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Abstract: There is an emerging, many-dimensional model of human functioning that has yet to be
rigorously tested in adolescent psychopathology. The model is based, in part, on research suggesting
stronger predictive power at the level of single items compared to the commonly used smaller number
of higher-level constructs represented by scores or factors. Here, the model is tested in research
relevant for the understanding how psychopathology relates to adolescent school enjoyment. We
compared, explained, and clustered machine learning model results from a set of 99 self-reported
items from different instruments that measured the behavioral and social-emotional problems of
adolescents to predict school enjoyment. There is support for a many-dimensional model. Individual
items had unique variances beyond noise that incrementally added out-of-sample predictive power
above construct-level prediction, particularly for nonlinear machine learning classifiers. Explainable
machine learning uncovered important predictors of low school enjoyment, and these were specific
nuances of withdrawn/depressive behaviors, elevated fears and anxieties, lowered sensation-seeking,
and some conduct problems—what we term risk nuances (cf. risk factors). Clustering further
identified shared risk nuances among different groups of individuals with low school enjoyment.
Our results suggest that item nuances are important in revealing many ways in which adolescents’
behavioral and social-emotional problems relate to school enjoyment at the individual and group
levels. A many-dimensional model can complement current descriptive, predictive, and intervention
efforts in adolescent psychopathology.

Keywords: adolescents; behavioral problems; machine learning; psychopathology; school enjoyment;
social-emotional problems

1. Introduction
1.1. Power of the Item

What problems do adolescents manifest, and how does the constellation of problems
relate to an important aspect of adolescent life, that of schooling [1,2]? To address this
question, the current dominant approach is based on two major assumptions, among many.
First, from a measurement perspective, it assumes that measured indicators such as indi-
vidual questionnaire items are noisy, adversely affecting their reliability [3]. Second, from a
theoretical perspective, what many are interested in are not the measurements themselves
but what they are caused by, which are psychological constructs in the widely-used re-
flective model [4]. Constructs are “postulated attributes of people”, such as interpersonal
hostility or anxiety [5]. Consequently, various theories based on these assumptions have
been developed to provide reliable and compact construct-level postulations relevant for
adolescent psychopathology, such as, among many, the developmental cascade model of
psychopathology [6] and the spillover theory of parent-child-peer relationships [7]. An
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alternative perspective is emerging, mostly in personality science, of a many-dimensional
model [8–10]. It is argued that individual questionnaire items representing many different
dimensions of feelings, thoughts, and behaviors are themselves worthy of study over and
above their assumed role as mere indicators of higher-level constructs. These many narrow
descriptions, termed nuances in personality science [11], provide a much richer, many-
dimensional view of human functioning compared to the smaller number of higher-level
constructs typically studied. In terms of empirical evidence, studies have directly compared
predictions by individual items (e.g., “I see myself as someone who is moody”) to higher-
level personality constructs such as facets (e.g., anxiety) and domains (e.g., neuroticism),
finding extensive evidence for the predictive advantage of items over facets and domains
for a wide variety of outcomes [8,12–14]. To the extent that mental health research is a
prediction science, the power of individual items to make good predictions on unseen
data is a noteworthy effort. In terms of theoretical motivations, advances in using items
as a unit of study are driven in part by measurement theory. Items are noisy measure-
ment tools [3], and traditionally, this noise is overcome by aggregating many items, for
example, via scales or summed scores. However, larger sample sizes that are increasingly
common can also compensate for noise, allowing reliable associations at the item level
to be uncovered [13]. Further, as argued by Seeboth and Mõttus [8], any theory-building
effort needs to first start with precise and accurate descriptions of associations before any
theoretical explanations can be offered. Seeboth and Mõttus [8] argued with the example of
how the big five personality domains seemed to predict a vast universe of outcomes [15],
though very weakly with little specificity, such that similar combinations of personality
domains can predict very different life outcomes. The ubiquitous but weak relationships,
or weak ubiquity, motivate the search for a stronger predictive theory that is more specific.
Lastly, the emerging many-dimensional model is further inspired by the rapid growth of
genome-wide association studies (GWAS) in the past decade. These studies have correlated
pieces of genetic information (e.g., millions of single nucleotide polymorphisms) with
psychiatric disorders [16] and educational outcomes [17], among others. Much in the same
way that pieces of genetic sequences constitute the genome, nuances at the item level are
argued to constitute the building blocks of the persome [18]. While the genome represents
a person’s unique genetic make-up, the persome, using nuances, represents a person’s
unique psychological make-up.

1.2. Toward a Many-Dimensional Adolescent Psychopathology

There is a need to test a many-dimensional model in adolescent psychopathology
for a number of reasons. First, much, if not all, of the relevant work has been in person-
ality science with a focus on adults, and much less is known about adolescents. Many
of the items used in personality science are arguably related to habits of thoughts and
behaviors that may have more stable, trait-like properties, especially in adults. However,
many widely used instruments relevant to adolescence research may assess more state-like,
context-dependent responses. These would include symptom presentations that vary over
time [19] or social relationships that change dynamically over development [20]. There is a
need to test whether items relevant to adolescent psychopathology can confer predictive
power. Adolescence is a stage of change and instability, making it a relevant age group to
rigorously test the many-dimensional model. Second, similar to personality research, the
phenomenon of the weak ubiquity of constructs is also present in adolescent psychopathol-
ogy. For example, the widely used psychopathological construct of internalizing behaviors,
conceptualized as inner distress, is linked to numerous school functioning measures such
as attendance and grades, but only weakly so, typically with an r of less than 0.3 as demon-
strated in a previous meta-analysis [21]. Can specific items related to internalizing behaviors
more powerfully and specifically predict aspects of adolescent school functioning? One
important aspect of adolescent school functioning is how much adolescents enjoy schooling,
an indicator of their overall positive feelings about school, classes, and their activities [22].
Children and adolescents who enjoy schooling, are meaningfully engaged in school, or
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are less bored tend to have better academic, behavioral, and emotional outcomes [23,24].
It is argued that positive feelings about school can foster higher aspirations and greater
motivation to learn, which in turn lead to higher achievement [24]. School enjoyment also
has broader positive correlates of positive teacher-student [25] and peer relationships [26],
while also potentially protecting against further psychopathology and delinquency [22].
Despite its importance, whether or not adolescents enjoy school has not been studied in
detail, particularly how specific and narrow behavioral and social-emotional problems may
hinder optimal school enjoyment in different adolescents.

1.3. Present Study

The primary aim of the study was to test the relevance of a many-dimensional model
of human functioning in adolescent psychopathology. We compared items to constructs in
the concurrent prediction of school enjoyment. Nonlinear machine learning classifier mod-
els were trained and tested on a large sample of items measuring adolescent behavioral and
social-emotional problems to predict how much they enjoy school. Results were then com-
pared to higher-level constructs and to traditional linear models. Further machine learning
explainability analysis and clustering were implemented to obtain more insights into how
specific problems related to low school enjoyment in different groups of adolescents.

2. Materials and Methods
2.1. Participants

A nationally representative, non-clinical, school-based sample was collected. Partici-
pants were 3232 Singaporean adolescents aged 12–18 years (M = 14.0 years, SD = 1.0 year),
with 49% female, drawn from four publicly funded schools in Singapore. Participation was
voluntary, obtained via written informed consent from each participant and their parents.
English, the main language of instruction in Singapore, was used for all questionnaires that
were administered in a classroom setting, with responses kept confidential. Other than
informed consent, there were no other eligibility criteria for inclusion/exclusion. Supple-
mentary Table S1 provides details of the sample. A subset of the data was previously used
for person-centered analysis [27] and machine learning to predict social functioning [28].
In the present research, we focused on a new detailed investigation of how nuances at the
item level differed from scores at the construct level in the concurrent prediction of school
enjoyment. All procedures involving human participants and secondary data analyses
were approved by the Institutional Review Board of Nanyang Technological University.

2.2. Measures

The present study measured nine constructs of behavioral and social-emotional func-
tioning: six related to behavioral and emotional problems in addition to sensation-seeking,
peer pressure, and parent-child relationships. A list of all predictors at item level is given
in Supplementary Table S2, including the reporting of descriptive statistics for all items.

Behavioral and socio-emotional problems. Behavioral and emotional problems were mea-
sured by Youth Self-Report (YSR) [29] using a 3-point Likert scale (“Not true”, “Somewhat
or sometimes true”, “Very true or often true”). Items covered factor-separable syndromes
assumed to represent latent psychopathologies [30]. Anxious/depressed was measured by
12 items (e.g., “I am nervous or tense”). Cronbach’s alpha was 0.84. Withdrawn/depressed
was measured by eight items (e.g., “I don’t have much energy”). Cronbach’s alpha was
0.75. Attention problems were measured by nine items (e.g., “I don’t finish what I start”).
Cronbach’s alpha was 0.79. Somatic complaints were measured by 11 items (e.g., “I feel
dizzy or light-headed”). Cronbach’s alpha was 0.78. Rule-breaking behaviors were mea-
sured by 13 items (e.g., “I steal at home”). Cronbach’s alpha was 0.66. Aggression was
measured by 17 items (e.g., “I am louder than other kids”). Cronbach’s alpha was 0.86.

Sensation-seeking. The Brief Sensation Seeking Scale for Chinese (BSSSC) [31] was used
with eight items (e.g., “I am interested in almost everything that is new”). Responses were
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recorded on a 5-point scale (1, “Completely disagree” to 5, “Completely agree”). Cronbach’s
alpha was 0.72.

Peer pressure. Nine items from the Peer Pressure Inventory (PPI) [32] were administered
to measure the extent of self-perceived peer pressure in school (e.g., “How often do you
feel the need to be friends with the popular students?”). Responses were recorded on a
5-point scale (1, “Never” to 5, “All the time”). Cronbach’s alpha was 0.81.

Parent-child relationship. The Parent Environment Questionnaire (PEQ) [33] was used,
specifically the 12-item “Parent-Child Conflict” scale from the adolescent’s perspective
(e.g., “My parent often hurts my feelings”). Responses were recorded on a 4-point scale
(1, “Definitely true” to 4, “Definitely false”). Cronbach’s alpha was 0.90.

School enjoyment. Participants were asked “How much do you enjoy school and school
activities?”. Responses were recorded on a 3-point scale (1, “Above average”; 2, “Average”;
3, “Below average”).

2.3. Machine Learning

Because there is currently no community guideline for machine learning reporting, a
recent publication initiated a methodology checklist for transparent reporting of machine
learning analysis (29) that has since been used by others [34]. The reporting combines
items from two recent systematic reviews on the use of machine learning in biomedi-
cal and mental health research [35,36]. The checklist of reporting items is provided in
Supplementary Table S1.

2.3.1. Variables

Ninety-nine items were used as item-level predictors. These items came from 9 con-
structs: anxious/depressed, withdrawn/depressed, attention problems, somatic com-
plaints, rule-breaking, aggression, sensation-seeking, peer pressure, and parent-child rela-
tionship. Supplementary Table S2 lists all the predictor items and constructs labels. The
outcome to be predicted was school enjoyment, collected concurrently with the predic-
tors. A small amount of missing data for each set (development and test) was imputed
independently using the K-nearest neighbor algorithm. For main item-level analysis, all
predictors were ordinal data and were all similarly entered without any variable selection.
For construct-level analysis, linearly summed scores were computed from items belonging
to each construct [37]. For events per predictor variable number (EPV), focusing on the
combined event count for two minority categories of school enjoyment (“above average”
and “below average”), the EPV for the development set was 11.5 events per predictor vari-
able for the main item-level analysis and 126.3 for the construct-level analysis. This ratio
indicates a sufficiently large sample size in order to reliably predict the minority categories.

2.3.2. Data and Machine Learning Workflow

An imbalanced 80–20 split, as is common in machine learning research, was performed
on the full data (N = 3232 cases or participants), producing a development set and a test set.
This was performed once via random selection. The test set consisted of N = 164 (25.4%),
419 (64.9%), and 63 (9.8%) cases in the outcome categories of “above average”, “average”
and “below average”, respectively. This test set was reserved for final testing of the opti-
mized models and was not employed in any of the steps in model development. Previous
analysis suggested that oversampling minority cases can help increase prediction [28].
Thus, we applied the synthetic minority oversampling technique, SMOTE [38], to the
development set to increase the proportion of the minority categories by about 200%. For
the 99-item or 9-construct analysis, all items or constructs were used. For the 1-item, 2-item,
or 4-item analysis, 1, 2, or 4 items were randomly sampled from each of the item pools
belonging to each construct. For example, for 1-item analysis, 1 item was randomly chosen
from each of the nine constructs, producing 9 items in total for use in subsequent machine
learning, and this was repeated 50 times to assess variability from item sampling. After
these steps, the model development set underwent Bayesian hyperparameter optimization
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and model training (see subsequent text). The best model for each classifier at the end of
model development was then used to predict the outcome categories in the test set using the
same set of predictor items. We performed three additional analyses to address questions
about item-level prediction, which we termed (1) residual variance analysis on the full
training set, (2) residual variance analysis on a subsample, and (3) randomly-permuted
variance analysis on the full training set. First, we asked the extent to which the machine
learning results depended on unique variances at the item level. For this question, we
regressed each item onto the summed score of the construct that the item belonged to. The
residuals from this regression were then used for further machine learning. This procedure
allowed us to assess whether analyzing only items’ unique variances affected the results.
Second, we repeated this residual variance analysis, but first randomly subsampled just
20% of the training set, followed by further machine learning. This analysis allowed us
to examine the extent to which sample size played a role in driving the items’ predictive
power. Third, for a given pool of items belonging to each construct, we randomly assigned
the item values using values from another item belonging to the same construct for each
respondent. For example, 12 items belonged to the anxious/depressed construct, and the
item values were randomly permuted such that one item took on a value from one of the
12 items, then the next item took on a value from one of the remaining 11 items, and so on
(this was performed without replacement, thus no values were duplicated). This was then
performed for the next respondent, and so on and so forth. This procedure maintained
the summed score representing the construct for each respondent but randomized the
item values. It allowed us to test whether the machine learning analysis capitalized on
item variances that were simply noise, in which case such random permutations would
not adversely affect the machine learning results. Alternatively, if the item variances had
genuine signals beyond their relationship with the construct (since summed scores were
maintained), the randomly permuted values would reduce machine learning performance.

Four classifiers were used to predict the outcome variable of school enjoyment. Nonlin-
ear classifiers were artificial neural networks and K-nearest neighbor. These were nonlinear
classifiers that learned complex patterns in the data in an automated manner, such as
nonlinear combinations of predictor variables or higher-order terms. These would result
in nonlinear decision boundaries to classify the outcome categories. Artificial neural net-
works use computational units akin to neurons, which transform inputs (predictor values)
into outputs (inputs to other layers of neurons or final outcome categories) via weighted
summation and nonlinear activation functions [39]. K-nearest neighbor applies the concept
of neighbors such that cases with known outcome categories that are most similar in their
predictor values to a query case (case to be predicted) are used to predict the outcome
category of the query case [40]. These two machine learning classifiers were found to be
among the best-performing ones in similar previous analyses [28] and were thus used
here. Two other classifiers were linear ones from multinomial logistic regression and linear
discriminant analysis. These classifiers are very common in school and clinical psychology
research and are under the class of generalized linear models, as their functions for classify-
ing cases into outcome categories are forced to be linear in variable space. Though both are
linear classifiers, they differ in other properties (e.g., normality assumption, susceptibility
to outliers, etc.), allowing us to assess potential differences in results.

Each of the four classifiers first independently underwent hyperparameter optimiza-
tion, similar to a previous publication [28]. Briefly, hyperparameters are static parameters
that govern model structure and the downstream learning process. An example would
be the lambda parameter for regularization in logistic regression, which is typically fixed.
Previous research suggested that hyperparameter tuning can be important for optimizing
predictive performance [41]. Given the large space of possible hyperparameter combina-
tions, Bayesian optimization (50 evaluations) was instead used to estimate the best set
of hyperparameters using 5-fold cross-validation. The best set of hyperparameters was
then subsequently used during the training of the classifier model parameters. The trained
models were then applied to the test set. There are a variety of performance measures
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that can be used in machine learning. We chose Matthew’s correlation coefficient (MCC)
as it uses all four cells in a confusion matrix (true positives, true negatives, false positive,
and false negatives). It is also a type of correlation; thus, MCC and its squared, MCC2,
which is a measure of outcome variance explained by the model, can be directly compared
to commonly used R and R2 measures in the social sciences. However, we note that the
pattern of results remained essentially the same when considering other metrics such as
the F1 score. MCC ranges from −1 (a perfectly opposite prediction to actual outcome) to
0 (a random prediction) to 1 (a perfect prediction of actual outcome). MCC2 ranges from
0 (zero outcome variance explained by model) to 1 (100% of outcome variance explained
by model).

2.3.3. Model Explainability

To interpret the machine learning models, model explainers were used on the test set,
in particular local interpretable model agnostic explanations (LIME) [42]. Briefly, LIME
assumes that for a single query case, one can apply a simple approximation of the prediction
function for a local region, even though globally for all cases, the prediction function might
be highly complex in the machine learning model. This approximation is achieved by
producing synthetic (artificial) data, weighing each synthetic datapoint by its proximity to
the query case, and then fitting a simple model to identify important predictors specific
to the query case. As a simple model, we used a decision tree that still allowed some
limited form of nonlinear complexity. The top 20 predictors for each correctly classified
case in the test set were identified using Gini impurity-based predictor importance (how
well the predictor node in the tree classified cases into the different classes). To interpret
the directionality of the relationship between the top predictors and outcomes, an overall
measure of effect size (Cohen’s d, mean difference divided by standard deviation) was used,
comparing those with low (“below average”) to high (“above average”) school enjoyment
for each of the top predictors.

Model explainability operates at the individual case level, but because there are too
many cases, it can become difficult to visualize each and every case’s list of predictors. Thus,
using the ordered list of the top 20 predictors across all cases, we then performed t-SNE
dimensionality reduction (to 3 dimensions) [43]. t-SNE, like factor analysis and principal
components analysis, reduces high-dimensional data to a smaller number of dimensions
based on similarities (e.g., correlation or distance). Unlike other commonly used linear
dimensionality reduction techniques, t-SNE is nonlinear, allowing us to capture more
complex structural features while preserving local similarities. Clustering was subsequently
performed on the t-SNE-reduced dimensions using k-means clustering. The optimal
number of clusters (ranging from 1 to 15) was estimated via the commonly used variance-
ratio criterion (maximum ratio of between- and within-cluster variance) [44]. These putative
clusters represented cases with an overlapping list of top predictors. One top predictor that
was most common among all the cases in each cluster was then identified to qualitatively
interpret the cluster.

All data processing, machine learning, and model explainability were performed in
Matlab 2021b programming environment using the Statistics and Machine Learning Toolbox
and custom scripts. The machine models are available as Matlab objects upon request.

3. Results
3.1. Items Versus Constructs

Four types of classifier models to predict school enjoyment were built using the model
development set consisting of either individual items or linearly summed scores for all nine
constructs. The models’ performance was then evaluated on the unseen test set based on
MCC. Figure 1 shows the results. As the number of sampled items per construct increased,
the classifiers generally increased in performance on the test set. However, nonlinear
machine learning classifiers of artificial neural networks and K-nearest neighbor exceeded
the performance of linear classifiers for all sampled items, suggesting complexities in our
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data that nonlinear classifiers were able to discover for prediction purposes. Importantly,
both linear and nonlinear classifiers started to outperform construct-level classifiers when
more than four items were sampled per construct. This result indicated that a small
number of items did not lend itself to good prediction but that as more items were added,
the classifiers could leverage the additional information to improve prediction. The best
prediction performance was demonstrated by artificial neural networks and K-nearest
neighbor using all 99 items in the model. These 99-item models had MCC = 0.74 and 0.75,
respectively, exceeding the performance of the same types of classifiers using constructs
(MCC = 0.63 and 0.62, respectively). MCC is a form of correlation comparable to R, and
MCC2 is comparable to R2. Thus, our nonlinear classifiers can explain about 55% (0.742) of
the variance of the outcome variable.
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(mean ± S.D.) is MCC based on the number of items per construct in the x-axis. Broken horizontal
lines are the MCC at construct-level (9 summed scores representing 9 constructs). MCC and MCC2

are comparable to R and R2, respectively.

We further investigated the nature of item-level signals, focusing on our artificial
neural network classifier. Items belonging to the same construct were correlated to one
another and to the summed scores representing constructs, so the prediction performance
at the item level could conceivably be driven by common variance with only marginal
unique contribution by each item. The finding that items outperformed constructs that
relied on common variance suggests that this was not likely to be the case. Nonetheless,
to formally test this possibility, we regressed each item onto the summed construct score
that the item belonged to and used the residuals as data for model development and test
sets. As expected, this procedure did not change the performance at the item level for
artificial neural networks (Figure 2). The MCC for the 99-item residual variance model was
still higher than the construct-level MCC. This finding supports the idea that individual
items had unique variances (beyond the construct) that were driving our main machine
learning results. To test whether sample size played a role, we randomly subsampled
20% of the training set with the residual variance data before model development and
model testing. Performance dropped substantially but not fully, suggesting the contribution
of large sample sizes for machine learning. Another test of the predictive power of items
is to randomly permute the values of items belonging to each construct. This procedure
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would maintain the summed scores for each construct but destroy any signals at the item
level. If the models were simply capturing noise in the items and overfitting them to
the data, we would expect similarly good predictions. However, this was not the case:
randomly-permuted variance essentially eliminated any prediction performance on the test
set (Figure 2). Overall, this pattern of results suggests that individual items had genuine
signals beyond noise that incrementally added predictive power above construct-level
prediction. This predictive power was maximized by using the largest number of items in
a large sample size for nonlinear machine learning models.
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3.2. Model Explainability

We next focused on our 99-item artificial neural network model, attempting to explain
its prediction function specifically for low school enjoyment (rated as “below average”
by respondents). In other words, we tried to identify items contributing to individual
risk for low school enjoyment. LIME analysis was employed [42]. LIME is based on the
insight that simple model explanations can be applied at the local level for each case, even
though the black-box machine learning model may involve complex, nonlinear decision
boundaries at a global level for all cases. LIME, therefore, allows us to identify important
predictors specific to each case. We used simple tree explainers of our artificial neural
network model. The ranking of the top 20 predictors of low school enjoyment is shown in
Figure 3. Each circle indicates a case and its LIME value. A higher value shows a stronger
influence on a particular case’s prediction, while the number of circles indicates how many
cases the predictor has an influence on. Thus, both the LIME value and the number of
circles can be interpreted together as representing the overall importance of a predictor. The
top five predictors were: YSR5, There is very little that I enjoy; BSSSC1, I’m interested in
almost everything that is new; YSR102, I don’t have much energy; YSR103, I am unhappy,
sad, or depressed; and YSR90, I swear or use dirty language. These top five predictors
were generally related to emotional nuances of being withdrawn/depressed, personality
characteristics of low sensation-seeking, and conduct problems/rule-breaking behaviors.
Having some conduct problems is not inconsistent with withdrawn and depressed behav-
iors because, in children, irritability is a notable feature of depression [45]. Additionally, it is
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not uncommon to see interrelationships between internalizing and externalizing symptoms
and school-related concerns or issues [46]. We observed that many other items subsumed
under the same constructs were not identified as being important predictors. For example,
YSR75—I am shy or timid—though part of the withdrawn/depressed symptom construct
was not identified as a top 20 predictor. Other top 20 predictors related to school fears
and anxieties and school functioning, such as YSR30, I am afraid of going to school and
YSR61, My school work is poor, suggesting some face validity in the list of predictors of
school enjoyment.
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Figure 3. Top 20 predictors of low school enjoyment. Each circle represents a predictor importance
value as measured by the Gini impurity of the local decision tree for a single case (respondent)
prediction in the test set. Predictors are ranked by average predictor importance. YSR5, There is
very little that I enjoy; BSSSC1, I’m interested in almost everything that is new; YSR102, I don’t have
much energy; YSR103, I am unhappy, sad, or depressed; YSR90, I swear or use dirty language; YSR35,
I feel worthless; YSR30, I am afraid of going to school; YSR42, I would rather be alone than with
others; YSR95, I have a hot temper; BSSSC6, Going on adventures always makes me happy; YSR21, I
destroy things belonging to others; PPI2, How often do you feel the need to be part of a group in
school?; YSR17, I daydream a lot; PPI1, How often do you feel the need to take the same co-curricular
activities (CCAs) that your friends take? YSR37, I get in many fights; YSR4, I don’t finish things that I
start; YSR61, My school work is poor; BSSSC8, To pursue new experiences and excitement, I can go
against rules and regulations; PEQ8, My parent and I often get into arguments; YSR8, I have trouble
concentrating or paying attention.

To further interpret the directionality of the predictor-school enjoyment relationship,
we examined simple effect sizes (Cohen’s d) for each predictor, comparing low to high
school enjoyment outcome categories. For all YSR-related items, as expected, adolescents
with more problems had low school enjoyment (Cohen’s d = 0.41 to 0.92 for all YSR predic-
tors in the top 20; a positive value shows a higher mean for those with low school enjoyment
compared to high school enjoyment). For BSSSC-related items, the pattern was more com-
plex. Low sensation-seeking via items BSSSC1 and BSSSC6 tapping into experience seeking
was linked to low school enjoyment (Cohen’s d = −0.67 and −0.45 respectively), but the
opposite seemed to be the case for BSSSC8 (Cohen’s d = 0.52), as was the finding for the
YSR items. BSSSC8 has a positive association with low school enjoyment, likely because it
taps into the disinhibition dimension of sensation seeking, which aligns with acting out
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and conduct problems. Overall, across all individuals, important predictors of low school
enjoyment were specific nuances of withdrawn/depressive behaviors, elevated fears and
anxieties, low sensation-seeking, and some manifestations of conduct problems. Figure 3
provides an aggregate view of the top predictors, combining all individual cases with low
school enjoyment. To better understand the distribution of predictors for each individual,
we additionally performed dimensionality reduction of the list of top 20 predictors for each
individual, followed by clustering. Figure 4 visualizes the clustered distribution of cases
in lower-dimensional space. Cases with the same color belonged to the same cluster with
an overlapping distribution of top predictors. Four clusters were optimally inferred for
individuals with the outcome of low school enjoyment. For each cluster, we identified the
most common top three predictors from the overlapping distribution of top predictors. We
conceptualized these common top predictors as shared risk nuances, as reported in Table 1.
Interestingly, each cluster had a different common top predictor. Two clusters had different
common top predictors, but both related to sensation-seeking: BSSSC1, I’m interested in
almost everything that is new, and BSSSC6, Going on adventures always makes me happy.
Both BSSSC1 and BSSSC6 items tap into the experience and adventure seeking dimensions
of the sensation-seeking construct, whereby low levels of sensation seeking are associated
with low school enjoyment. Two other clusters had different common top predictors of
PPI2, How often do you feel the need to be part of a group in school? and YSR30, I am
afraid of going to school. With respect to PPI2, these adolescents did not feel the need to be
part of a group in school. Given the profile of an adolescent who manifests withdrawn and
depressive symptoms and is somewhat fearful of novel and adventure-related experiences,
such an individual would typically not be found seeking out cliques and groups in school.
In other words, we uncovered evidence of different important predictors for distinct groups
of individuals related to specific nuances of low sensation-seeking, school anxiety, and a
low need for peer conformity pressure with respect to a sense of belonging derived from
peer groups.

Table 1. Shared risk nuances for each of the four clusters identified in Figure 4.

Cluster 1

BSSSC1, I’m interested in almost everything that is new (negatively related)
PEQ11, My parent sometimes hits me in anger (negatively related)
BSSSC6, Going on adventures always makes me happy (negatively related)

Cluster 2

PPI2, How often do you feel the need to be part of a group in school? (negatively related)
YSR90, I swear or use dirty language
BSSSC1, I’m interested in almost everything that is new (negatively related)

Cluster 3

YSR30, I am afraid of going to school
YSR42, I would rather be alone than with others
YSR61, My school work is poor

Cluster 4

BSSSC6, Going on adventures always makes me happy (negatively related)
YSR42, I would rather be alone than with others
BSSSC8, To pursue new experiences and excitement, I can go against rules and regulations
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4. Discussion

How can we better understand adolescent psychopathology so as to best describe and
predict an important aspect of adolescence, that of school enjoyment? Traditional analysis
has relied on linear models that aggregate items to represent higher-level constructs and
then build compact descriptions and models averaged across all individuals. However,
our results strongly suggest that there is unique information at the level of single items
that can be used to build highly predictive models of school enjoyment in support of the
many-dimensional model [8–10]. Further machine learning explainability analysis and
clustering can reveal important predictive items at the individual or group level.

Our study can be compared to previous studies on psychopathology and school
functioning. In the most recent study on psychopathology and school enjoyment, Cadman
and Hughes [22] examined a multivariate model to predict school enjoyment from the latent
construct of externalizing problems. However, the predictive relationship was very small
(standardized beta coefficient of −0.08). They also found that depressive symptoms, part of
the internalizing problems construct, predicted school enjoyment, but similarly, very weakly.
This weak ubiquity contrasts with our study’s possibility of building a stronger predictive
model with more specificity. However, our approach does make the model less compact
since many more non-aggregated items are involved. Our procedure, however, guards
against overfitting because performance was tested on an unseen test set kept separate
from model development. Further, psychopathology can be dimensionalized at different
hierarchical levels [47]. In contrast to our results, Allen et al.’s [21] meta-analysis found that
broadband scores involving high-level internalizing and externalizing constructs had better
predictive power on various school-related behaviors compared to narrowband scores
involving aggregations at the lower level. We found the opposite: narrower measurements
at the item level had better predictive power compared to higher-level aggregates (Figure 1).
The reasons for these different results from past literature may have to do with the samples,
specific outcomes being predicted, and methodological differences, as none of the previous
studies used nonlinear machine learning models.

Further contrasts can be made to a recent study that predicted poor school social
functioning using the same dataset and methodology [28]. Just two of the top 10 predictor
items of school social functioning overlapped with our current study focusing on poor
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school enjoyment (YSR5, There is very little that I enjoy and YSR42, I would rather be alone
than with others). The rest of the top 10 predictors of school social functioning were related
to psychosomatic complaints and social problems, unlike our current study. This result of
strong specificity at the item level contrasts with the weak ubiquity of broad constructs
in past literature and suggests that school functioning may involve different mechanisms
depending on whether it relates to social functioning, general feelings about school, or any
other outcomes.

Our study complements existing theory-building approaches in adolescent psychopath-
ology. One of the biggest insights from GWAS is that behavioral phenotypes are associated
with large numbers of genetic markers, each with small effect sizes (also known as the
fourth law of behavior genetics), but all of which additively contribute to making powerful
combined predictions with medium-to-large effect sizes [48]. Such a situation of non-
compactness, in which many small associations and explanations co-exist, may similarly
be important for non-genetic studies of adolescent behavior. Furthermore, items with
unique variances are highly underused because scale development generally discards
items that do not strongly load (correlate) onto the same factor (construct) as other items.
Our results thus likely underestimate the overall power of nuances at the level of single
items (12). The research suggests the importance of developing alternative measurements
and theories that are less overly broad with more specific descriptions and predictions in
adolescent psychopathology. This may involve using a much wider universe of items, even
though they may typically be excluded by traditional measures (e.g., internal reliability
via Cronbach’s alpha). Our understanding of adolescent psychopathology is enriched by
embracing both scale-level theoretical constructs as well as item-level nuances; there is
much potential and power in using both in a complementary and comprehensive manner,
depending on the goals and needs of the research.

Finding support for a many-dimensional view may expand our conceptualization of
how we design and implement school interventions. Many current intervention efforts
revolve around using broad theoretical constructs such as school belonging [49] or even
broader ones still under the umbrella of positive education [50]. However, an alternative
many-dimensional view suggests that interventions can be conceptualized at the most
elementary level, identifying specific thoughts, feelings, and behaviors that have the
strongest risk for the outcome, what we call risk nuances (cf. risk factors). Focusing on risk
nuances carries immense utility, especially for specific behaviors, feelings, and thoughts
that would be the target of intervention and prevention efforts. This is easily achieved
using machine learning with explainable simple models followed by clustering to identify
shared risk nuances for interventions in groups of individuals. To put it concretely, instead
of relying solely on interventions aimed at the broad factor of depression for all adolescents
that report lower school enjoyment, one can consider interventions with risk nuances. For
example, targeting “I am afraid of going to school” for one group of adolescents and “I’m
interested in almost everything that is new” (negatively related) for another group, as
these are the shared risk nuances for two different clusters of adolescents with low school
enjoyment (Figure 4). The former group may require interventions addressing negative
beliefs about school, while the latter involves a scaffolded approach toward coping with
novel school activities. However, targeting one risk nuance may not be sufficient, as our
results suggest that each risk nuance plays a small, incremental role and that more risk
nuances need to be addressed.

Furthermore, a multidimensional view may also affect how we evaluate school inter-
ventions. For example, when synthesizing evidence for interventions such as via meta-
analysis, one may consider dispensing with higher-level constructs that average out effects
since the specific thoughts, feelings, and behaviors themselves should be the focus of
evidence evaluation instead of common constructs they are hypothesized to tap upon.
In other words, a many-dimensional view may require a bottom-up way to organize the
plethora of interventions and their evidence base by focusing on the elementary levels of
human psychology, e.g., [51]. One idea is the use of network graphical representations for



Educ. Sci. 2023, 13, 1103 13 of 15

a potentially large number of effect sizes, something frequently used in the biomedical
field for network meta-analysis [52]. Further research is necessary on how to better synthe-
size and summarize these disaggregated effect sizes, given the overwhelming number of
different interventions when analyzed at the lowest levels.

In addition to conceptual and practical contributions, our study also expands the
literature methodology-wise. Our approach may be reminiscent of person-centered analysis,
in which individual items are used to form profiles of groups of individuals (28) in contrast
to variable-centered analyses. However, the current study has important differences
from previous traditional person-centered analysis. First, we used nonlinear machine
learning classifiers followed by nonlinear dimensionality reduction in contrast to the
typically linear models used in person-centered analysis. This approach allowed us to
uncover potentially more complex and informative relationships among predictors and
outcomes that may have been missed by previous profiling studies. Second, non-parametric
approach of LIME was used to simulate data to identify important predictors specific to an
individual, something missing from traditional person-centered analysis. Further, Mõttus
and colleagues [8,12] have performed extensive analyses to demonstrate the power of the
item, including the use of item residuals, which we broadly replicated. However, our
analysis in Figure 3 went further to uncover more details as to how items may be driving
good predictions. For example, when we randomly permuted item values while keeping
construct scores, item-level prediction fell substantially, suggesting that a large portion
of construct-level prediction was instead driven by individual item patterns. There was
also reduced performance when using a smaller number of items and smaller sample sizes.
Taken together, power from items is derived from having many of them combine in unique
ways in large sample sizes.

The present study has numerous limitations. First, we are unable to draw causal
conclusions given the observational nature of the data. Thus, we can only speculate about
whether these identified risk nuances can indeed influence subsequent school enjoyment in
a causal manner. There may also be residual confounding given that we did not analyze
other covariates that may potentially affect the results, such as family background. Future
research can consider additional background variables. Furthermore, our measures were
all self-reported from a single timepoint. One possibility is the use of multi-informant
reports to predict longitudinal outcomes more robustly. Finally, our sample was a school-
based, non-clinical one. It is unclear if our results can be generalized to predict clinical
cases. Further research is necessary to test whether a many-dimensional model is useful for
clinical use in adolescent psychopathology.

5. Conclusions

We tested an emerging model of human functioning in research relevant to adolescent
psychopathology. Using machine learning, we uncovered extensive evidence of items
from behavioral and social-emotional problems that represented risk nuances for low
school enjoyment. Our results strongly supported the many-dimensional model, with
implications for how to complement current descriptive, predictive, and intervention
efforts in adolescent psychopathology and, more broadly, in adolescence research.
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