance. In this sense,
the emphasis of SE teaching covers the learning process associated with methodologies,
tools and processes for software construction.

Sommerville, in [7], defined SE as an engineering subject which focuses on all aspects
of software production, from the requirements for a design to its maintenance. For de
Pádua Paula Filho [8], software engineering is understood as being complex, bringing
together art, the meeting of human needs, scientific knowledge, empirical knowledge,
specific skills, natural resources, and appropriate forms, devices, structures and processes.

Based on the concepts of software engineering, the complexity and diversity of content
which needs to be taught to future professionals in computing courses are core issues. In the
context of teaching software engineering, the exposition of theoretical content on method-
ologies and processes applied to software development is key. Lemos, Cunha and Saraiva,
in [9], presented important elements about higher education, including the excessive focus
on theory and content, rather than competence. In addition, it was reinforced that, in
the Information Systems course, which was the object of study of their work, there is an
inadequate sequence of subjects, which is one of the main influences in teaching–learning
in SE.

In this sense, the present SLR seeks to identify, in the specialized literature, which
strategies are used to enhance the teaching–learning of students, and, also, how course
projects are organized for the teaching of SDC.

2.2. Product Design and Construction

For Sommerville [7], software design and construction is a stage in the process in which
an executable software system is developed. At this stage of development, it is necessary
that the requirements are validated, so that the design stage can begin. The software design
stage encompasses the set of principles, concepts and practices that lead to the development
of a product [1].

De Pádua Paula Filho, in [8], presents the design phase as being responsible for
defining an implementable structure for a software product, which meets the specified
requirements. For the construction phase, a system is designed in terms of different
types of source code components and binary code, according to the chosen technologies.
By definition, design and construction activities are related, with the objective of delivering
a software product.



Educ. Sci. 2023, 13, 303 3 of 22

Within Software Engineering, design and construction are part of the software devel-
opment process, which is related to software engineering support processes, such as Project
Management and Configuration Management.

In software quality models, such as Capability Maturity Model Integration (CMMI),
the software design and construction areas are included in the Technical Solution (TS)
process area [10]. For the Brazilian Software Process Improvement (MPS.BR) model, the
Product Design and Construction Process (PCP) has the purpose of designing, developing
and implementing solutions to meet requirements [11].

Among the main characteristics of the Product Design and Construction process is
the modeling of the software, based on the requirements and the implementation of the
product, which refers to the coding of the software, based on the models developed in
the design phase. Sommerville [7] states that Design and Construction are closely linked;
the design must take into account the implementation issues. For the purposes of SLR, we
consider the area related to Product Design and Implementation as Software Design and
Construction (SDC).

2.3. Teaching and Learning Practices

Teaching and learning practices are presented as ways of organizing and exposing the
content necessary to learn about a given subject. According to Glasser [12], learning can be
achieved through different strategies, with reading being responsible for 10% of learning,
and teaching responsible for 95% of learning, as shown in Figure 1.

In Figure 1, at the base of the pyramid, Teaching others and Practice represent the
most efficient practices for learning, while practices that approach the top, such as Read
and Listen, have lower learning efficiencies compared to those at the base.

Teach others

Practice

Discuss

See and Listen

See

Listen

Read

Figure 1. Adapted Glasser’s Pyramid [12].

To enhance learning, active methodologies are presented as an alternative to facilitate
the teaching–learning process. According to Berbel [13], active methodologies are based
on ways of developing the learning process using real or simulated experiences, aimed
at successfully solving challenges arising from the essential activities of social practice
in different contexts. Among the most widely used active teaching practices are the Flipped
Classroom and Project-Based Learning.

In this SLR, alternatives were sought that are actively aligned with the teaching–
learning process. Identifying the impact of the application of these learning practices in
the context of teaching SDC is necessary.



Educ. Sci. 2023, 13, 303 4 of 22

2.4. Related Works

This subsection aims to present some studies related to, directly or indirectly, the
research. The scope of the research for the development of this section involved work on
teaching strategies in computing courses, with a focus on SDC processes and related areas,
such as Requirements Engineering.

A literature review for teaching programming was presented in [14]. The scope of
the SLR was directed towards the programming of teaching–learning approaches in Brazil.
The percentage of studies included was 3.13%, with 2325 studies listed and 73 included. The
study by de Holanda and Freire [15] has similarities to [14], because it deals with an SLR
to teaching programming; however, its scope was related to introductory programming,
with 2.4% inclusion of studies from a total of 2109. Unlike [14,15], the work presented here
carried out research to find strategies for teaching SDC without restricting the location of
the study.

Curcio et al. [16] presented a systematic mapping of Requirements Engineering.
The research selected 104 studies out of 2171; that is, 4.79% inclusion. The methodology for
developing the systematic mapping made use of Snowballing to include three studies and
the others were obtained through the execution of a search string in knowledge bases. The
SLR presented here does not use Snowballing as a search strategy. In addition, the mapping
is directed to the context of agile practices in Requirements Engineering.

In da Costa et al. [17] a systematic review of the literature on collaborative teaching
strategies was carried out. In counterpoint, this work presents the teaching strategies in the
specific context of Software Engineering. Besides this, the percentage of selected studies
is 0.84%, with five selected studies out of 591 initial studies, making use of the ACM and
IEEExplore knowledge bases.

Salleh et al. [18] presented an SLR on the use of Pair Programming in CS and SE
courses. The objective of the SLR was to evaluate the efficiency and compatibility of Pair
Programming in higher education. In Salleh et al. [18] the direction was to investigate
agile practice and how it is presented in the scenario of higher education. For the work
presented here, however, the focus is on understanding SDC teaching strategies, including
peer learning.

Thus, the research presented in this article differs in the orientation of approach
applied to teaching SDC. In addition, another relevant aspect is the information extracted
from the studies, which selects the teaching units/courses, teaching strategies, tools used,
and the arrangement of groups of students in the projects; a scenario not observed in the
identified related studies.

3. Materials and Methods
3.1. Objectives and Research Questions

The research presented here aims to identify strategies applied to the teaching of
software engineering, and which are directed to content related to Software Design and
Construction in computing courses (Computer Science, Information Systems and Software
Engineering). There is a hypothesis that, in the pedagogical project of the course, the focus
of the subject highlights the teaching of software methods and processes, prioritizing the
area of requirements engineering.

To develop the research questions, the PICOC strategy was used, which provides useful
tools to define clear and focused questions and to develop a review protocol, with the acronym
(P—Population, I—Intervention, C—Comparison, O—Outcome and C—Context) [19,20].
Table 1 presents the parameters used to develop the research questions of this work.

Given the hypothesis presented, and application of the PICOC strategy, as shown in
Table 1, we proposed the following research questions:

Q1. How do the computer courses approach the knowledge area of Software Design
and Construction?



Educ. Sci. 2023, 13, 303 5 of 22

Q2. How does the teaching of Software Engineering present the contents related to the
knowledge area of Software Design and Construction?

Q3. What strategies (methods, techniques, tools, approaches) are used for teaching software
design and construction in the context of Software Engineering?

Q4. How were the strategies (obtained as results in Q3) used for teaching Software Design
and Construction in the context of Software Engineering evaluated?

Table 1. PICOC parameters.

Parameter Description

Population undergraduate courses in computing
Intervention teaching methods, techniques, tools and practices
Comparison not applicable
Outcome strategies for teaching Software Design and Construction
Context academic studies

3.2. Methodology

The objective of this work was to research and investigate aspects related to the
teaching and learning process of SDC through a Systematic Literature Review (SLR). An
SLR is a means of identifying, evaluating and interpreting all available research which may
be relevant to a particular research question, topic area or phenomenon of interest [21].

To this end, the following steps were used in this work, based on the studies by [17,21,22]:

1. Review Planning

(a) Identify the research question(s),
(b) Search strategy, search terms and search strings,
(c) Define criteria for Inclusion and exclusion to the primary studies,
(d) Define criteria for classification of studies,
(e) Define dataset for extraction in studies.

2. Review Process

(a) Identify and extract data from relevant studies,
(b) Apply the selection criteria established in phase 1,
(c) Synthesize the obtained data.

3. Review Documentation:

(a) Develop, validate and present a review report.

3.3. Research Strategy

The knowledge repositories selected for the research were the ACM Digital Library
and IEEE Xplore Digital Library. Both libraries provide full access to content and the
possibility to search the full text.

Based on the research objectives, Section 3.1, we developed the following search string:

(“curriculum” OR “discipline” OR “course” OR “subject”)

AND (“graduate” OR “undergraduate” OR “computer science” OR “information systems”)

AND (“software engineering”)

AND (“technical soluction” OR “design” OR “solution” OR “implementation” OR “con-
struction” OR “integration” OR “architecture” OR “software” OR “component” OR
“interface” OR “connection” OR “product”).

Regarding the time period of the studies, we chose the last 8 years (from 2015 to
2022), because, in 2015, the Curricular Guidelines for the undergraduate course in Software
Engineering, by ACM/IEEE, were published, which, in 2022, were updated. As for the
guidelines for Information Systems and Computer Science courses, recent updates were in



Educ. Sci. 2023, 13, 303 6 of 22

the years 2021 and 2020, respectively. In addition, the Brazilian Computer Society (SBC)
curriculum guidelines for computing courses was updated in 2017.

Considering these time frames for updating the curricular guidelines by the ACM/IEEE
and SBC, the time period of the studies researched was from 2015 to 2022, and aimed to
cover studies published from 2015 onwards.

The search string performed on the databases was limited to the Title of the Work
and Abstract fields, with the objective of obtaining greater relevance in the studies. For
validation of the search string, studies by [23–26], that met the research questions, were
selected and it was found, in the process of executing the search string in the selected
databases, that the studies were listed.

3.4. Selection of Studies

For the selection of studies, inclusion criteria (IC) and exclusion criteria (EC) were
adopted in order to select relevant studies that aligned with the objectives and research
questions, as follows:

Inclusion Criteria

1. studies that presented some strategy applied to the teaching of computing,
were in the classroom, and directed to the knowledge area of Software Design
and Construction.

Exclusion Criteria

1. studies in languages other than English and Portuguese,
2. studies that were not in full format [27],
3. studies with access restriction,
4. duplicate studies.

The selection of studies was carried out in phases with the aim of applying the
exclusion criteria in order to obtain the relevant studies. Table 2 presents the selection
phases applied to the researched studies, according to Section 3.3.

Table 2. Study Selection Phases.

Phase Activity

I Elimination by applying the established exclusion criteria
II Elimination by Title and Abstract by application of the established inclusion criteria
III Data extraction and classification by Full reading

The studies selected in phase I were submitted to phase II, according to the inclusion
criteria, and any study that did not meet a criterion was eliminated. In phase III, data
were extracted and the quality criteria, defined in Table 3, were applied in order to classify
the studies.

3.5. Classification of Studies and Data Extraction

Kitchenham and Charters [21] consider the inclusion of quality criteria for the classifi-
cation of selected studies as fundamental. In this sense, Table 3 presents the criteria applied
in this review.

After the conclusion of phase III, according to Table 2, it was necessary to apply the
quality criteria, established in Section 3.5, in order to classify the studies with greater
relevance to the research.

For the evaluation of each criterion, defined in Table 3, the Likert agreement scale was
utilized: Totally Agree (100% of points), Partially Agree (75% of Points), Partially Disagree
(50 % of points) and Strongly Disagree (0% of points).

The data collected after the completed phases of studies comprised the following: title,
author, year of publication and methods, tools and practices cited, which undergraduate



Educ. Sci. 2023, 13, 303 7 of 22

course the study applied to, which research evaluation methods were used, and which
subject evaluation methods were adopted.

Table 3. Quality criteria applied.

Criteria Points

The study clearly defines the research objective (defines research question). 1
The study answers the defined research questions. 1
Methods, tools and practices for teaching software design and construction were
mentioned in the study

3

References in the course curriculum regarding the theme of Software Design and
Construction were indicated.

3

The evaluation of the application of the method, tools and/or practices for the teaching
of Design and Construction of the software was defined and applied.

2

TOTAL 10

3.6. Documentation and Presentation of Results Strategy

The review’s documentation strategy made use of the Mendely Tool to store the
studies in digital format, references and researchers’ notes. Furthermore, the tool allowed
the inclusion of tags in order to facilitate the identification of which phase of any given
study was eliminated. In order to apply the quality criteria defined in Section 3.5, online
electronic spreadsheets were used to release the grades by criterion and to order the scores.

Finally, the data were imported into a MySQL database in order to perform the queries
and groupings of the research results that served as input for the presentation of the results.
The presentation of the results was through tables and charts for quantitative analysis of
the data generated by the research.

4. Results
4.1. Overview of Phases

As a result of executing the search string in the selected databases, Figure 2 shows the
number of studies per year submitted to selection phases I, II and III, as defined in Table 2.

Version March 10, 2023 submitted to Journal Not Specified 8 of 26

4. Results 292

Reviewer 1: [Section 4 and Section 4.1 – I recommends finding a more appropriate title than "Overview". In any 293

case, what is described here is actually the study population, the description of the papers found is part of the 294

methodology and not of the findings (and not results).] 295

4.1. Reviewer 1:OverviewIntroduction 296

As a result of executing the search string in the selected databases, Figure 2 shows the 297

number of studies per year that will be submitted to selection phases I, II and III, as defined 298

in Table 2. 299

Upon completion of the study selection phases, Reviewer 1:the Table 4 presents the number 300

of studies selected in each phase. It is noteworthy that the studies selected in Phase III were 301

used for data extraction in order to obtain answers to the research questions, totaling 51 302

studies Reviewer 2:c3 selected and representing 16.88% of the total studies searched Reviewer 2:, as 303

can be seen in Appendix A. 304

Table 4. Phases Execution

Repositories Studies Phase I Phase II Phase III
ACM 111 29 57 25
IEEE 191 63 102 26
Total 302 92 159 51

As for the distribution of studies during each year, Figure 2, there is a similarity in 305

quantitative terms of the number of articles searched and articles selected, except for the 306

year 2022, since the execution of the research was held in the first quarter of the year. 307

2015 2016 2017 2018 2019 2020 2021 2022

0

10

20

30

40

50
43

36
40

46 48
45

40

44
7 8 10

5 6
9

2

Studies Selected

Figure 2. Number of studies per year

As a mechanism for classifying the studies, the execution of the evaluation criteria 308

were applied to the selected studies. Figure 3 presents the percentages of works by point 309

range (0 to 10), as established in Table 3. Considering that evaluations greater than 7 310

indicate studies with a higher quality indicator, it is noted that the research has 62.75% 311

of studies selected in this situation. Only 11.76% of the works received an evaluation of 312

less than 5 points. Reviewer 1: Authors:In constract, only PS03, PS10, PS14, PS16 and PS18 studies 313

received a score of 10, that is, they fully met all the quality criteria. 314

About the undergraduate courses with the highest incidence of selected studies, 315

Reviewer 1:Figure 3 presents the 4 courses with the greatest representation among the 15 different 316

c3 List of articles available at https://zenodo.org/record/7229909

Figure 2. Number of studies per year.

Upon completion of the study selection phases, Table 4 presents the number of studies
selected in each phase. It is noteworthy that the studies selected in Phase III, used for
data extraction in order to obtain answers to the research questions, totaled 51 studies,
representing 16.88% of the total studies searched, as can be seen in Appendix A.



Educ. Sci. 2023, 13, 303 8 of 22

Table 4. Execution of Phases

Repositories Studies Phase I Phase II Phase III

ACM 111 29 57 25
IEEE 191 63 102 26
Total 302 92 159 51

As for the distribution of studies for each year, Figure 2, there is a similarity, in
quantitative terms, of the number of articles searched and articles selected, except for the
year 2022, as the execution of the research was held in the first quarter of that year.

As a mechanism for classifying the studies, the evaluation criteria were applied to
the selected studies. Figure 3 presents the percentages of works by point range (0 to 10),
as established in Table 3. Considering that evaluations greater than 7 indicate studies
with a higher quality indicator, it is noted that the research included 62.75% of selected
studies. Only 11.76% of the studies received an evaluation of less than 5 points. In contrast,
only studies PS03, PS10, PS14, PS16 and PS18 received a score of 10, fully meeting all the
quality criteria.

Figure 3. Quality Evaluation.

In regard to the undergraduate courses with the highest incidence of selected stud-
ies, the following 4 courses were found to have the greatest representation among the
15 different courses: Computer Science (CS) with 50.98%, Software Engineering (SE) with
31.37%, Computer Engineering (CE) with 3.92% and Information Systems (IS) with 3.92%.
Among the 15 courses found, PS13, PS29, PS34 and PS49 studies were from Postgraduate
courses in Software Engineering.

The higher incidence of the Computer Science course is due to the fact the course
emphasizes the teaching of Software Design and Construction (SDC), reflected in the
areas of Fundamentals of Software Development, Fundamentals of Systems and Software
Engineering totaling 40.60% of the course load [28].

The CS and SE courses predominated in the studies due to their curricular organization
and course emphasis on Software Development, Systems Infrastructure and Technological
Applications, in contrast to the IS course, which focuses on Systems Organization [3] (p. 39).

Research evaluation methods were among the data extracted from the selected studies,
and Table 5 presents the evaluation methods, the studies that used the methods and the
percentage of use of the methods among the selected studies.



Educ. Sci. 2023, 13, 303 9 of 22

Table 5. Research evaluation method.

Evaluation Method Studies Percentage

Questionnaire PS04 PS05 PS07 PS08 PS09 PS10 PS11 PS12 PS13
PS14 PS15 PS16 PS18 PS19 PS20 PS21 PS22 PS23
PS25 PS27 PS28 PS29 PS32 PS35 PS36 PS37 PS39
PS40 PS41 PS42 PS44 PS45 PS47 PS48 PS50

53.85%

Lessons Learned Record PS03 PS17 PS34 PS36 PS38 PS43 9.23%
Statistical Analysis PS06 PS11 PS18 PS19 PS30 7.69%
Note PS05 PS24 PS40 PS51 6.15%
Correlation Analysis PS16 PS23 PS29 4.62%
Interview PS02 PS21 3.08%
Not Shown PS31 PS46 3.08%
Experience report PS33 PS47 3.08%
Data Analysis PS40 1.54%
Tool-generated data analysis PS26 1.54%
Documentation Review PS49 1.54%
Code Quality Rating PS12 1.54%
Evaluation Events PS01 1.54%
Peer review PS04 1.54%

It is noted that the use of a Questionnaire was the method used in 53.85% of the studies,
being the main tool to obtain structured data, through multiple-choice questions, and to
obtain an evaluation through comments made by the participants of the research using
open-ended questions.

Among the methods used, it can also be highlighted that the analysis of data gen-
erated by tools and the evaluation of code quality were unique methods used. In PS26,
the tool used the data from the commitment made by students to present the evaluation on
compiling the source code, executing the unit tests and performing static analyses on the
submitted code. As a result of this work, there was a stimulus for the development of the
project and the number of activities submitted before the deadline, encouraging students to
point out indicators to improve the source code produced.

In PS12, the objective was to submit the source code produced by the students on a
website for quality evaluation, with the result generated by the evaluation website being
a mandatory item for the delivery of the activity. The results of this work indicated that
the execution of code evaluation as an evaluation item enabled the improvement of the
students’ code, and 70% of the survey respondents identified benefits in the use of the
teaching method.

To organize the information, Sections 4.2–4.5 present the results obtained for each
research question.

4.2. Q1—How Do the Computer Courses Approach the Knowledge Area of Software Design and
Construction (SDC)?

Research question 1, Q1, sought to identify how the computer courses presented the
SDC knowledge area; in short, in which curricular structures SDC content was present.
In the data extraction process to answer Q1, it was identified that Teaching Unit or Subjects
were related to the teaching of SDC.

The five Teaching Units/Subjects in which the SDC knowledge area was addressed
with the highest percentage among the selected studies were:

1. Software Engineering (SE): PS01, PS03, PS06, PS13, PS14, PS19, PS20, PS21, PS22, PS24,
PS26, PS36, PS42, PS43, PS44, PS45 and PS47 studies, with 20.24%,

2. Software Architecture (SA): PS15, PS39 and PS50 studies, with 3.57%,
3. Database (DB): PS01 and PS03 studies, with 2.38%,
4. Data Structure (DS): PS05 and PS26 studies, with 2.38%, and
5. Software Engineering I (SE-I): PS05 and PS23 studies, with 2.38%.



Educ. Sci. 2023, 13, 303 10 of 22

It is noteworthy that among the selected studies there were 56 different Teaching
Units/Subjects. However, only those mentioned in the graph in Figure 5 had more than
one occurrence. In addition, 7 studies (PS02, PS28, PS29, PS30, PS32, PS46 and PS49) did
not mention the teaching unit/subject, as they were general studies about the course,
internships, extension programs or analytical studies about the syllabus.

Based on the results obtained, PS11 stood out. It presented the implementation of the
teaching unit called SE-First, with the objective of integrating non-technical skills (soft skills)
to Software Engineering before students effectively participated in subjects with technical
characteristics. As a result of this study, cited in the work, students who participated in
SE-First showed greater learning than students who participated in traditional approaches
without using SE-First.

From the results, it is noted that Software Engineering was the main teaching unit to
present SDC content.

4.3. Q2 — How Does the Teaching of Software Engineering Present the Content Related to the
Knowledge Area of Software Design and Construction?

Research question 2, Q2, sought to identify how SDC teaching is presented, and, for
this purpose, the following classification was used:

• Theoretical: presentation of the content of the teaching unit/subject in an expositive
way, aimed at conceptualization,

• Practical: carrying out activities that involve the application of the content in a prac-
tical way, through the development of projects, and practice at problem solving
in laboratories,

• Theoretical and Practical: work that uses both approaches together.

Figure 4 shows 54.90% for teaching SDC in a practical way and 35.29% for theoretical
and practical, which reinforces the fact that teaching of SDC is mostly presented in a
practical way, compared to a theoretical approach.

Version March 10, 2023 submitted to Journal Not Specified 11 of 26

4.3. Authors:Q2 - How does the teaching of Software Engineering present the contents related to the 380

knowledge area of Software Design and Construction? 381

Research question Q2 sought to identify how SDC teaching is presented, and for that, 382

the following classification was used: 383

• Theoretical: presentation of the contents of the teaching unit / subject in an expositive 384

way, aimed at conceptualization, 385

• Practical: carrying out activities that involve the application of the contents in a practi- 386

cal way, through the development of projects, practices in laboratories for problem 387

solving, 388

• Theoretical and Practical: works that use both approaches together. 389

Figure 4 shows 54.90% of use for teaching SDC in a practical way and 35.29% theoreti- 390

cal and practical, this reinforces that teaching of SDC is mostly presented in a practical way 391

compared to the theoretical approach. 392

Practical
54.90%

Theoretical and Practical
35.29%

Theoretical
9.80%

Figure 4. Teaching model

In addition, for research question Q2, information was extracted on the involvement 393

of students in the teaching-learning process, either actively, when the student has the 394

protagonism and autonomy in this teaching-learning process, or passively, when the 395

student is a receiver of information passed on by the teacher without active participation in 396

this process. 397

In the selected studies, from the perspective of the teaching approach being active or 398

passive, 90.20% of the studiess were found in an active way, 9.80% in a passive way. This is 399

mainly due to the use of practical activities, many of them in groups, which encourages 400

students to play a leading role in the teaching-learning process. 401

Among the studies with exclusively practical teaching approaches, the courses with 402

the highest percentage were CS with 40.63%, SE with 28.13% and the other courses with 403

3.13%. It is noted that the CS and SE courses had a higher incidence on practical work due 404

to the curricular structure focused on Software Development, Systems Fundamentals and 405

Software Engineering activities [28]. 406

4.4. Q3 - What strategies (method, techniques, tools, approaches) are used for teaching software 407

design and construction in the context of Software Engineering? 408

Research question Q3 aimed to identify which strategies are used for teaching SDC. 409

The methods, techniques and approaches used to present content, whether in a practical or 410

theoretical way, were considered as a strategy for teaching SDC. 411

Due to the identification of strategies involving Authors:the formation of teamsgroup work 412

among the selected studies, this subsection will present the number of members of these 413

groups and the type of stakeholders when the activity involves software project develop- 414

ment. 415

Figure 4. Teaching model.

In addition, research question Q2 extracted information on the involvement of students
in the teaching–learning process, either actively, when the student is the protagonist and
autonomous in the teaching–learning process, or passively, when the student is a receiver
of information passed on by the teacher without active participation in this process.

In the selected studies, from the perspective of the teaching approach being active or
passive, 90.20% of the studies were found to be active, and 9.80% passive. This is mainly
due to the use of practical activities, many of them conducted in groups, which encourage
students to play a leading role in the teaching–learning process.

Among the studies with exclusively practical teaching approaches, the courses with
the highest percentage were CS, with 40.63%, and SE, with 28.13%, and the other courses



Educ. Sci. 2023, 13, 303 11 of 22

had 3.13%. It is noted that the CS and SE courses had a higher incidence of practical
work due to the curricular structure being focused on Software Development, Systems
Fundamentals and Software Engineering activities [28].

4.4. Q3—What Strategies (Methods, Techniques, Tools, Approaches) Are Used for Teaching
Software Design and Construction in the Context of Software Engineering?

Research question 3, Q3, aimed to identify which strategies were used for teaching
SDC. The methods, techniques and approaches used to present content, whether in a
practical or theoretical way, were considered as strategies for teaching SDC.

Due to the identification of strategies involving group work among the selected studies,
this subsection presents the number of members of the groups and the type of stakeholders
when an activity involved software project development.

Table 6 presents the identified strategies, as well as which studies employed the
strategies and the percentage of occurrence among the selected studies. It is noted that
the formation of a group for project development was the most used strategy. In addition,
several practices were found, which highlights the diversity of ways of teaching SDC.

Table 6. Strategies used for teaching Software Design and Construction.

Strategies Studies Percentage

Project Development Group PS28 PS45 PS34 PS32 PS36 PS31 PS30 PS37
PS16 PS44 PS27 PS10 PS25 PS48 PS24 PS50
PS38 PS21 PS43

22.35%

Project Based Learning PS19 PS23 PS14 PS40 PS13 PS02 PS08 PS03
PS07 PS49 PS05 PS04

14.12%

Lab in hands-on format PS20 PS44 PS33 PS31 PS11 PS17 PS50 8.24%
Problem Based Learning PS29 PS16 PS35 PS49 PS13 5.88%
Flipped Classroom PS34 PS06 PS23 PS05 PS18 5.88%
Practical Classes PS18 PS07 PS46 PS36 4.71%
Theoretical Classes PS09 PS36 PS07 PS48 4.71%
Educational Games PS13 PS15 PS42 3.53%
Use of Design Thinking PS37 PS24 2.35%
Seminars PS14 PS20 2.35%
Formal Methods PS22 1.18%
Workshops PS29 1.18%
Video Production PS14 1.18%
Pair Programming PS03 1.18%
Service Learning Project PS01 1.18%
Quizz PS13 1.18%
Use of Comparative Critical Tool PS39 1.18%
Use of tool for automating analysis
and evaluation

PS26 1.18%

Use of Kahoot PS18 1.18%
Athletic Approach PS47 1.18%
Collaborative Learning Method PS41 1.18%
Mind Maps PS13 1.18%
Instruction by pairs PS06 1.18%
Design Reflection Framework PS51 1.18%
Formative Feedback PS48 1.18%
Students Generating Questions PS08 1.18%
Design Challenges PS51 1.18%
Peer Learning PS16 1.18%
Inquiry Based Learning PS16 1.18%
Example Based Learning PS39 1.18%
Crowd-based Learning PS12 1.18%
Case Based Learning PS29 1.18%



Educ. Sci. 2023, 13, 303 12 of 22

Regarding the strategies, presented in Table 6, the following active learning methods
were identified as standing out: Project-Based Learning, Problem-Based Learning and
Flipped Classroom.

PS47 was about an athletic teaching approach that was applied in 3 subjects in the
Software Engineering course. This practice seeks to develop the student’s skills with a
focus on efficiency and performance. The execution of the approach consists of presenting
a problem to the students and a video demonstrating an alternative solution in the optimal
resolution time. The video allows students to understand the importance of finding a
solution to apply to a specific problem within time. Based on the problem, the teacher
decides the necessary time interval to solve it, basing the maximum time for the activity
on the optimal time. Students develop the solution to the problem presented in a timely
way in the classroom, known as Workout. If the student exceeds the maximum time, he or
she must review the solution and restart the whole process, resetting the timer to build the
solution again.

The results of the work in PS47 indicated that 96% of the research participants pre-
ferred the use of an athletic approach, compared to the traditional teaching approach,
and, in addition, 82% of the research participants indicated that Workout brought focus to
development of a problem.

In addition, another study that represents the diversity of approaches to teaching SDC
is the work in PS41, in which the focus was the use of the collaborative learning method
in requirements engineering for software diagram evaluation by students. The method
consists of dividing students into teams to discuss a topic. The teacher divides the topic into
parts and the team decides which student takes notes on each part. After that, students from
different teams with the same part of the topic group together to share information about the
study. Finally, students return to their original groups to share the results of the discussions
and to develop a presentation on the specific topic. As a result, 75% of the students
who participated in the survey demonstrated satisfaction with the use of collaborative
participation and highlighted a better understanding of software modeling content.

The review also extracted the amount of each strategy, in percentage, used to teach
SDC, as shown in Figure 7. It is noted that the use of one strategy accounted for 54.90% and,
in the two strategies, it represented 29.41% of the studies. There were studies, representing
15.69%, that used more than two strategies to teach SDC.

PS13, for instance, combined 5 strategies: Problem-Based Learning, Project-Based
Learning, Educational Games, Mind Maps and Quizzes. As a result, the research partici-
pants indicated that the integration of active methodologies with gamification increased
student engagement in the classroom. Unlike PS13, PS16 presented the combination of
4 strategies restricted to the following active methodologies: Problem-Based Learning,
Investigation-Based Learning, Peer Learning and Project Development Group. The results
of the studies identified that the Problem-Based Learning strategy was the most efficient
for learning, compared to the others used in the study. It was identified that students who
participated in the study using such strategies obtained better grades than groups that did
not use them.

In regard to the studies that presented the development of SDC activities as teamwork,
the number of participants in each team was taken into consideration. The grouping
carried out to generate Figure 5 follows: maximum 4 members (2, 2 to 3, 2 to 4 and 3 to
4), maximum 6 members (3 to 5, 3 to 6, 4 to 5, 4 to 6, 5 and 5 to 6) and a maximum of
8 members (6 to 8 and 8).

Regarding team activities, information was extracted about the origin of the project’s
stakeholder, and the works were classified as follows:

• Not defined: No indications of project stakeholder identity. In some cases, the team
itself assumed this role, such as PS04, PS05, PS07, PS10, PS12, PS13, PS14, PS16, PS20,
PS23, PS25, PS31, PS37, PS45, PS46 and PS50,

• Internal: Subject teacher or monitor characterized as stakeholder, as in PS19, PS24,
PS36 and PS40,



Educ. Sci. 2023, 13, 303 13 of 22

• External: Person external to the subject characterized as stakeholder. In many cases,
this was a representative of a company for which the group was developing a project,
as in PS01, PS02, PS03, PS28, PS30, PS32, PS38, PS43 and PS44.

Version March 10, 2023 submitted to Journal Not Specified 14 of 26

members (2, 2 to 3, 2 to 4 and 3 to 4), maximum 6 members (3 to 5, 3 to 6, 4 to 5, 4 to 6, 5 470

and 5 to 6) and a maximum of 8 members (6 to 8 and 8). 471

maximum 6
47.62%

maximum 4
42.86%

maximum 8
9.52%

Figure 5. Team Size

Still on team activities, information was extracted about the origin of the project’s 472

stakeholder, and the works were classified as: 473

• Not defined: in the work there are no indications of who the stakeholders of the 474

project is, in some cases the team itself assumes this role - PS04, PS05, PS07, PS10, PS12, 475

PS13, PS14, PS16, PS20, PS23, PS25, PS31, PS37, PS45, PS46 and PS50 studies, 476

• Internal: the subject teacher or monitors are characterized as stakeholders - PS19, 477

PS24, PS36 and PS40 studies, 478

• External: person external to the subject, in many cases representative of a company 479

for which the group is developing the project - PS01, PS02, PS03, PS28, PS30, PS32, 480

PS38, PS43 and PS44 studies. 481

In this regard, 43.13% of the studies do not have strategies that require stakeholders for 482

projects. Figure 6 presents the distribution by classification among the works that required 483

this role. Performing the analysis of this indicator and removing the works classified as 484

"Not defined", Authors:we would havethe results would be 69.23% of the works with external 485

stakeholders. 486

Not defined
55.17%

External
31.03%

Internal
13.80%

Figure 6. Stakeholder type

Among the works that made use of external stakeholders PS02 stands out. In this work, 487

the Project-Based Learning teaching strategy was used in the software engineering course, 488

with the objective of presenting how the strategy stimulated the collaboration of students 489

with stakeholders in the perspective of seeking solutions for a given problem. Each student 490

Figure 5. Team Size.

In this regard, 43.13% of the studies did not have strategies that required stakeholders
for the projects. Figure 6 presents the distribution by classification among the works that
required a stakeholder role. Analysis of this indicator, and removal of works classified as
“Not defined”, exhibited that 69.23% of the works had external stakeholders.

Version March 10, 2023 submitted to Journal Not Specified 14 of 26

members (2, 2 to 3, 2 to 4 and 3 to 4), maximum 6 members (3 to 5, 3 to 6, 4 to 5, 4 to 6, 5 470

and 5 to 6) and a maximum of 8 members (6 to 8 and 8). 471

maximum 6
47.62%

maximum 4
42.86%

maximum 8
9.52%

Figure 5. Team Size

Still on team activities, information was extracted about the origin of the project’s 472

stakeholder, and the works were classified as: 473

• Not defined: in the work there are no indications of who the stakeholders of the 474

project is, in some cases the team itself assumes this role - PS04, PS05, PS07, PS10, PS12, 475

PS13, PS14, PS16, PS20, PS23, PS25, PS31, PS37, PS45, PS46 and PS50 studies, 476

• Internal: the subject teacher or monitors are characterized as stakeholders - PS19, 477

PS24, PS36 and PS40 studies, 478

• External: person external to the subject, in many cases representative of a company 479

for which the group is developing the project - PS01, PS02, PS03, PS28, PS30, PS32, 480

PS38, PS43 and PS44 studies. 481

In this regard, 43.13% of the studies do not have strategies that require stakeholders for 482

projects. Figure 6 presents the distribution by classification among the works that required 483

this role. Performing the analysis of this indicator and removing the works classified as 484

"Not defined", Authors:we would havethe results would be 69.23% of the works with external 485

stakeholders. 486

Not defined
55.17%

External
31.03%

Internal
13.80%

Figure 6. Stakeholder type

Among the works that made use of external stakeholders PS02 stands out. In this work, 487

the Project-Based Learning teaching strategy was used in the software engineering course, 488

with the objective of presenting how the strategy stimulated the collaboration of students 489

with stakeholders in the perspective of seeking solutions for a given problem. Each student 490

Figure 6. Stakeholder type.

Among the works that made use of external stakeholders, PS02 stood out. In this
study, the Project-Based Learning teaching strategy was used in the software engineering
course so as to present how the strategy stimulated the collaboration of students with
stakeholders, from the perspective of seeking solutions for a given problem. Each student
had a specific role within the project and there was a different stakeholder for each group.
Despite the projects being developed for application in a real environment, the stakeholders
were not interested in the finished product, but rather in ideas to solve the requisite
problem. As a result, through interviews, 90% of stakeholders recommended the use of
this teaching strategy.

Regarding the way students were selected for the teams, only PS13, PS14, PS34 and
PS45 presented the format used. In all, 75% of the studies used automated tools, taking
into account answers to a questionnaire, to organize teams.

In PS34 and PS45, the tool chosen to divide the teams was CATME (Available online:
https://info.catme.org/ (accessed on 20 December 2022)). In PS45, personal criteria were

https://info.catme.org/


Educ. Sci. 2023, 13, 303 14 of 22

included for team formation, such as the following: gender, average grade, available time
for the agenda and level of commitment. In addition, the tool was used to carry out peer
evaluation among students on the same team for the following items: contribution to the
team, interaction with the team, knowledge and skills.

In the case of tools and technologies used in teaching SDC, 50% of the studies did
not present tools or technologies, according to Table 7. This is due to the emphasis of the
works on the evaluation of teaching strategy and not of the technology or tool used for
teaching SDC.

Another aspect worth highlighting is the use of tools that operate in SDC support
processes, such as Project Management and Software Configuration Management. The use
of Git as the project’s version control technology (Git, Github and Gitlab) wss present in
10.18% of the studies. Tools directed towards Project Management (Trello, MS Project, Taiga,
Zenhub and Agilefant) were in 3.72% of the studies, which demonstrates the possibility of
combining other areas of Software Engineering with teaching of SDC.

Table 7. Tools used.

Tool Studies Percentage

Not presented PS01 PS02 PS08 PS11 PS19 PS25 PS27 PS28 PS29 PS31
PS32 PS33 PS35 PS36 PS38 PS41 PS43 PS44 PS47 PS48
PS49 PS50 PS51

21.30%

Github PS07 PS12 PS14 PS17 PS20 PS21 PS26 6.48%
UML PS04 PS09 PS21 PS22 PS23 PS24 5.56%
SonarQube PS10 PS20 PS30 2.78%
JAVA PS09 PS17 PS46 2.78%
Heroku PS40 PS46 1.85%
Slack PS14 PS40 1.85%
Gitlab PS10 PS30 1.85%
Git PS34 PS46 1.85%
Eclipse PS13 PS26 1.85%
JUnit PS09 PS13 1.85%
CATME PS34 PS45 1.85%
Astah PS03 PS13 1.85%
Se-RPG PS13 0.93%
ScreenFlow PS34 0.93%
Postgres PS46 0.93%
Selenium PS30 0.93%
Panopto PS34 0.93%
OpenShift PS40 0.93%
Skype PS40 0.93%
node.js PS34 0.93%
Socrative PS16 0.93%
StarUML PS21 0.93%
SoftBook PS42 0.93%
StackOverFlow PS12 0.93%
LEARN Board Game PS15 0.93%
Taiga PS40 0.93%
Teamspeak PS40 0.93%
Coverage Test PS13 0.93%
Trello PS40 0.93%
Uppaal PS22 0.93%
uTest PS13 0.93%
XML PS09 0.93%
xUnit PS30 0.93%
Zenhub PS14 0.93%
Zoom PS06 0.93%
Google Drive PS05 0.93%
ArgoUML PS21 0.93%



Educ. Sci. 2023, 13, 303 15 of 22

Table 7. Cont.

Tool Studies Percentage

Blog PS37 0.93%
Bluemix PS40 0.93%
Canary Framework PS26 0.93%
Codeface PS30 0.93%
CSDCT (client-server
design critic tool)

PS39 0.93%

Docker PS30 0.93%
Draw.io PS05 0.93%
Eclemma PS13 0.93%
express.js PS34 0.93%
FreeMind PS13 0.93%
Gmail PS05 0.93%
Google Classroom PS21 0.93%
MySQL Workbench PS03 0.93%
Gredos PS05 0.93%
IdVSAL PS05 0.93%
Island
of Requirement

PS13 0.93%

IslandTest PS13 0.93%
iTestLearning PS13 0.93%
Jenkins PS26 0.93%
Kahoot PS18 0.93%
Agilefant PS10 0.93%
Metric for Eclipse PS13 0.93%
Moodle PS05 0.93%
MS Project PS20 0.93%
MySQL PS09 0.93%

4.5. Q4—How Were the Strategies, (Obtained as Results to Q3), Used to Teach Software Design
and Construction in the Context of Software Engineering Evaluated?

Research Question 4, Q4, aimed to identify how strategies for teaching SDC were
evaluated. The forms reflect what types of evaluation teachers use to measure the teaching–
learning process in teaching units/subjects. Table 8 presents a summary of the strategies
identified in the studies, as well as the percentage of incidence. It is noted that the highest
percentage of works did not present an evaluation strategy, namely, 12.20%.

Question Q4 identified the diversity of forms of evaluation used in teaching SDC,
with 49 strategies, among the selected studies.

It is worth mentioning that the evaluation strategies aimed at delivering projects,
whether final or partial, obtained 9.76% and 4.88%, respectively. Regarding the diversity
of evaluation, PS40 and PS48 stood out with 7 evaluation strategies applied together in
the same study. Despite the use of different strategies to evaluate the teaching of SDC,
the studies did not explore the impact of number of strategies applied to teaching.

PS40 presented 7 evaluation strategies: Oral presentation, Individual contribution
to the project, Final delivery of the Project, Partial delivery of the Project, Laboratory,
Test and Quizz. The objective of this work was to carry out the evaluation of the SE
subject over 6 semesters of Project-Based Learning. In this study, agile practices, such
as the following, were used in the development of projects by students: interactive and
incremental development, collective ownership, fixed-size interactions, continuous delivery,
periodic meeting, simple project and pair programming. Regarding teaching evaluations,
individual project grades were defined for activities assigned in each project interaction
in conjunction with the evaluation of the project repository by the professor and monitor.
In addition, there were presentations of the projects by the teams, one partial and one final,
and both with evaluation weight.



Educ. Sci. 2023, 13, 303 16 of 22

Table 8. Methods of evaluation used in teaching Software Design and Construction.

Evaluation Method Studies Percentage

Not shown PS02 PS11 PS12 PS15 PS17 PS21 PS25 PS28
PS31 PS32 PS39 PS42 PS45 PS46 PS51

12.20%

Final Project Delivery PS05 PS08 PS16 PS18 PS23 PS24 PS27 PS40
PS43 PS44 PS48 PS50

9.76%

Exercise PS05 PS06 PS09 PS22 PS23 PS33 PS36
PS48 PS50

7.32%

Quizz PS06 PS08 PS09 PS27 PS34 PS40 PS41 PS50 6.50%
Written test PS06 PS09 PS16 PS18 PS33 PS48 PS49 5.69%
Project partial delivery PS05 PS10 PS14 PS18 PS23 PS40 4.88%
Oral presentation PS40 PS43 PS44 PS48 PS49 4.07%
Test PS27 PS36 PS40 PS44 3.25%
Workshops PS05 PS23 PS29 2.44%
Presence PS05 PS37 PS38 2.44%
Oral presentation of the project PS04 PS07 PS16 2.44%
Rating based on tool data PS20 PS26 PS30 2.44%
Work Product Analysis PS03 PS19 1.63%
Article production PS13 PS50 1.63%
Practical Test PS23 PS33 1.63%
Participation PS05 PS34 1.63%
Lab PS34 PS40 1.63%
Team Weekly Report PS03 PS38 1.63%
Peer review of project members PS10 PS44 1.63%
Individual Learning Summary PS48 0.81%
Individual Activity Report PS38 0.81%
Final report PS04 0.81%
Project report PS49 0.81%
Laboratory Report PS27 0.81%
Peer review by students PS33 0.81%
Final presentation of the project PS34 0.81%
Theoretical Test PS23 0.81%
Practical Test PS16 0.81%
Laboratory Work PS33 0.81%
Workout PS47 0.81%
Oral test PS49 0.81%
Final exam PS06 0.81%
Project Video Production PS14 0.81%
Evaluation Event PS01 0.81%
Evaluation of problems solved
individually

PS35 0.81%

Individual evaluation in the project PS10 0.81%
Peer review by teachers PS04 0.81%
Individual contribution to the
project

PS40 0.81%

Project Performance PS34 0.81%
Project Documentation PS37 0.81%
Project rating by another team PS48 0.81%
Project Blog Rating PS37 0.81%
Gamification activities PS13 0.81%
External contributor rating PS48 0.81%
Reading Exercise PS27 0.81%
Learning Memorial PS38 0.81%
Handwriting evaluation of
deliverables

PS29 0.81%

Project Poster PS37 0.81%
Evaluation of work products PS36 0.81%
Video Production PS37 0.81%



Educ. Sci. 2023, 13, 303 17 of 22

PS48 aimed to apply the constructivist alignment theory in two subjects with the use
of formative feedback and late summative evaluation. Regarding the teaching evaluations,
each week the students submitted the activities and the teacher performed the evaluation
(without assigning a grade) and provided formative feedback. Students were encouraged to
incorporate feedback and resubmit the activity. At the end of the teaching unit, the teacher
evaluated the portfolio of activities sent by the student. In practice, the student submitted
the Activity Portfolio at the end, including all the work products that helped in learning,
such as notes, mental maps, reports, source code, etc.

Among the selected studies, only 8 presented the weights of each evaluation item
for the final grade, with 6 having project development subjects, according to Table 9.
Among the weights attributed to the project, a maximum percentage of 80% and minimum
of 33% were indicated. These percentages contributed to the development of the teaching
unit with a focus on practical activities, and, in particular, the development of projects.
Regarding the percentage difference of the project’s weight in the final evaluation, the
diversity and non-standardization in the evaluation process for the teaching units that
involved the development of projects was evident.

Table 9. Project weight in the final grade.

Studies Evaluation Components Project Weight

PS05 Project, Final Exam and Continuous Evaluation 35%
PS18 Project and Activities 60%
PS27 Project, Quiz, Lab Report and Tests 36%
PS34 Project, Quiz, Participation, Project Performance and Lab 45%
PS37 Project, Exercises, Test and Evaluation of Work Products 33%
PS40 Project, Lab, Test and Quiz 80%

5. Discussion

This section carries out a critical analysis of the selected studies, making use of the
extracted data, based on the defined research questions, in order to understand the behavior
of, and to indicate justifications for, such phenomena.

The studies presented in Section 4 demonstrate the diversity of strategies for teaching
SDC. It is noted that the use of group strategies obtained the highest percentage among the
selected studies. On the other hand, new approaches were identified, such as Formative
Feedback (PS48) and the Athletic Approach (PS47), that, although restricted to one work
each, demonstrated the possibility of using other techniques for teaching SDC.

The Problem-Based and Project-Based Learning Approaches had greater visibility and
incidence in the literature, as they are active teaching strategies, which may involve the
formation of groups among students to present a solution for a given case. In addition, they
promote student experience in developing solutions, which involves holistic thinking about
the content of the course and the use of soft-skills, skills that are often not emphasized in
training courses in Information and Communication Technology.

Traditional teaching was present in this SLR through the use of theoretical classes,
practical classes in laboratories and seminars. This indicates that, despite the diversity of
practices for teaching SDC, traditional strategies are used in this context.

Regarding the modality types of SDC teaching, the use of Practical teaching had
greater incidence in the selected studies. In addition, the active teaching approach was
predominant among the works. A justification for this scenario is the use of teaching
strategies with greater interaction among students, sharing the protagonist role of the
teaching–learning process.

As for the evaluation methods of SDC teaching, diversity was considered. Traditional
tests, whether written or practical, were present in the selected works. However, the use
of Learning Memorial (PS38) and Video Production (PS14 and PS37) were presented as
alternative ways to carry out evaluation of students.



Educ. Sci. 2023, 13, 303 18 of 22

Since the teaching of SDC involves activities with a greater need for practice, such
as the development of a software project and its construction, the following elements of
the evaluation method aimed at evaluating the project were evident: partial and final
delivery of the project, work product analysis, project documentation, project report, and
project video production, among others. Despite this diversity in evaluation methods,
the emphasis of the selected works was not directed on the evaluation of the methods, but
rather to teaching strategies.

Another important aspect was the fragmentation of SDC teaching into two or more
teaching units/subjects. PS10, for instance, was only directed at project development,
without the inclusion of theories to support the practice. On the other hand, PS04 addressed,
in the same semester, subjects that together presented Design and Construction to students.
In this case, there was the possibility of integrating students for the development of an
integrated project, involving all subjects of the semester in the construction of a solution.

Relevant data extracted from the SLR were the tools used in the studies, and, conse-
quently, in the teaching of SDC. The tools were indicated in the works; however, there was
no evaluation of the impact of their usage in the teaching–learning process.

Relationships of students outside the academic environment was also an important
variable for the development of soft-skills. When inserting companies and organizations
within the academic context to enable experience in an organizational environment, stu-
dents were able to apply the theoretical concepts learned in a corporate environment.

Based on the discussion presented in this section, we identified a proposal for teaching
SDC, namely, the inclusion of content, in the teaching units/course of Software Engineering,
in a practical way, having, as the main teaching strategy, the development of a project
in a group, having a maximum of 6 students, with external stakeholders, and using the
GitHub and UML tools. In addition, at the end of the teaching unit/course, students
would be evaluated according to the final delivery of the project. This proposal was
obtained due to the greater occurrence of these characteristics, in each element of the
research (discipline/course, modality, teaching strategy, tool, and evaluation), among the
selected studies.

Regarding the proposal presented, it can be feasibly applied, since the application of
the strategy “group project development”, aligned with the use of GitHub and UML tools
and considering the participation of external stakeholders, provides students with practical
learning on using tools in a collaborative way, which enables students to attend to a given
project, with emphasis on delivering a product at the end of the teaching unit/course.
In addition, the development of groups with a maximum of 6 people allows each student
to experience teamwork, similar to what is experienced in the job market.

Finally, it is noted that the teaching of SDC in all its interfaces, whether in the course,
in the way content is presented, in the strategies and in the form of evaluation, mainly
related to the strategies and the form of evaluation.

6. Threats to Validity
6.1. Internal Validity

Internal validity specifically refers to whether or not an experimental treatment/condition
makes a difference, and whether there is sufficient evidence to support the claim [29].

The process of extracting and selecting studies was carried out by the researchers
following the systematic review protocol, Section 3. In addition, criteria for inclusion and
exclusion of studies were defined, as well as quality criteria applied to the selected works.
Detailing the review protocol is a way of mitigating the threat of internal validity, especially
in the process of selecting studies.

6.2. External Validity

External validity refers to the generalizability of the results of the treatment/condition [30].



Educ. Sci. 2023, 13, 303 19 of 22

To mitigate risks, a review protocol was developed, detailed in Section 3, to enable
the study to be replicated and the results obtained to be the same. In addition, other related
SLR were identified and presented some practices similar to this study.

6.3. Construction Validity

Construct validity is concerned with the relationship between theory and observa-
tion [30]. The theory on teaching SDC is related to teaching Software Engineering in general
and teaching Modeling and Development. In this sense, the present study obtained infor-
mation that portrayed the relationship between the theory and the observation presented
in the studies. Another important point was the validation of the search string, with the
objective of identifying a certain work that addressed the subject in the process of extracting
the works.

6.4. Conclusion Validity

Conclusion validity is related to the ability to reach a correct conclusion on the rela-
tionship between treatment and outcome [29].

There is a threat to this validity due to the fact that few studies presented answers
to all the research questions elaborated. Therefore, the nomenclature “Not shown” was
presented as the result. With a view to aligning the results and the process of extracting and
selecting the studies, Section 4 presents the tabulation of the data found in a structured
way in order to support the discussions and the results of the SLR.

7. Conclusions

The current work presented the execution of an SLR, with the objective of identifying
strategies for the teaching of SDC. In all, 51 studies were selected, from a total of 302 found,
through the execution of the search string in the ACM and IEEE databases, for the period
from 2015 to 2022. The selection process of the studies was divided into three phases, as fol-
lows: I—Elimination by application of the established exclusion criteria, II—Elimination by
Title and Abstract by application of the established inclusion criteria and III—Extraction
of data and classification by Complete reading. In phase III, 11 types of information were
extracted, which included the basic information of the study (title, year and authors) and
the answers to the research questions, presented in Section 3.1.

As a result, the SLR identified the diversity of strategies for teaching SDC, and con-
templated the most frequent active methodologies in the literature, such as Problem-Based
Learning, Project-Based Learning and Flipped Classroom. However, the highlighted Forma-
tive Feedback and Athletic Approach strategies were presented as alternatives for teaching
SDC. In addition to the strategies, it was identified that the teaching of SDC, for the most
part, has a Practical and Theoretical–Practical teaching model, with the use of an active
teaching approach.

In the process of extracting the data of the selected studies, the weight of the project in
the students’ final grades was observed for some works, and was presented as an element
of diversity, since there were variations in the weight of projects from 33% (minimum) to
80% (maximum). Group work, often part of project development, was also highlighted
among the selected studies, presenting the highest percentage. As a result, information on
the number of students per group was extracted, which mostly ranged from 3 to 6 students
per group.

In the discussion of the results, a proposal for teaching SDC was put forward, contem-
plating the most frequent result for each element of the research (teaching units/course,
modality, teaching strategy, tools, and evaluation). The inclusion of content in the Software
Engineering teaching unit/course in a practical way, having, as the main teaching strategy,
the development of a project in a group, having a maximum of 6 students, with external
stakeholders, making use of the GitHub and UML tools, and being evaluated by the final
delivery of the project, presents itself as a viable alternative for teaching SDC.



Educ. Sci. 2023, 13, 303 20 of 22

Regarding future work, the review is presented as a subsidy for the proposal of
curricular design for the teaching of SDC, as well as for composition of the strategies
identified in a teaching methodology. In addition, exploring teaching activities that involve
practices and development of work in groups, according to the result of this SLR, are
presented as good practices to enhance teaching–learning.

Author Contributions: Conceptualization, V.d.S.C.; methodology, V.d.S.C. and S.R.B.O.; valida-
tion, V.d.S.C. and S.R.B.O.; formal analysis, V.d.S.C. and S.R.B.O.; investigation, V.d.S.C.; resources,
V.d.S.C.; data curation, V.d.S.C.; writing—original draft preparation, V.d.S.C.; writing—review and
editing, V.d.S.C. and S.R.B.O.; visualization, V.d.S.C. and S.R.B.O.; supervision, S.R.B.O.; project
administration, S.R.B.O. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: List of articles available at Appendix A.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. SLR Selected Studies

Table A1. SLR studies.

ID Title Authors Year

PS01
Department-wide Multi-semester Community Engaged Learning
Initiative to Overcome Common Barriers to Service-Learning
Implementation

Timmerman, Kathleen and Goldweber, Michael 2022

PS02 An Eco-System Approach to Project-Based Learning in Software
Engineering Education

Stahl, Daniel and Sandahl, Kristian and
Buffoni, Lena 2022

PS03 Supporting Real Demands in Software Engineering with a Four Steps
Project-Based Learning Approach

Silva, Leonardo Humberto and Castro, Renata
Xavier and Guimaraes, Marice Costa 2021

PS04 Improving Student Engagement with Project-Based Learning: A Case
Study in Software Engineering

Morais, Paula and Ferreira, Maria Joao and
Veloso, Bruno 2021

PS05 Improvement of Learning Outcomes in Software Engineering: Active
Methodologies Supported through the Virtual Campus

Garcia-Holgado, Alicia and Vazquez-Ingelmo,
Andrea and Garcia-Penalvo, Francisco J. and
Conde, Majose Rodriguez

2021

PS06 Peer Instruction in Online Synchronous Software Engineering-Findings
from fine-grained clicker data Gopal, Bhuvana and Cooper, Stephen 2021

PS07 Teaching and Learning of Interface Design: An Experience Using
Project-Based Learning Approach De Sales, Andre Barros and Boscarioli, Clodis 2021

PS08 Students perception on the impact of their involvement in the learning
process: An empirical study

Todericiu, Ioana and Serban, Camelia and
Vescan, Andreea 2021

PS09 Experience of Teaching a Course on Software Engineering Principles
without a Project McBurney, Paul W. and Murphy, Christian 2021

PS10 A Three-Year Study on Peer Evaluation in a Software Engineering
Project Course

Morales-Trujillo, Miguel Ehecatl and
Galster, Matthias 2021

PS11 SE-First: A New Approach to Software Engineering Education Maly, Colin and Person, Suzette 2021

PS12 Exploiting Crowd-based Learning Method in Software
Engineering Course Mao, Xinjun and Lu, Yao 2020

PS13 Gamification applied for Software Engineering teaching-learning process De Sousa Pinto, Fabrício and Silva, Paulo Caetano 2017

PS14 Teaching strategies in software engineering towards industry
interview preparedness Johnson, William Gregory and Sunderraman, Raj 2020

PS15 LEARN Board Game: A game for teaching Software Architecture created
through Design Science Research Sousa, Tamires A.S. and Marques, Anna B.S. 2020

PS16 Towards an Evaluation Process around Active Learning based Methods Serban, Camelia and Vescan, Andreea 2020

PS17
Quality-driven and abstraction-oriented software construction course
design: To fill the gap between programming and software
engineering courses

Wang, Zhongjie and Xu, Hanchuan 2020

PS18 Flipping Laboratory Sessions: An Experience in Computer Science Parejo, José A. and Troya, Javier 2020

PS19 Students perception on the use of project-based learning in software
engineering education Souza, Maurício and Moreira, Renata 2019

PS20 Teaching software engineering tools to undergraduate students Raibulet, Claudia and Fontana, Francesca Arcelli 2019

PS21 Floss in software engineering education supporting the instructor in the
quest for providing real experience for students

Silva, Fernanda Gomes and Tavares, Jenifer
Vieira Toledo 2019



Educ. Sci. 2023, 13, 303 21 of 22

Table A1. Cont.

ID Title Authors Year

PS22 Teaching software modelling in an undergraduate introduction to
software engineering Westphal, Bernd 2019

PS23 Pilot experience applying an active learning methodology in a software
engineering classroom

Garcia-Holgado, Alicia and Garcia-Penalvo,
Francisco J. and Rodriguez-Conde, Maria Jose 2018

PS24 Design thinking and agile practices for software engineering an
opportunity for innovation Corral, Luis and Fronza, Ilenia 2019

PS25 Software creation workshop: A capstone course for business-oriented
software engineering teaching

Paiva, Sofia Costa and Carvalho, Dárlinton
Barbosa Feres 2018

PS26 Developing software engineering skills using real tools for
automated grading Heckman, Sarah and King, Jason 2018

PS27 An Experience Report on the Use of Experience Maps and Sketches in a
Database Course Project Martínez, Alexandra 2018

PS28 Evaluation of the university curriculum in the formation of competences
for the software development industry Enriquez, Hesmeralda Rojas 2018

PS29 Teaching Adult Learners on Software Architecture Design Skills Lieh, Eng Ouh 2018

PS30 Continuous delivery of personalized assessment and feedback in agile
software engineering projects Bai, Xiaoying 2018

PS31 Designing a reference architecture for a collaborative software production
and learning environment Restrepo Naranjo, Juan Felipe 2018

PS32 Hiring millennial students as software engineers: A study in developing
self-confidence and marketable skills Hegee, Scott 2018

PS33 CURRICULUM CHANGES TO IMPROVE SOFTWARE DEVELOPMENT
SKILLS IN UNDERGRADUATES O’neill, Brian 2018

PS34 Flipping a graduate-level software engineering foundations course Erdogmus, Hakan and Peraire, Cecile 2017

PS35 PBL Integration into a Software Engineering Undergraduate Degree
Program Curriculum: An Analysis of the Students’ Perceptions Guedes, G. T.A. 2017

PS36 Retrospective for the Last 10 years of Teaching Software Engineering in
UFC’s Computer Department De Castro Andrade, Rossana M. 2017

PS37 Applying design thinking in disciplines of systems development Coutinho, Emanuel F. 2016

PS38 AGES: An Interdisciplinary Space Based on Projects for Software
Engineering Learning Yamaguti, Marcelo H. 2017

PS39 Comparative Critiquing and Example-based Approach for Learning
Client-Server Design Jamal, Nur Amirah Amjath 2017

PS40 Evolving a Project-Based Software Engineering Course: A Case Study Delgado, David 2017

PS41 Teaching Software Engineering Course with Cooperative Learning
Method: A Pilot Study Basri, Shuib 2016

PS42 SoftBook: Software Development as an Adventure Fernandes Silva, Lyrene 2017

PS43 Ten years of capstone projects at Okanagan College: A
retrospective analysis Khmelevsky, Youry 2016

PS44 STUDENT DEVELOPED COMPUTER SCIENCE EDUCATIONAL
TOOLS AS SOFTWARE ENGINEERING COURSE PROJECTS Cicirello, Vincent A 2016

PS45 On the evaluation of student team software development projects Tafliovich, Anya 2015

PS46 WEB APPS IN THE COMPUTER SCIENCE CURRICULUM: A GUIDE
USING HEROKU, JAVA SERVLETS, AND POSTGRES Solheim, Jeffery 2015

PS47 An athletic approach to software engineering education Johnson, Philip 2016

PS48 Reflections on applying constructive alignment with formative feedback
for teaching introductory programming and software architecture Cain, Andrew 2016

PS49
Assessing problem-based learning in a software engineering curriculum
using Bloom’s Taxonomy and the IEEE software engineering body
of knowledge

Dolog, Peter 2016

PS50 Teaching Software Architecture to Undergraduate Students: An
Experience Report Rupakheti, Chandan R. 2015

PS51 Drawing Insight from Student Perceptions of Reflective Design Learning Wilkins, Thomas V. 2015

References
1. Pressman, R.; Maxim, B. Engenharia de Software: Uma Abordagem Profissional; Mc Graw Hill Education: Porto Alegre, Brazil, 2016.
2. Bourque, P.; Fairley, R.E., Eds. SWEBOK: Guide to the Software Engineering Body of Knowledge, Version 3.0 ed.; IEEE Computer

Society: Los Alamitos, CA, USA, 2014.
3. Force, C.T. Computing Curricula 2020; ACM: New York, NY, USA, 2020. [CrossRef]
4. Todericiu, I.; Serban, C.; Vescan, A. Students perception on the impact of their involvement in the learning process: An empirical

study. In Proceedings of the EASEAI 2021-Proceedings of the 3rd International Workshop on Education through Advanced
Software Engineering and Artificial Intelligence, Co-Located with ESEC/FSE 2021, Online, 23 August 2021; Association for
Computing Machinery, Inc.: New York, NY, USA, 2021; pp. 39–46. [CrossRef]

5. Stahl, D.; Sandahl, K.; Buffoni, L. An Eco-System Approach to Project-Based Learning in Software Engineering Education. IEEE
Trans. Educ. 2022, 65, 514–523.

http://doi.org/10.1145/3467967 (accessed on 1 December 2022)
http://dx.doi.org/10.1145/3472673.3473964


Educ. Sci. 2023, 13, 303 22 of 22

6. Parejo, J.A.; Troya, J.; Segura, S.; Del-Río-Ortega, A.; Gámez-Díaz, A.; Márquez-Chamorro, A.E. Flipping Laboratory Sessions: An
Experience in Computer Science. Rev. Iberoam. Tecnol. Aprendiz. 2020, 15, 183–191. [CrossRef]

7. Sommerville, I. Software Engineering, 9th ed.; Pearson Education Brazil: São Paulo, Brazil, 2011.
8. de Pádua Paula Filho, W. Engenharia de Software: Produtos; LTC: Rio de Janeiro, Brazil, 2019.
9. Lemos, W.; Cunha, J.; Saraiva, J. Ensino de Engenharia de Software em um Curso de Sistemas de Informação: Uma Análise dos

Problemas e Soluções na Perspectiva de Professores e Alunos. In Proceedings of the Anais do XXVII Workshop sobre Educação
em Computação, Belém, Brazil, 15–18 July 2019; SBC: Porto Alegre, RS, Brasil, 2019; pp. 305–318. [CrossRef]

10. Chaudhary, M.; Chopra, A. CMMI for Development; Apress: New York, NY, USA, 2017. [CrossRef]
11. Zabeu, A.C.; Rocha, A.R.; Ângela Filipak Machado, C.; dos Santos Souza, G.; Reinehr, S. MPS.BR-Melhoria de Processo do Software

Brasileiro-Guia Geral MPS de Software; Softex: Brasília, Brazil, 2021.
12. Glasser, W. Choice Theory: A New Psychology of Personal Freedom; HarperPerennial: New York, NY, USA, 1999.
13. Berbel, N.A.N. As metodologias ativas e a promoção da autonomia de estudantes. Semin. Ciênc. Sociais Hum. 2011, 32, 25–40.

[CrossRef]
14. da Silva, T.R.; Medeiros, T.; Medeiros, H.; Lopes, R.; Aranha, E. Ensino-aprendizagem de programação: Uma revisão sistemática

da literatura. Rev. Bras. Inform. Educ. 2015, 23, 182. [CrossRef]
15. de Holanda, W.D.; Freire, L.D.P.; da Silva Coutinho, J.C. Estratégias de ensino-aprendizagem de programação introdutória no

ensino superior: Uma Revisão Sistemática da Literatura. RENOTE 2019, 17, 527–536. [CrossRef]
16. Curcio, K.; Navarro, T.; Malucelli, A.; Reinehr, S. Requirements engineering: A systematic mapping study in agile software

development. J. Syst. Softw. 2018, 139, 32–50. [CrossRef]
17. da Costa, S.E.; da Silva, E.H.; Vieira, L.O.C.; Berkenbrock, C.D.M. Uma Revisão Sistemática da Literatura para Investigação

de Estratégias de Ensino Colaborativo. In Proceedings of the Anais do XIII Simpósio Brasileiro de Sistemas Colaborativos
(SBSC 2016), Belém, Brazil, 4–7 July 2016; Sociedade Brasileira de Computação-SBC: Porto Alegre, Brazil, 2016; pp. 1537–1548.
[CrossRef]

18. Salleh, N.; Mendes, E.; Grundy, J. Empirical Studies of Pair Programming for CS/SE Teaching in Higher Education: A Systematic
Literature Review. IEEE Trans. Softw. Eng. 2011, 37, 509–525. [CrossRef]

19. Systematic Reviews-Research Guide: Defining Your Review Question. 2022. Available online: https://libguides.murdoch.edu.
au/systematic/defining (accessed on 30 March 2022).

20. Petticrew, M.; Roberts, H., How to Find the Studies: The Literature Search. In Systematic Reviews in the Social Sciences; John Wiley
& Sons, Ltd.: Malden, MA, USA, 2006; Chapter 4. [CrossRef]

21. Kitchenham, B.; Charters, S. Guidelines for Performing Systematic Literature Reviews in Software Engineering; Technical Report,
Technical Report, ver. 2.3 ebse Technical Report; Keele University: Staffordshire, UK; Durham University: Durham, UK, 2007.

22. Brereton, P.; Kitchenham, B.A.; Budgen, D.; Turner, M.; Khalil, M. Lessons from applying the systematic literature review process
within the software engineering domain. J. Syst. Softw. 2007, 80, 571–583. [CrossRef]

23. Rupakheti, C.R.; Chenoweth, S.V. Teaching Software Architecture to Undergraduate Students: An Experience Report. In
Proceedings of the International Conference on Software Engineering, Florence, Italy, 16–24 May 2015; IEEE Computer Society:
Washington, DC, USA, 2015; Volume 2, pp. 445–454. [CrossRef]

24. Wilkins, T.V.; Georgas, J.C. Drawing Insight from Student Perceptions of Reflective Design Learning. In Proceedings of the
International Conference on Software Engineering, Florence, Italy, 16–24 May 2015; IEEE Computer Society: Washington, DC,
USA, 2015; Volume 2, pp. 253–262. [CrossRef]

25. O’Neill, B. Curriculum changes to improve software development skills in undergraduates. J. Comput. Sci. Coll. 2018, 33, 86–96.
26. McBurney, P.W.; Murphy, C. Experience of Teaching a Course on Software Engineering Principles without a Project. In

Proceedings of the SIGCSE 2021: The 52nd ACM Technical Symposium on Computer Science Education, Virtual, 13–20 March
2021; Association for Computing Machinery, Inc.: New York, NY, USA, 2021; pp. 122–128. [CrossRef]

27. Types of IEEE Conference Papers. 2021. Available online: https://conferences.ieeeauthorcenter.ieee.org/become-an-ieee-
conference-author/types-of-ieee-conference-papers/ (accessed on 30 November 2022).

28. Joint Task Force on Computing Curricula; Association for Computing Machinery (ACM); IEEE Computer Society. Computer
Science Curricula 2013; ACM/Association for Computing Machinery: New York, NY, USA, 2013. [CrossRef]

29. Travassos, G.H.; Gurov, D.; Amaral, E. Introdução à Engenharia de Software Experimental; UFRJ: Rio de Janeiro, Brazil, 2002;
Volume 9.

30. Wohlin, C.; Runeson, P.; Höst, M.; Ohlsson, M.C.; Regnell, B.; Wesslén, A. Experimentation in Software Engineering; Springer Science
& Business Media: New York, NY, USA, 2012.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/RITA.2020.3008132
http://dx.doi.org/10.5753/wei.2019.6638
http://dx.doi.org/10.1007/978-1-4842-2529-5
http://dx.doi.org/10.5433/1679-0383.2011v32n1p25
http://dx.doi.org/10.5753/rbie.2015.23.01.182
http://dx.doi.org/10.22456/1679-1916.95905
http://dx.doi.org/10.1016/j.jss.2018.01.036
http://dx.doi.org/10.5753/sbsc.2016.9508
http://dx.doi.org/10.1109/TSE.2010.59
https://libguides.murdoch.edu.au/systematic/defining
https://libguides.murdoch.edu.au/systematic/defining
http://dx.doi.org/10.1002/9780470754887.ch4
http://dx.doi.org/10.1016/j.jss.2006.07.009
http://dx.doi.org/10.1109/ICSE.2015.177
http://dx.doi.org/10.1109/ICSE.2015.154
http://dx.doi.org/10.1145/3408877.3432550
https://conferences.ieeeauthorcenter.ieee.org/become-an-ieee-conference-author/types-of-ieee-conference-papers/
https://conferences.ieeeauthorcenter.ieee.org/become-an-ieee-conference-author/types-of-ieee-conference-papers/
http://dx.doi.org/10.1145/2534860

	Introduction
	Background
	Teaching in Software Engineering
	Product Design and Construction
	Teaching and Learning Practices
	Related Works

	Materials and Methods
	Objectives and Research Questions
	Methodology
	Research Strategy
	Selection of Studies
	Classification of Studies and Data Extraction
	Documentation and Presentation of Results Strategy

	Results
	OverviewOverview of Phases
	Q1—How Do the Pedagogical Projects of computingComputer Courses Approach the Knowledge Area of Software Design and Construction (SDC)?
	Q2 — How Does the Teaching of Software Engineering Present the Content Related to the Knowledge Area of Software Design and Construction?
	Q3—What Strategies (Methods, Techniques, Tools, Approaches) Are Used for Teaching Software Design and Construction in the Context of Software Engineering?
	Q4—How Were the Strategies, (Obtained as Results to Q3), Used to Teach Software Design and Construction in the Context of Software Engineering Evaluated?

	Discussion
	Threats to Validity
	Internal Validity
	External Validity
	Construction Validity
	Conclusion Validity

	Conclusions
	Appendix A
	References

