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Abstract: The interpretation of graphs plays a pivotal role in education because it is relevant for
understanding and representing data and comprehending concepts in various domains. Accordingly,
many studies examine students’ gaze behavior by comparing different levels of expertise when
interpreting graphs. This literature review presents an overview of 32 articles comparing the gaze
behavior of experts and non-experts during problem-solving and learning with graphs up to January
2022. Most studies analyzed students’ dwell time, fixation duration, and fixation count on macro- and
meso-, as well as on micro-level areas of interest. Experts seemed to pay more attention to relevant
parts of the graph and less to irrelevant parts of a graph, in line with the information-reduction
hypothesis. Experts also made more integrative eye movements within a graph in terms of dynamic
metrics. However, the determination of expertise is inconsistent. Therefore, we recommend four
factors that will help to better determine expertise. This review gives an overview of evaluation
strategies for different types of graphs and across various domains, which could facilitate instructing
students in evaluating graphs.

Keywords: literature review; eye tracking; STEM education; graphical representation; expertise

1. Introduction

Interpreting data presented in graphs is essential to understanding concepts across
domains [1,2], especially for learning mathematics [3], to interpret and represent data [4,5],
as well as to use media [6]. Therefore, graph interpretation was highlighted as a valuable
skill in PISA and as a 21st-century workforce skill [7]. Graph-comprehension skills differ
across individuals and depend on multiple factors: (1) graphical literacy, meaning the abil-
ity to interpret information represented in graphical form, for instance, identifying relevant
features in any context [8–10]; (2) domain knowledge about the represented topic [9,11];
(3) prior knowledge about the underlying mathematical concepts of the graph [8]; (4) task
knowledge, such as using a graph to solve a problem or identifying specific data points [12].
It is reasonable to assume that experts should have higher levels of graph-comprehension
skills than non-experts. However, the determination of expertise can differ (see section
Determination of Expertise). This is an important aspect to keep in mind, as the interpre-
tation of differences in the visual behavior of experts and non-experts may depend on
how expertise is determined. This holds true for this review when comparing the visual
behavior of experts and non-experts during problem-solving and learning with graphs.

Visual processing of the graph is very important for graph comprehension. We use
the term visual processing to emphasize that not only seeing the relevant information,
but also actively processing is important for comprehending the depicted information.
There is evidence that the visual processing of external representations changes with
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increasing expertise [13,14]. The underlying assumption is that people mentally process
the information they look at [15] (eye-mind hypothesis).

There are various theories why the way we distribute attention might change with
increasing expertise. Several of those theories have been supported by eye-tracking studies
and literature reviews. For example, the holistic model of image perception states that
experts can process an image more efficiently than non-experts [16,17]. This is explained
by the enhanced parafoveal processing of experts [16,18]. Experts can analyze an entire
image and fixate relevant information earlier than non-experts [16]. Furthermore, experts
seem to process information faster than non-experts, as evidenced by shorter fixation
durations (see the meta-analysis of Gegenfurtner et al. [17]). This supports the theory of
long-term working memory. This theory states that experts learn how to store and retrieve
information more effectively, which results in enhanced short-term memory processing [19].
Additionally, the findings of Gegenfurtner et al. [17] support the information-reduction
hypothesis [20]. With increasing practice, participants focused more on task-relevant
information and less on information that was not relevant to the task [20]. This is called
selective attention [10]. These results suggest differences in the visual behavior between
experts and non-experts when viewing external representations, such as graphs.

The difference between experts and non-experts’ viewing behaviors can be important
in the context of education. For example, experts’ eye movements could be used as visual
instructions to help learners make sense of external representations [21]. Knowledge
about how experts read graphs could also be used to facilitate students’ information
processing [22] or to identify student difficulties in problem-solving or learning with
graphs. However, the theories mentioned above use various eye-tracking metrics, such
as time to first fixation [16], the fixation count [20], total viewing time [10], or fixation
duration [17]. There are similarities between different metrics, e.g., a correlation between
total viewing times and fixation count [10] (see also [23] for similar results), but there are
also conflicting relations between theoretical models and eye-tracking metrics. For instance,
the theory of long-term memory predicts a shorter fixation duration for experts. This,
however, is only consistent with the information-reduction hypothesis if experts fixate
shorter on irrelevant areas, as this hypothesis predicts more fixations on task-relevant areas
for experts than for non-experts [17]. Such possible inconsistencies make it more difficult
to interpret how these metrics relate to the differences between experts and non-experts in
viewing graphs or diagrams. Furthermore, the way experts and non-experts are defined
should be acknowledged, especially in the context of education.

There have been previous literature reviews of eye-tracking in education with various
research foci, for example, to summarize the eye-tracking research in physics education [24],
to review the scenarios of eye tracking in mathematics education research [25], to compare
experts and novices’ gaze behavior in sports and medical education research [26], to present
a summary of eye-tracking research within the ”Psychology of Mathematics Education”
conference [27], to investigate the relation between eye movements and cognitive processes
during multimedia learning [28], or to provide an overview of the applications of eye
tracking in education [29]. None of these review articles focuses on a single type of
representation, and regarding the pivotal role of graphs in education, we intend to fill this
gap with our review.

We hence aim to (1) provide an overview of eye-tracking metrics that have been used
to compare the visual processing of experts and non-experts during problem-solving and
learning with graphs. We also (2) summarize the previously found differences in visual
behavior between experts and non-experts during learning or problem-solving with graphs.

Knowing how experts view graphs can provide guidelines to support students’ visual
processing of graphs. For instance, it allows the identification of suitable eye movement
modelling examples [30] or relevant areas for signaling support [31]. Moreover, such
knowledge can be used to evaluate students’ fluency in the visual processing of graphs [32].
In this literature review, we provide an overview of the domains, the types of graphs, the
eye-tracking metrics, and how experts are distinguished in the studies.
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2. Materials and Methods

A literature review typically consists of three parts. First, the literature search. This
is followed by the data extraction, which is then analyzed in the third part of a literature
review. In the following we first present the search process of our literature review and
then continue with the method used for data extraction. The results based on the data
extraction are shown in the Results section.

2.1. Literature Review

The literature search aimed to find articles that analyzed visual behavior when looking
at graphs in the context of problem-solving and learning in Science, Technology, Engineer-
ing, and Math (STEM) subjects. All included articles should fulfil the following criteria:

• Comparison of experts vs. non-experts (population)
• STEM subject (domain)
• Learning or problem-solving with graphs, diagrams, or functions (intervention)
• Analysis of visual behavior via eye-tracking metrics (outcome)
• Empirical study
• Full text available in English

This resulted in the following categories and terms (see Table 1). In the search string,
categories were linked with the Boolean operator AND and terms with the Boolean opera-
tor OR.

Table 1. Categories and terms used for searching.

Categories Terms

Visual behavior “eye tracking”, “viewing behavior”, “visual attention”
Graphs “graph”, “diagram”, “function”

To identify relevant articles, we searched for titles and abstracts in the databases ERIC,
Scopus, Pedocs, and SpringerLink. One possible search string for Scopus would be (“eye
tracking” OR “viewing behavior” OR “visual attention”) AND (“graph” OR “diagram” OR
“function”). As search algorithms differed between databases, key terms in the search string
were sometimes replaced with corresponding adjectives or adverbs to include alternative
phrasings. This search was conducted in February 2022. Therefore, the publication deadline
for relevant publications was 31 January 2022. After the screening process, 24 empirical
studies met the inclusion criteria and were included. We then conducted a backwards
snowball search using Google Scholar for all included articles and found eight more articles.
In total, 32 articles were included in this review.

2.2. Data Extraction

Once the search was completed, relevant data were extracted. Based on our research fo-
cus on the differences in visual behavior between experts and non-experts during problem-
solving or learning with graphs, we extracted the following data:

• Year of publication
• STEM subject in which the study was conducted
• Type of graph
• Eye-tracking metrics
• Areas of interest (AOIs) used for the analysis of eye-tracking metrics
• Expertise determination
• Key findings

To analyze differences in visual behavior between experts and non-experts, we coded
the way authors determined expertise. Furthermore, we coded the domain (STEM subject)
and type of graph, as well as the analyzed eye-tracking metrics. To analyze eye-tracking
data, the stimuli are split into areas of interest (AOIs). This is useful to investigate the
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distribution of eye movements across relevant and irrelevant areas. The distribution of
eye movements can give insights into the relevance of a representation’s components.
Depending on the research aim, an AOI can consist of an entire representation, such as
a graph, or smaller components, for example, the axes. Furthermore, the analysis of
eye-tracking metrics depends on the granularity of the AOIs.

In this review, we differentiate between macro- and meso-level AOIs and micro-level
AOIs when analyzing the gaze behavior of experts and non-experts [33]. We used this
distinction to code AOIs based on descriptions in the included studies. Macro-level AOIs
consist of an entire graph. These AOIs can be useful to research how graphs are embedded
in the learning material, e.g., between questions and answers. Meso-level AOIs divide
the graph into large components, such as dividing the graph from the x- and y-axes. This
means that more than one AOI covers the graph area, but there are separate information
sources, such as single-axis values that are included in the same AOI. Micro-level AOIs split
a comprehensive representation into particular elements, that can be based, for example,
on specific information that is relevant to study specific sections of a graph, such as an axis
with separate numbers on it.

3. Results

We identified 32 articles in our review, that analyzed the visual behavior of experts
and non-experts when looking at graphs in the context of problem-solving and learning.
An overview of all included studies can be found in Table 2. This table surveys authors,
publication years, subjects, graph types, measurements to determine expertise and analyzed
eye-tracking metrics.

Table 2. Overview over studies included in the literature review, including eye-tracking metrics (FD:
fixation duration, FC: fixation count; DT: dwell time; S: saccades; FG: first gaze; PS: pupil size; T:
transitions; NRV: number of revisits; AOI: area of interest; SD: standard deviation).

Reference Year of
Publication Subject Graph Type Determination of

Expertise Eye-Tracking Metrics

Ahmed et al. 2021 Engineering Line graphs Professionals FD (average, total), FC
(average, total)

Atkins and
McNeal 2018 Geoscience Line and bar

graphs Pre-test FD (normalized, total)

Brückner et al. 2020 Physics,
Economics Line graphs Domain DT (total, on relevant

AOIs)

Dzsotjan et al. 2021 Physics Line graphs Learning gain
Multiple features

including DT (total,
mean; SD of both)

Harsh et al. 2019 Biology Line graphs,
diagrams Level of study

FC (normalized), DT
(normalized), S

(normalized)

Huang and Chen 2016 Physics Diagram Spatial working
memory

DT (average), FC (total
stimulus, on AOIs), FG,

PS, S

Ho et al. 2014 Biology Line graphs Prior knowledge FD (total), T, NRV

Kekule 2014 Physics Line graphs Performance Heat maps based on FC

Keller and
Junghans 2017 Medicine Line graphs Numeracy FD (relative), FC

(relative)

Kim et al. 2014 Math Line graphs Dyslexia DT, FG.

Kim and Wisehart 2017 Math Bar graphs Dyslexia DT, T
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Table 2. Cont.

Reference Year of
Publication Subject Graph Type Determination of

Expertise Eye-Tracking Metrics

Klein et al. 2019 Physics, Finance Line graphs Domain
DT (total; AOI and
entire stimulus), FC

(average; AOI), S

Klein et al. 2020 Physics Line graphs Performance DT

Kozhevnikov et al. 2007 Physics Line graphs Spatial ability FD (relative)

Küchemann et al. 2020 Physics Line graphs Performance DT

Küchemann et al. 2021 Physics Line graphs Performance DT (total, relative), T

Madsen et al. 2012 Physics Diagrams, line
graphs Performance FD (normalized; overall,

first two seconds)

Okan et al. 2016a Medicine Line and bar
graphs Graph literacy FD (total)

Okan et al. 2016b Medicine Line and bar
graphs Graph literacy FD

Peebles and Cheng 2003 Economics Line graphs NA † Not applicable

Richter et al. 2021 Economics Line graphs Prior knowledge DT, FG, T, PS

Rouinfar et al. 2014 Physics Diagram Performance
Domain relative ration

(relative dwell time
/relative area of AOI)

Skrabankova et al. 2020 Physics Line graphs Teacher’s opinion T, FC

Strobel et al. 2019 Various topics Bar graphs Working memory
capacity FD (total)

Susac et al. 2018 Physics, Finance Line graphs Domain DT

Tai et al. 2006 Various topics Line graphs Domain FD, DT, S

Toker et al. 2013 Evaluating student
performance

Bar and radar
graphs

Working memory
capacity,

visualization
experience

FD (total, relative, mean,
SD), FC (total, relative),

S,T

Toker and Conati 2014 Data analysis Bar graphs Perceptual speed,
working memory FC, FD, S

Viiri et al. 2017 Physics Line graphs Performance Heat maps

Vila and Gomez 2016 Economics Bar graphs Performance DT

Yen et al. 2012 Physics, various
topics Line graphs Domain DT (normalized), FC

Zhu and Feng 2015 Math Line graphs Performance T

Viiri et al. 2017 Physics Line graphs Performance Heat maps

Vila and Gomez 2016 Economics Bar graphs Performance DT

Yen et al. 2012 Physics, various
topics Line graphs Domain DT (normalized), FC

Zhu and Feng 2015 Math Line graphs Performance T
† Comparison with a scanpath assumed optimal for the task.

An overview of the analyzed variables can be seen in the graphs depicted in Figure 1.
The included experiments are described in more detail regarding the individual variables
in the following sections, starting with the publication period of the included studies.
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Figure 1. Overview of the number of studies related to the visual behavior of experts and non-experts’
during learning and problem-solving with graphs per year (top left); number of studies using graphs
of a certain subject (multiple mentions are possible, top right); types of graphs used in the studies
(middle left); overview of the measure for determining expertise (multiple mentions are possible,
middle right); overview of eye-tracking metrics used in the studies included in the literature review
(low left); number of eye-tracking metrics used for analyzing visual behavior when looking at graphs
(low right).
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3.1. Publication Period

Of the 32 included articles, the first study was published in 2003 (see Figure 1, top
left). In the first decade starting from 2003, only a limited number of six studies were
published, whereas most studies (n = 26) were published after 2013. The number of studies
in our review did not increase uniformly, as we identified six years between 2003 and 2013
in which no studies with eye tracking that examined the visual behavior of experts and
non-experts during problem-solving and learning with graphs were published. After 2014,
we could see an increase in the number of publications about visual behavior when looking
at graphs, with five publications in 2014 and four each in 2016, 2020, and 2021. Starting in
2018, a more constant number of studies comparing experts and non-experts when learning
or solving problems with graphs were published.

This distribution is comparable to other reviews about eye tracking in education. Be-
fore 2006, only a few eye-tracking studies were published in math education research [25],
increasing until the year 2018. The authors stated that this increase could be due to the tech-
nical advances in eye-tracking technology and therefore easier usage [25]. Correspondingly,
more terms related to eye tracking (“eye[-]tracking”, “eye[-]movement”, “gaze[-]tracking”,
“gaze[-]movement”) were identified via content analysis in the proceedings of the Inter-
national Group for the Psychology of Mathematics Education, indicating an increased
relevance of eye-tracking technology in education research [27].

3.2. Domains and Types of Graphs

In education research, eye-tracking studies about experts and non-experts learning and
solving problems with graphs have been conducted in various STEM subjects (see Figure 1,
top right). Out of 32 studies, 16 presented graphs based on the subject of physics, for
example, works by Dzsotjan et al. [34] or Kozhevnikov et al. [35]. Out of these, three articles
compared physics with economics graphs [1,11,36]. Following physics and economics,
the second most studies were conducted in medicine [10,37], mathematics [38–40], and
biology [41–43] with three published experiments per subject.

Most of the studies (n = 25) used line graphs (Figure 1, middle left). This finding holds
when looking at specific STEM subjects. For example, 13 out of the 16 physics studies pre-
sented line graphs. This corresponds to the common topic of kinematics [44,45]. Studies on
visual behavior in graphs in a biological domain also used line graphs exclusively [41–43].
Studies in a mathematics and medical domain also mostly used line graphs (math: [38,40];
medicine: [10,37]). However, Okan et al. [10] analyzed the visual processing of line and bar
graphs in a medical domain. Likewise, bar graphs in combination with line graphs were
the focus of studies in a geoscience domain [23]. Furthermore, bar graphs were used in
combination with radar graphs [46]. Studies using only bar graphs ranged in topic from
economics [47] to data analysis [48].

3.3. Determination of Expertise

To compare the visual behavior of participants of various expertise levels during
problem-solving and learning with graphs, researchers classified their participants accord-
ing to different measures. An overview of the measures used for expertise determination
across all experiments can be seen in Figure 1 (middle right). An overview of the expertise
determination in individual studies can be found in Table 2. Please note that we cannot
identify potential differences and overlaps between the measures used to determine exper-
tise because not all test materials were publicly available. In the Introduction we presented
four factors that are often used to determine expertise: (1) graphical literacy, (2) domain
knowledge, (3) mathematical prior knowledge, and (4) task knowledge. However, some of
the measures used to determine expertise in the studies examined in this review cannot
be categorized as one of these four. Clear discrimination between these factors may not
always be possible and mapping them with the indicators of expertise used in the studies
is complex. For example, an item in which students solve a problem with a graph may
contain information about students’ prior knowledge in both domain and math contexts



Educ. Sci. 2023, 13, 216 8 of 19

as well as a certain level of graphical literacy skills and task knowledge. In such a case,
the performance when solving the item would measure all four factors. Similarly, learning
gain [34], teacher’s opinion [49], level of study [41], comparison with professionals [50] and
pretest score (e.g., in graph understanding [23]) may all cover the four factors. In contrast,
working memory [51], spatial abilities [35], and dyslexia [38,39] do not address any of these
factors, whereas the remaining determinators cover only parts of the factors, although one
might argue that the latter contains the factor of task knowledge, as dyslexic participants
had trouble with reading.

Most researchers determined expertise post-hoc based on participants’ performance
in the learning or problem-solving task (e.g., [52–54]). Determining expertise a priori based
on their domain of study was performed when comparing students of different subjects
(e.g., [1,11]) or science with non-science students [55].

Moreover, some authors used multiple measures, for example, working memory
capacity and subjective assessments of visualization experience [46].

Although there was a clear preference to use performance and domain to determine
experts, other—sometimes unusual—measures were also employed. Many studies com-
pared experts and non-experts via students’ performance on specific tasks, where expertise
might be located on a continuous scale, instead of comparing groups with clear distinctions.
The variety of ways expertise was determined should be kept in mind when interpret-
ing the eye-tracking metrics and comparing experts and non-experts as described in the
next sections.

3.4. Eye-Tracking Metrics

Previous studies used various eye-tracking metrics to compare the visual processes of
experts and non-experts during problem-solving and learning with graphs. In the following,
we aim to provide an overview of the analyzed eye-tracking metrics in the included studies
(research aim 1).

Figure 1 (lower left) shows the eye-tracking metrics that the authors of the 32 included
studies used to compare the visual behavior of experts and non-experts. Eye-tracking
metrics can be grouped into static and dynamic metrics. The sum of static metrics or the
average of eye movements over time, for example, attained by calculating the duration
someone fixated on a stimulus for the entire time the stimulus, is shown. Dynamic metrics
include information about the change in visual attention over time, e.g., the number of
eye-movement switches from one part of the stimulus to another (gaze transitions) or
the duration between two fixations (saccadic duration). Static eye-tracking metrics in the
included studies were based on fixations. These metrics were evaluated by most studies,
e.g., mean fixation duration (e.g., [23,56]) or the fixation count. Another popular static
metric was dwell time, which describes the sum of total fixation durations and the total
duration of saccades within an AOI [57]. However, definitions of dwell time in the articles
differ. Whereas some defined it as the “viewing time” [36] (p. 4), others used more specific
definitions, such as “eye movements below an acceleration of 8500◦/s2 and a velocity below
30◦/s” [11] (p. 5). In some cases, we coded metrics as dwell time based on the description
in the papers (e.g., “gaze duration”, p. 335, [58]), although, in general, we classified the
used eye-tracking metrics based on the terms the authors used. Dwell time was also used
to calculate new metrics, such as the so-called domain-relative attention, which is defined
by dividing the relative dwell time of an AOI by the relative area of the AOI [59]. Other
static eye-tracking metrics were the mean time to first fixation on an AOI [60], the pupil
size (e.g., [58]), and the number of revisits on AOIs [42]. Dynamic eye-tracking metrics that
were used to distinguish the visual processing of experts and non-experts during problem-
solving and learning with graphs included transitions (e.g., [40]), and saccades (gaze jumps
between two fixations, e.g., saccade duration [43]; absolute saccadic direction [1]). One
study qualitatively analyzed heat maps without specifying on what metric they were
constructed [54].
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Since there are noticeable differences in the type of metric between studies, we also
analyzed how many eye-tracking metrics were used in each study. We found that most
studies examined more than one eye-tracking metric (M = 1.92, SD = 0.9) but this value
differed across domains (see Figure 1, lower right). An exception was one study that
used five metrics (fixation duration, fixation count, initial gaze, pupil size, and saccade
counts [58]). Three studies used four eye-tracking metrics, e.g., for analyzing individual
user characteristics when evaluating student performance (fixation count, fixation duration,
saccades, and transitions [46]).

As physics is the most common domain in this review (n = 16, see section Domains
and Types of Graphs), we wanted to take a closer look at the eye-tracking metrics used
in physics studies. An overview of the metrics used to compare experts and non-experts’
visual behaviors when looking at graphs in the domain of physics can be seen in Figure 2.
As studies usually collected several eye-tracking metrics (e.g., [34]), the reported number
of metrics exceeds the actual number of studies. In all these studies, participants were
supposed to solve problems. One exception was a study that analyzed differences in gaze
behavior between experts and non-experts before walking the shape of a graph [34]. Static
metrics were used to analyze differences in the visual attention of experts and non-experts
on relevant and irrelevant areas [1,56]. Comparable to the overall distribution, most studies
analyzed dwell time, often comparing physics and non-physics students [1,36]. Both
studies found that physics students looked longer at the graph (see section Gaze Behavior
below for a closer analysis). Dynamic metrics, such as transitions, were used to predict
the performance of students solving the Test of Understanding Graphs in Kinematics
(TUG-K [53]).
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Figure 2. The number and types of eye-tracking metrics used in studies investigating the visual
behavior of experts and non-experts learning or problem-solving with physics graphs.

3.5. Gaze Behavior of Experts and Non-Experts

To summarize the previously found differences in visual behavior between experts
and non-experts during problem-solving or learning with graphs (research aim 2), we
differentiated the analysis of eye-tracking metrics, whether static or dynamic, depending
on the granularity of the AOIs. We therefore consider results based on the way AOIs are
defined: at macro- or meso-level and at micro-level (see also section Data Extraction). We
first present the results based on the bigger macro- and meso-level AOIs and then go on to
the smaller micro-level AOIs.
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3.5.1. Macro- and Meso-Level

Macro- and meso-level AOIs consist of an entire graph or analyze mid-sized sections
of a graph, such as the axes and the graph. Results of studies using meso- and micro-level
AOIs can be seen in Table 3.

Table 3. Overview of findings of studies analyzing eye-tracking metrics based on meso- and macro-
level AOIs.

Dependent Variable Findings and References

Fixation duration

Experts have longer average fixation durations, but spend a shorter time on the graph than
non-experts [50]

Experts have the same fixation duration on a graph as non-experts [55,58]
Experts fixate less on seductive details [54]

Experts pay more attention to trends than non-experts, but non-experts pay more attention to the title
and the axes [23]

Experts look longer at the graph than non-experts ([42]; [10], experiment 2, only for
conflicting graphs)

Experts look longer at relevant areas (experiment 1 [10]; [59])
Experts look less at irrelevant axes’ labels [54,55]

Fixation count
On average, experts fixate less often on graphs than non-experts [43,58]

Experts and non-experts make the same number of fixations [49]
Experts look less often at irrelevant regions [55]

Transitions

Experts transitioned less often between a graph and text [39,51]
Experts switch more often between graphs and between graphics and text than non-experts [42]

Experts made “more strategic transitions among AOI triples” [40] (p. 1)
Experts made fewer transitions than non-experts on harder tasks [48]

Experts made the same relative number of transitions as non-experts (experiment 1 [10])

First gaze/fixation Experts initially spend more time on the graph than non-experts [58]
Experts look at the graph data later than non-experts [60]

Dwell time

Non-experts spend more time on the graph than experts [36,38]
There are no differences in total dwell time between experts and non-experts [11]

Experts look longer at the correct answer [45]
Experts (i.e., students without dyslexia) paid less attention to the x-axis [39]

Saccades Experts make fewer saccades than non-experts [43]

Revisits Experts visit the graph more often than non-experts [42]

Regarding the analysis of meso- and macro-level AOIs, there were varying results
when looking at fixation duration, the fixation count, transitions, and dwell time (see
Table 3). First, we look at the static metrics that many studies analyzed: fixation duration,
fixation count and dwell time. In general, it seems as if experts pay more attention to rele-
vant areas than non-experts (experiment 1 [10], [23,45,59]) and less attention to irrelevant ar-
eas [51,54,55]. Experts might also attend less to the graph than non-experts [36,38,43,50,58],
although this finding is unclear, as other studies found no differences [11,49,55,58] or con-
cluded that experts look longer at the graph than non-experts ([42]; [10], experiment 2, only
for conflicting graphs).

One study with results that contradict other studies in several instances is the one by
Huang and Chen [58]. In this case, expertise was based on gender under the assumption
that the gender difference in spatial working memory might influence the integration
between text and diagram [58]. However, the authors did not find gender differences in
this task. Additionally, only one of the three diagrams analyzed together was a graph [58].
The operationalization of expertise could also not be categorized based on the four factors.
The results of this experiment might not match the others due to differences in determining
expertise. Similarly, another experiment compared the expertise as determined by the
teacher [49]. The authors also concluded that the teacher’s opinion was not well suited
for grouping students according to performance [49]. The same might hold true for using
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dyslexia as a determinator of expertise [38]. The reasons for the varying results of the
other studies are less clear. Some compared science and non-science students [11,36,55].
Brückner et al. [11] compared physics and economics students, whereas Susac et al. [36]
compared physics and psychology students. Although these student groups had different
domain knowledge, one could assume that economics students might have more expe-
rience with reading graphs (factor graph literacy) as well as more experience with math
lectures (factor math prior knowledge). Economics students might have been more similar
to physics students than psychology students in this regard, leading to varying results.
Tai et al. [43] compared biology, chemistry, and physics students. Besides the differences
in expertise determination, the sample sizes might also play a role in the results (e.g.,
N = 6 [43]).

There were not as many experiments analyzing dynamic eye-tracking metrics as there
were for static eye-tracking metrics (see Table 2). Since transitions were the most used
dynamic eye-tracking metric, we will take a closer look at them. Two studies found that
experts transitioned less often than non-experts between graphs and text [39,58], whereas
others found the opposite [42]. An explanation could be that the transitions of experts were
more strategic during problem-solving [40], which could lead to experts making the same
relative number of transitions as non-experts, taking the total number of transitions into
account [10] (experiment 1).

3.5.2. Micro-Level

In contrast to macro- and meso-level AOIs, AOIs at the micro-level are very small and
include specific parts of the graph, for example, certain sections of the x-axis. In this section,
we will consider experts’ strategies solely on the graph area (i.e., without the question
or answer choices). To get an understanding of experts’ strategies at this level, a finer
classification of AOIs in the graph domain is warranted, typically considering individual
values separately. The results of studies using these types of AOIs can be seen in Table 4.

Table 4. Overview of findings of studies analyzing eye-tracking metrics based on micro-level AOIs.

Dependent Variable Findings and References

Fixation duration
Experts spend more time on graph information (such as title and variables) than non-experts [41,46]

Experts look at the entire graph [1]
Experts spend more time on relevant areas [1,37,47]

Fixation count
Experts fixate on the axes more often [35]

Experts visit graph information (such as title and variables) more often than non-experts [41]
Experts fixate more often on task-relevant AOIs [37]

Transitions Experts transition more often between conceptually relevant areas [53]

Revisits Experts study the axes, axes labels and line segments more often [35]

Dwell time
Experts look longer at conceptually relevant areas [52,53,56]

Experts spend less time on areas that can be used to calculate the solution [53]
Experts spend less time on areas found relevant for non-experts [56]

Saccades Experts look along the graph slope [1]

Similarly, to meso- and macro-level AOIs, regarding static eye-tracking metrics, ex-
periments analyzing micro-level AOIs also found that experts paid more attention to
relevant AOIs [1,37,47,52,53,56], including graph information [35,41,46]. Furthermore, ex-
perts looked at the entire graph [1]. Moreover, experts seemed to systematically distribute
their gaze not only spatially but also temporally [41]. In one example, a faculty member
analyzed a graph and the authors showed that efficient information processing meant
specifically evaluating graph information and related data at the beginning of viewing. In
contrast, inexperienced students jumped between information sources and especially back
to the task and the answer choices in no particular order [41].
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Few experiments analyzed dynamic eye-tracking metrics in a micro-level analysis (see
Table 4). It is difficult to draw a conclusion from such a small sample. In the following
section we therefore aim to summarize the visual strategies of experts and non-experts
during problem-solving and learning with graphs over the bigger (meso- and macro-level)
and smaller (micro-level) AOIs.

4. Discussion

The aim of the present literature review was twofold: (1) We wanted to give an
overview of the eye-tracking metrics used to compare experts and non-experts when
problem-solving and learning with graphs. Furthermore, we focused on the visual strate-
gies of experts and non-experts guided by the research foci of the identified research
articles (2). We further categorized AOIs based on their size, as it might influence the
analysis of whether the AOIs are at the bigger meso- and macro-level or at the smaller
micro-level.

4.1. Summary of Experts’ and Non-Experts’ Visual Strategies

To analyze the visual strategies of experts and non-experts during problem-solving
and learning with graphs, we first summarize the eye-tracking metrics used in the studies
and the according experiments included in this literature review (research aim 1). As there
were differences between meso-/macro- and micro-level eye-movement analyses of eye-
tracking metrics, we examine those separately before summarizing the visual strategies of
experts and non-experts (research aim 2). Finally, we discuss the various ways expertise
was determined and how this might influence the interpretation of eye-tracking results.

4.1.1. Overview of Eye-Tracking Metrics

Most experiments compared static metrics, such as dwell time, and fixation duration
or fixation count, to analyze visual behavior (n = 39). In comparison, only 15 experiments
analyzed dynamic eye-tracking metrics, such as transitions and saccades. Static metrics
are useful to analyze the visual behavior over the entire time participants looked at stimuli
(e.g., see section Eye-Tracking Metrics). Dynamic metrics can be used to analyze the
(temporal) strategy of participants when looking at a stimulus. Although many studies
only measured one metric (n = 18), researchers analyzed two eye-tracking metrics on
average. Four out of 32 experiments used four or more eye-tracking metrics.

Fixation duration and fixation count were useful for both small and large AOIs.
Using two or more (uncorrelated) metrics might give researchers more insight into the
visual behavior, especially in a combination of static and dynamic metrics. Regarding
transitions between AOIs, we recommend a micro-level analysis, because it is very sensitive
to differences between experts and non-experts in more detail. As was common in most
studies, we also recommend distinguishing between task- or conceptually relevant and
irrelevant AOIs.

4.1.2. Meso-and Macro- vs. Micro-Level AOIs

The distinction between relevant and irrelevant AOIs was quite common in the experi-
ments included in the literature review. However, there might be differences when taking
the size of the AOIs into account.

In general, the findings between macro- or meso-level AOIs and micro-level AOIs
were very similar (e.g., for fixation duration and fixation count, see Tables 3 and 4), but
there were contrary findings when analyzing transitions at different levels. At the meso-
and macro-level, experts seemed to make fewer transitions than non-experts (see Table 3).
In contrast, at the micro-level, experts made more transitions than non-experts between
conceptually relevant AOIs (see Table 4). On a micro-level analysis, experts transitioned
more between AOIs, whereas experts seemed to make fewer transitions between AOIs
when looking at macro- and meso-level AOIs. One reason could be that experts seemed to
pay closer attention to the relevant details of the graph (e.g., [52,53,56]). However, only one
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experiment analyzed transitions at the micro-level [53]; consequently, it will be necessary
to confirm these results before a conclusion can be drawn. We nevertheless can make some
statements taking previous theories into account.

As mentioned in the Introduction, there are several theories why there are differences
in the visual behavior of experts and non-experts. The results of some experiments in-
cluded in the literature review support several of those theories. For example, at macro-
and meso-level AOIs, Okan et al. [10] demonstrated the so-called information-reduction
hypothesis [17,20] in a comparison of participants with high and low graph literacy as inves-
tigated in a pre-test. In two studies, AOIs were defined at the meso-level and experts were
classified using a graph comprehension test [10]. Consistent with the information-reduction
hypothesis, the authors observed that experts were better at identifying task-relevant areas
in a graph, which allowed them to spend a greater relative amount of time evaluating
relevant information. Specifically, the authors showed that participants with high graph
understanding reviewed axes’ labels and scaling more frequently to avoid errors [10]
(experiment 1). This corresponds to results by Rouinfar and colleagues [59], who found
that participants who solved the problem correctly paid more attention to relevant areas of a
diagram than incorrect solvers. Rouinfar et al. compared the influence of color highlighting
on information extraction with 80 physics students and they stressed the importance of
the ability to organize and integrate information to solve a problem correctly. This result
confirmed that the improved performance was caused by a learned automatism in task
performance (automatism hypothesis) and not by increased awareness of the relevant
domains [59] (priority hypothesis). Similarly, Okan et al. [10] observed that the highest
number of transitions seemed to occur between the graph region and the question and
between the graph region and the axes [10] (experiment 1), which are relevant areas as well.
At the micro-level, experts also paid more attention to relevant AOIs, which is in line with
the results at the meso- and macro-level and the information-reduction hypothesis [17].

There were not enough experiments to conclusively identify distinct differences be-
tween experts and non-experts for specific measures. However, taken together the results
of these experiments are in line with existing hypotheses. We therefore believe that we
can make some statements about the visual strategies of experts and non-experts during
problem-solving and learning with graphs that we will present in the following.

4.1.3. Visual Strategies of Experts and Non-Experts during Problem-Solving and Learning
with Graphs

Based on our results, we can make a statement about what distinguishes visual
expertise in problem-solving and learning with graphs. Experts systematically looked at
relevant information, such as scales as well as labels (e.g., experiment 1 [10]), and performed
more integrative eye movements within a graph in terms of dynamic metrics (see Table 3,
transitions, revisits, saccades). Therefore, in addition to the formation of chunks [61],
information reduction [17,20] is central to expertise related to graphs.

There were some conclusions regarding differences between experts and non-experts
viewing specific AOIs. First, experts seemed to spend a relatively short amount of time
on the task and answer choices during problem-solving [36,43,50,53], which might also be
attributed to the fact that experts did not (or hardly) perform comparisons between answer
choices [45]. Instead, experts paid more relative attention to axis scaling, axis labels, and
graph progression [53], as well as to conceptually relevant AOIs [37].

Moreover, at least in data extraction, an order of information extraction appeared
by comparing several works [41,46,62]. The most efficient order of information extraction
seemed to emerge when participants looked at the given variables early on (if this indication
existed) and directly identified them in the graph [41,46]. Thereby, a recognition of the
respective axis and its scaling could take place (experiment 1 [10]; [53]), followed by a
jump back to the task [41] to identify the target variable, which is then looked for directly
in the graph [62]. Depending on cognitive abilities and the task difficulty, one may jump
back to variable information [41]. The expertise seems easily transferable to other styles of
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graphs (e.g., linear vs. radial) but not (or only by further training) to other types of graphs
(e.g., line and bar graphs) [63].

However, possible deviations from this strategy at high expertise have not been
identified yet. Furthermore, influences or trade-offs that lead to deviation from this optimal
strategy in experts remain unclear. In addition, the optimal temporal sequence for more
complex tasks was not determined. A complex task would be, for example, determining
the slope or the area underneath a graph. So far, in two tasks, it seemed that students with
correct solutions looked longer along the graph (when determining the slope) and into the
areas below and above the graph (when determining the area) [52].

There have also been some inconsistencies in our results (see Gaze Behavior of Experts
and Non-Experts). These might be due to the determination of expertise in individual
studies. As mentioned in the beginning, four factors are important when determining
expertise in this area: (1) graphical literacy [8–10]; (2) domain knowledge [9,11]; (3) math
prior knowledge [8]; (4) task knowledge [12].

In our review, performance, learning gain, level of study, comparison with profession-
als, and a pretest were measures used to determine expertise that may have fulfilled all
four factors of graph-comprehension skills. A teacher’s opinion may also consider all four
factors. However, this did not prove to be a good indicator of expertise. Of these measures,
performance was the most common one (Figure 1, middle right). Learning gain, level of
study, comparison with professionals, and pretest were only used to determine expertise in
one study, respectively (see Table 2). A direct comparison between studies using the same
expertise determinator is generally possible, but the nine studies using performance vary
strongly regarding AOI sizes and eye-tracking metrics, which makes them unsuitable for
direct comparison. However, there are no conflicts in the findings. In sum, we recommend
using objective measures for determining expertise and using tests that explicitly address
all four factors to allow for replicability and comparability.

4.2. Limitations

Our review of the literature about visual processing comparing experts and non-
experts during problem-solving and learning with graphs has several limitations. First,
we did not concentrate on one specific definition of expertise determination. Therefore,
studies used various measures to define and compare groups of varying expertise. This
could be one reason for the contrasting results. It also made drawing overarching
conclusions difficult.

Second, there were some inconsistencies in using terms for eye-tracking metrics. For
example, the difference between dwell time and viewing time was not always clear. In one
case, the basis for the calculation of heat maps was not reported [54].

Third, in analyzing the various articles on eye tracking during learning and problem-
solving with graphs, the resolution of the eye-tracking systems was not considered. This
means that the accuracy with which the results were reported may be subject to variation.
An increase in spatial and temporal resolution, as well as accuracy, over the period studied
may well be expected due to technological advancements in eye-tracking devices.

We do not claim completeness for the studies included in our review. Our search
process was not entirely systematic, which might have led to an incomplete list of included
studies. We also did not include grey literature, which might have resulted in a publication
bias towards positive and significant results. Moreover, results were only coded by the first
author; we could therefore not assess the validity of our codes. However, the codes were
straightforward, apart from the eye-tracking metrics concerning dwell time, which made
coding relatively easy.

4.3. Future Research

We aimed to examine relevant articles that investigated gaze behavior during problem-
solving and learning with graphs. One of the main limitations of this literature review was
the differing definitions of expertise determination. We therefore suggest the consideration
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of the four factors (1) graphical literacy, (2) domain knowledge, (3) mathematical prior
knowledge, and (4) task knowledge. For example, expertise is sometimes established
only based on the study progress [41]. This leaves it unclear to the reader to what extent
participants are truly experts. Ideally, a criterion based on an assessment that tests the
four factors would be established. In addition to these four factors, efficiency in visual
processing, if applicable, may also be used as a criterion of expertise determination [32].

In general, it is probably the best idea to find a field consensus for the definition of
experts. In the case of graphs, it might be difficult to identify the specific field to which
graphs belong, and to find a consortium of researchers that represents all relevant fields.
Therefore, we suggest an iterative empirical approach: Due to the lack of consensus
for the definition of experts, we propose a research-informed and domain-independent
identification of a group of experts. As a next step, it is necessary to verify and consequently
to refine such identification of experts, which in turn needs to be tested again.

In the case of graphs, we believe that the most important variables are the AOIs that
experts used to solve the task for various types of graphs and domains, how long they need
to focus on it, and how they connect these areas (in terms of gaze transitions). Once there is
such validated definition of experts, the visual processes of those experts would be a great
implementation for teaching the understanding and efficient processing of graphs, how to
approach graphs in unknown fields, i.e., to transfer the skills to other domains, how to best
implement information in graphs, and how to design graphs.

We assumed that the articles identified in this review would be largely limited to sta-
tionary eye-tracking systems, as graphs in experiments in education research are primarily
presented digitally on a computer screen. In fact, only three studies examined gaze behav-
ior during problem-solving or learning with mobile eye-tracking systems [34,38,50]. This
observation could be expected given the more diverse technological solutions and easier
feasibility of stationary eye-tracking studies. As most studies with mobile eye tracking
were published recently, we believe that their number will increase in the future. In terms
of analysis of eye-tracking metrics, graphs mainly analyze spatial distributions of gaze.
We could identify only one paper [41] that evaluated a temporal sequence of attention in
problem-solving with graphs. However, others made the first steps, such as looking at the
total fixation time on an AOI vs. the fixation time in the first two seconds in an AOI [56].
Accordingly, the evidence on expert strategies is also limited only to the spatial distribution
of gaze. It would be interesting to see whether there are also temporal differences between
experts and non-experts during problem-solving or learning with graphs.

We found two papers that depicted an evolution in subjects’ gaze behavior while
problem-solving or learning with graphs [11,59]. In both cases, there was no specific
instruction to influence gaze behavior. Accordingly, the extent to which learning gains
in graph comprehension are associated with changes in gaze behavior is currently under
research. Furthermore, studying whether the results of problem-solving activities are
transferable to learning would be very valuable. In this way, it would also be interesting
to analyze the various phases of problem-solving separately. As mentioned above, there
could be an ideal strategy to extract information from graphs and a closer look at these
phases could be interesting.

Visual processing during problem-solving and learning might also depend on the
education level of the participants. Most studies were conducted with college or university
students; there are currently only three studies that investigate the gaze behavior of high
school students during graph viewing [40,45,52]. Consequently, most papers have investi-
gated an advanced stage of gaze behavior in graphs; there were no studies that analyzed
the gaze behavior of children just learning about graphs. An account of the gaze behavior of
students, who are just acquiring the understanding of graphs, and appropriate instructional
suggestions based on this, are therefore currently missing. Our sample might also be biased
towards physics because half of the included experiments (n = 16) used graphs in this
domain. Although some studies compared various STEM contexts (e.g., biology, chemistry,
and physics [43]), future research would benefit from comparisons in more domains as
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well as more types of graphs, since most experiments analyzed line graphs. Due to our
limited sample, replication studies of the experiments presented here, for example with
differing eye-tracking metrics or in other domains, might further strengthen the current
evidence base.

5. Conclusions

Experts and non-experts differ in the way they interpret graphs. We reviewed 32 articles
about experts and non-experts solving problems and learning with graphs. Most commonly
examined eye-tracking metrics were static, such as fixation duration and fixation count.
Experts seemed to focus longer on relevant areas and to identify the relevant variables
in the graphs faster than non-experts. Their visual processing also seemed to be more
systematic than that of non-experts: first identifying the given variables and then directly
looking for the target variable in the task and the graph. Regarding dynamic process
metrics, we suggest studying transitions between small areas of interest, and we encourage
considering temporal metrics in future research. Furthermore, expertise was determined
in different ways across studies, which are partially not in line with previous determina-
tors of expertise in graph comprehension, limiting the replicability and comparability of
findings. As a starting point for future research, we therefore recommend a clear definition
of expertise and propose four factors of graph-comprehension skills as a starting point
for consideration: (1) graphical literacy, (2) domain knowledge, (3) mathematical prior
knowledge, and (4) task knowledge.
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