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Abstract: According to numerous researchers, a clear and direct correlation exists between
Computational Thinking (CT) and courses falling under the purview of Science, Technology,
Engineering, and Mathematics (STEM), thereby advocating for the integration of CT into the cur-
ricula of STEM courses. Nonetheless, it is noteworthy that only a few studies have scrutinized this
correlation in-depth. Most such studies connect the correlation tacitly and predominantly concentrate
on the empirical assessment of CT within the curriculum of one STEM discipline. This research seeks
to evaluate the Computational Thinking abilities of 80 high school students in Greece and discern
the extent of correlation with their academic performance in STEM and Greek language courses. A
longitudinal survey was executed to accomplish this objective, commencing with administering a
test designed to gauge the fundamental components of Computational Thinking. It is worth noting
that this test draws its inspiration from internationally recognized computer competitions and serves
as a credible assessment tool. Subsequently, an assessment was carried out to ascertain the degree of
correlation between students’ Computational Thinking aptitude and their written performance in the
subjects encompassed by the STEM category and the Greek language courses. The outcomes of this
investigation revealed the presence of a statistically significant correlation between students’ Compu-
tational Thinking proficiency and their performance in these academic subjects, further extending
to the academic direction of study chosen by the students. Based on the findings of this research,
implications and pedagogical recommendations are delineated while concurrently acknowledging
the limitations encountered during this study.

Keywords: computational thinking assessment; latent trait; STEM courses; language course; item
response theory

1. Introduction

Computational Thinking (CT) has occupied researchers’ interest over the last fifteen
years. It has been a subject of broader investigation [1–14], including research focusing on
CT introduction into the curricula of primary and secondary education [2,15–26]. Research
on CT also focuses on the methods of its evaluation. Many researchers assess students’
programming or computational skills, considering that these skills represent students’ levels
of computational thinking. In contrast, some researchers try to assess students’ problem-
solving skills. Moreover, some researchers try to assess the existence and levels of the CT
trait through general questionnaires not directly related to a specific course [4,5,11,13,27–34].

Seymour Papert introduced CT in 1980 [27] to denote the changes computers could
cause in thought processes during mathematical education. In 2006, Jeannette Wing reintro-
duced the term, trying to give the first modern definition: “the processes of human thought
involving problem-solving, system designing and understanding of human behaviour,
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based on concepts that are fundamental to Computer Science” [14]. More recently, Wing
followed up with a concise operational definition of CT [35]: “Computational thinking is
the thought processes involved in formulating a problem and expressing its solution(s) in
such a way that a computer—human or machine—can effectively carry out”.

Since then, many researchers have tried to define CT clearly. However, this has yet
to be accomplished, given the different definitions, with several overlaps, that we find in
the literature [4,32,33,36]. Many researchers directly correlate CT with computer science
(CS) [12,37,38]. These researchers structure the definition of CT using computational
concepts and computational skills derived from computer science. Furthermore, they
correlate CT with skills required in CS and problem-solving in general. They consider CT a
set of skills essential for students to deepen their understanding of computer science, solve
everyday problems and succeed in scientific fields and their academic performance [39–41].

In this context, computational thinking has been linked to STEM education, a key
component of which is problem-solving. According to Siekmann [42], the term STEM
in education is defined as follows: “STEM is an acronym for the disciplines of science,
technology, engineering, and mathematics taught and applied either in a traditional and
discipline-specific manner or through a multidisciplinary, interconnected, and integrative
approach. Both approaches are outcome-focused and aim to solve real-world challenges”.
In many countries (e.g., Australia, Sweden, South Korea, Poland, and the USA), CT has
been introduced, or attempts have been made to introduce it into the secondary educa-
tion curricula, either through computer science or STEM courses [16,17,23,26]. Similar
innovative efforts to introduce CT in secondary education are now being made in Greece,
confirmed by the new curricula published in 2021 by the Institute of Educational Policy
(IEP) [43]. In Greece’s new curricula, STEM subjects are identified as physics, chemistry,
and biology under science, computer science (CS) under Technology and Mathematics.
As far as the term Engineering is concerned, this is considered to include physics. Within
the middle school curricula, CT is recognized as the most basic and most frequently used
practice of CS and is taught within this course. At the same time, CT is recognized as
a horizontal skill required to address complex, interdisciplinary, authentic, real-world
problems. Within the high school curricula, CT is not taught as part of any course in the
STEM curricula or any other course. The planning anticipates that all students, regardless
of their orientation choice in 2nd grade, will have developed their computational thinking
skills through STEM courses in the 1st and 2nd grades and become capable of applying
computational practices, focusing on problem-solving and creating digital artefacts.

One of the most critical problems regarding promoting and integrating CT in these
courses is the tests (or procedures) for measuring and assessing it. Since we accept that CT
is supported and promoted through these courses [3,10,12], we should also find a way to
assess and measure students’ acquisition of this trait. Many researchers have developed
tests in this direction, but there is a lack of widely accepted CT assessment tests. Most of
these tests involve programming environments, and few aim to assess CT independently
of programming environments [4,33,34]. Another interesting finding is that the efforts to
assess CT traits in students of the last grades of secondary education are significantly less
than similar assessments in primary and lower grades of secondary education [33,34].

Therefore, as many researchers argue [4,11,35], constructing reliable tests to assess
CT subject to the validity and reliability test is at issue. In addition, it is interesting to
strengthen research into the assessment of CT in upper secondary students, bearing in
mind that these tests help students to develop their abilities and upgrade their learning,
i.e., they are pillars of meaningful learning of CT. Furthermore, confirming whether STEM
courses promote CT and help students develop this thinking is exciting but essential, as it
would facilitate the preparation of the curricula and could be an impetus for the distinct
introduction of CT in the curricula of STEM courses.
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2. Theoretical Perspectives
2.1. Computational Thinking and STEM Courses

Many researchers and organizations [2,6,32,44–47] correlate CT with computer sci-
ence (CS) by giving CT characteristics derived directly from this science (Table 1). Bar
and Stephenson [2], trying to formulate a functional definition directly relevant to teach-
ers (especially in secondary education), included specific skills in this definition, such
as abstraction, algorithmic thinking, automation, synthesis and decomposition of prob-
lems, parallelism, data simulation, data collection, analysis, and representation. In 2013,
Grover and Pea [6] defined the critical components of CT through an extensive literature
review. The most vital component of CT is the skill of abstraction, followed by skills
such as generalization, algorithmic thinking, decomposition, rethinking, conditional logic,
debugging, and the efficiency and performance of code.

Table 1. CT definitions (I).

Computational Thinking (Related to Computer Science)

Bar and Stephenson (2011) [2] Grover and Pea (2013) [6]

Data collection Abstractions and pattern generalizations
Data representation and analysis Systematic processing of information

Abstraction Symbol systems and representations
Analysis and model validation Algorithmic notions of flow of control

Automation Structured problem decomposition (modularizing)
Testing and verification Iterative, recursive, and parallel thinking

Algorithms and procedures Conditional logic
Problem decomposition Efficiency and performance constraints

Control structures Debugging and systematic error detection
Parallelization

Simulation

In 2015, Google introduced a definition of CT on its website entitled “Exploring Compu-
tational Thinking”. According to this definition, CT is a problem-solving process involving
many features and arrangements; it is a fundamental component in the development of
computer science, but it can also support problem-solving in other scientific fields, such as
mathematics, natural sciences and human sciences. In January 2021, the British Computer
Society (BCS) updated its definition of CT as the thought process of identifying a problem
and its solution so that a computer system can achieve it. In this definition, the BCS empha-
sizes that using computer systems in terms of CT is unnecessary, highlighting that CT can
give an advantage to computer systems in problem-solving.

On the other hand, many researchers associate CT with skills required in problem-
solving, such as abstraction, decomposition, logic, algorithmic thinking, automation, gener-
alization, evaluation, and debugging [33,34] (Table 2). These researchers’ counterargument
is that CT does not require computers. On the contrary, many of the practices of CT are
found in both mathematics and natural sciences. In Realistic Mathematical Education
(RME), the process of modelling and, simultaneously, mathematicizing a real-world prob-
lem using algorithmic thinking is one of the most common educational practices, which has
been the subject of broad debate in the context of mathematics teaching over the last fifty
years [48–54]. At the same time, modelling, abstract thinking, simulation, and problem-
solving practices are integral to the evolution of the natural sciences and the experimental
process within these Sciences and their didactics [55–60].

The previous observations led to a new perspective on the very nature of CT and made
researchers wonder whether it is inextricably linked to CS. Through the reports of the NRC
(National Research Council) in 2010 and 2011 [8,9], a new perspective on CT was introduced,
according to which Computer Science does not have a monopoly on CT. “CT is a set of skills
transferred between different disciplines” [9] (p. 54). Furthermore, as stated in the
report: “At its core, CT is independent of technology....to be a competent user of CT is
not necessarily related to one’s ability to use modern information technology” [9] (p. 61).
In 2011, the CSTA (Computer Science Teachers Association) and ISTE (K-12 Computer



Educ. Sci. 2023, 13, 1101 4 of 22

Science Standards) [61] created a list of CT skills stating that they can be used in solving ev-
eryday problems in many different disciplines and at different levels of education. In 2016,
the CSTA, in its updated Computer Science Standards [45], stated: “We believe that CT is a
problem-solving methodology that extends the field of CS to all other sciences, providing
the appropriate means to analyze and achieve a solution of various problems solved com-
putationally”. Through research involving preservice teachers, Yadav et al. [41] introduced
and explained five critical components of CT: problem identification and decomposition,
abstraction, logical thinking, algorithms, and debugging. In 2016, Weintrop et al. [12] intro-
duced a classification of CT components for mathematics and natural sciences. According to
this classification, the predominant practices of CT in STEM courses are data management
practices, modelling and simulation practices, computational problem-solving practices,
and thinking practices for complex systems. The necessity for developing a CT component
taxonomy in the context of mathematics and natural sciences stemmed from the fact that CT,
as its definition has evolved, is an integral part of the practices developed in the evolution
of these sciences. Regarding teaching these sciences in secondary education, as Weintrop
et al. [12] stated, using CT deepens students’ understanding of these disciplines, and vice
versa; mathematics and natural sciences provide a clear framework within which CT can
be applied and mastered.

Table 2. CT definitions (II).

Computational Thinking (Related to Computer Science and STEM)

Yadav et al. (2014) [41] ISTE and CSTA (2011) [61] Weintrop et al. (2016) [12]

Problem identification and
decomposition

Formulating problems in a way
that enables us to use a computer
and other tools to help solve them

Data practices

Abstraction Logically organizing and
analyzing data

Modelling and simulation
practices

Logical thinking
Representing data through

abstractions, such as models and
simulations

Problem-solving practices

Algorithms
Automating solutions through

algorithmic thinking (a series of
ordered steps)

System thinking practices

Debugging

Identifying, analyzing, and
implementing possible solutions
to achieve the most efficient and

effective combination of
steps and resources

Generalizing and transferring the
problem-solving process to a wide

variety of problems

2.2. Computational Thinking and Language Courses

Unfortunately, there is not enough material in the literature that directly links compu-
tational thinking to language learning. This is likely because computational thinking skills
are directly related to computer science. Nevertheless, the role of language is crucial in
cultivating and promoting computational thinking skills since language is the tool through
which articulation and reflection occur in all processes that require the activation of these
skills. Reinforcing this belief is the presentation by Lu and Fletcher in 2009 at the 40th ACM
Technical Symposium on Computer Science Education [62]. In addition, we have identified
a small number of cases where attempts have been made to integrate CT processes and
skills into language courses [63,64]. Some of these have involved modelling [65,66] or even
the production of computer games [67].

However, we have not found any research correlating the skills students acquire in
language classes with CT skills.
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2.3. CT Assessment Tool

The methods for assessing CT that various researchers have used occasionally vary. In
these assessments, researchers generally measure the student’s CT trait through procedures
such as selected—or constructed—response tests, portfolio assessments, computational
or programmatic environments, surveys, and interviews. The context in which most of
these evaluations occur is the classroom, particularly the computer science course or one
of the other STEM courses [33,34]. The confusion surrounding structuring CT assessment
procedures is evident, primarily due to the need for more consensus on structural features
and the precise definition of CT [11,33,34]. According to Tang et al. [34], the lack of a
theoretical framework that would create consensus among the various definitions of CT has
led to a lack of understanding of the components of CT and the difference between CT and
other thought processes. This resulted in a need for more clarity in the methods for assessing
CT. A significant share of CT assessment processes, either within or outside the framework
of STEM courses, involves programming environments, which require familiarity and,
therefore, cannot be easily used to draw safe conclusions [5,11,13,28,30–33,68]. In addition,
as both Papert and Wing have pointed out, CT and programming should be treated as
separate yet compatible learning tools that can broaden problem-solving processes [34].

Another method of evaluation is the use of opinion polls or surveys. However, the
self-referentiality of this research is a significant disadvantage, leading to the manipulation
of students’ intuitive perceptions and attitudes [34]. Another assessment method is student
interviews to explore their understanding of CT and the codification of their behaviours
and verbal communication. The problem with this assessment method is its high cost, long
duration, and low percentage of students that can be evaluated this way [34].

Researchers also use multiple evaluation methods, including creating a file for each
student under investigation containing the student’s constructions, tasks, and tests and
conducting an interview [32–34]. A substantial proportion of CT evaluation processes
concern CT assessment criteria [1,7,32], often used with psychometric tools. These tests
consist of multiple-choice or open-ended questions aimed at the initial measurement of CT
components. The criticism here focuses on the fact that these tests measure perceptions
and attitudes while CT is a skill [28]. These tests may be the only ones that do not directly
link CT to CS.

As a result, researchers aim to create tests for evaluating CT in a non-programming en-
vironment [34], which partially applies to this type of evaluation. Many of these tests [7,68]
draw some of their material from the Bebras competition (http://www.bebras.org/,
accessed on 18 January 2022), an international initiative to disseminate CS, programming,
and CT to students of all ages. Another source is the tests of the “Talent search” of
the Computer Olympiad of South Africa (Computer Olympiad ‘Talent Search’ papers,
http://www.olympiad.org.za/talent-search/, accessed on 18 January 2022) [7]. Both
competitions aim to promote CT, require the use of CT, and involve students from over
40 countries annually. The tests of these competitions aim to elicit students’ computational
thinking skills, thus empowering them to solve problems arising from everyday life without
requiring a programming device or platform [34,69].

According to Poulakis and Politis [33], the answer to the absence of common ground
in terms of CT assessment is to shift the research to questions related to knowledge trans-
fer, i.e., whether students can transfer the acquired knowledge and skills of CT and ap-
ply them to other areas, such as problems of everyday life, a view also supported by
Kalelioğlu et al. [70]. Román-González et al. [69], in their classification of CT assessment
tools, referred to a category of CT assessment tools called CT skill transfer tools, whose
objective is to assess to what extent students are capable of transferring computational
thinking skills to different kinds of problems, within different contexts and situations.
Both Román-González et al. [69] and other researchers [7,61,71,72] agree that the Bebras
competition and the Computer Olympiad focus on assessing the ability to transfer CT skills
to everyday problems. These tools are particularly suitable for assessing the degree of
retention and transfer of CT skills after a sufficient period has elapsed since acquiring these

http://www.bebras.org/
http://www.olympiad.org.za/talent-search/
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skills [69]. Accepting, therefore, that basic CT skills are informally cultivated in students
through STEM courses, we chose to formulate a test using data from both the Bebras
competition and the related South African Computer Science Olympiad “Talent Search” in
order to measure students’ degree of acquisition of the latent CT trait.

2.4. Research Objectives

The focus of educational reform at the dawn of the 21st century in many countries,
such as the USA, Finland, and Australia, has been on the so-called 21st-century skills. These
are critical skills that anyone who wants to be an active citizen must have. The main factors
behind the emergence of these skills were the globalized economy and market, the devel-
opment of new technologies and communication, and the need for lifelong learning [47].
In education, these skills are mainly summarized in the “4Cs”, i.e., critical thinking and
problem-solving, communication, collaboration, creativity, and innovation. Since their
introduction, the 4Cs have gradually become accepted as fundamental elements of many
school curricula worldwide.

In February 2018, S. Grover published an article entitled “The 5th ‘C’ of 21st Century
Skills? Try Computational Thinking (Not Coding)” [73] in which she argues that: “There is
growing recognition in the education systems around the globe that being able to problem-
solve computationally-that is, to think logically and algorithmically, and use computational
tools for creating artefacts including models and data visualizations-is rapidly becoming a
prerequisite competency for all fields. I argue that we need computational thinking (CT)
to be another core skill the “5th C” of 21st-century skills is taught to all students”. This
article urgently raised the need to introduce the teaching of CT in secondary education,
arguing that CT is a critical skill that students are required to master when they complete
their K-12 education.

In addition, many researchers argue that the most appropriate way to introduce CT
into the curricula is through its integration into STEM and language courses. They argue
that CT is primarily related to thinking rather than programming [74]. It is a common belief
that physics, mathematics, informatics, chemistry, and biology constitute the appropriate
framework for students to promote the acquisition of essential practices of CT [75–79].
Moreover, this is the case whether CT is linked to programming environments, which is
significantly confirmed for computer science or not necessarily, as in physics, mathematics,
chemistry, and biology. Teaching these courses leads to cultivating many skills that are
components of CT through their inquiry and experimental nature, even when this is not
explicitly stated in the course objectives. Also, we should pay attention to the crucial role of
language through its dual role in supporting thought. Good use of language supports the
processing of information—it helps to think—and the communication of information [80].
CT requires students to formulate logical arguments and thinking that can be articulated
and communicated through language. Therefore, we deemed it necessary to include
language and STEM subjects in our research to explore whether there is a correlation with
students’ CT levels.

CT and all aspects of it, especially in language and STEM courses, is an emerging field
of research. One of the main reasons is that many countries are choosing to introduce CT
into their curricula through integration into existing subjects. Thus, there has been an effort
to investigate the correlation between CT levels and students’ academic performance in
language and STEM courses in recent years. However, the number of relevant studies still
needs to be increased. In particular, we identified three relevant studies related to primary
education carried out in the last three years. The research by Polat et al. [81] concerns school
students in Turkey and suggests a positive effect of good performance in mathematics and
CS on students’ CT levels. The study states that the effect of mathematics on students’ CT
levels is stronger than the effect of CS. Sun et al. [82] investigated the correlation between
students’ attitudes towards STEM subjects and their CT skills in their research involving
school students in China. They found that the type of learning attitude predicted students’
CT levels. Also, Sun et al. [83], in their research, which again involved Chinese students,



Educ. Sci. 2023, 13, 1101 7 of 22

found significant bidirectional correlations between students’ academic performance in
STEM and language courses and CT skills. Finally, we identified two studies on secondary
education conducted in the last three years. The research by Chongo et al. [84] involved
128 students in a science field of study from Malaysia. The study found a statistically
significant correlation between students’ CT skills and mathematics achievement. Hava
and Koyunlu Ünlü [85] found a significant correlation between Turkish high school students’
CT skills, interest in STEM careers, and attitudes towards inquiry learning. In addition, the
above researchers’ observations confirm Lei et al.’s meta-analysis [86], which concerned
earlier similar studies and reported positive correlations between CT levels and academic
achievements for students.

Considering that efforts to assess students’ CT in the final years of secondary education
are limited [33,34] and that the development of CT is in demand for new curricula in
Greece, it would be interesting to explore the emerging connection of CT with STEM
and language courses. In this context, this research aims to investigate whether students’
level of CT correlates with their performance in STEM subjects (mathematics, natural
sciences, and informatics) and the Greek language subject; another aim of this study is
to explore how these levels vary depending on the direction of study that students have
chosen to attend in the last grade of secondary education. It should be noted that in Greece,
students choose a field of study in the second grade of high school. Thus, they attend
specific STEM courses in science and economics (mathematics, physics, chemistry, biology)
more than in humanities. Based on this fact and given the direct relationship between
STEM courses and CT, we decided to investigate the existence of a correlation between the
chosen field of study and students’ CT. Students’ performances in each subject were based
on their performance on written tests delivered during the first semester of the school year,
which took place at the same time as the CT assessments.

Finally, in the last grade of the Lyceum, the language course contains elements of
grammar and syntax of the Greek language while simultaneously emphasizing academic
writing skills.

Given all the above, we came to the formation of the following research questions:

1. Is our research tool adequate for estimating students’ CT levels?
2. Is there a correlation between students’ CT levels and their performance in STEM and

language courses?
3. Is there a detectable correlation between students’ CT levels and their choice of field

of study?

3. Method
3.1. Settings and Participants

Our research is longitudinal [87] as it tracked the performance in the computational
thinking test and the recapitulative written tests of 80 students in the final grade of an
Athenian Lyceum during the first semester of the school year 2021–2022. These written tests
were preceded by teaching with worksheets, laboratory activities, and problem-solving
activities during the first semester of study. As such, they review the work done in class
during the first semester. These data were collected in collaboration with the physics,
biology, mathematics, informatics, and language teachers and with the student’s consent.
Initially, a CT assessment test was conducted on 80 students of the final grade of a Lyceum
in November 2021, which was delivered during the second teaching hour of the timetable
within the framework of one of the STEM subjects taught. The class teachers supervised
the students taking the test throughout the procedure. They ensured the conditions were
appropriate for conducting the test after consultation with the teacher-researcher. The test
duration was one teaching hour, i.e., 50 min. Participants were given the test printed on
paper and an answer sheet with sufficient space for any rough work they might need to do
to answer the test questions.

By the end of January 2022, when the first semester of the school year in secondary
education expired, all students participated in the mandatory recapitulative written tests
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in all subjects taught, following article 86 of the relevant Law 4823/2021. The grades of
these written recapitulative tests in mathematics, physics, biology, informatics and Greek
language are objective since all students were examined in the same subjects and under the
same conditions. The teacher-researcher collected these grades with the teachers’ consent
so that they could be subjected to the appropriate statistical processing to answer as many
of the research questions that had been asked as possible. The 80 students who participated
were divided into five different classes. Their distribution concerning the direction of study
they had chosen was as follows: 15 students in Humanities Studies, 33 in Science Studies
and 32 in Economics–Informatics Studies.

Finally, the research objectives and process were described in detail to the teachers
and the participating students to encourage greater participation in the survey [88]. Stu-
dents’ consent to the survey was also requested; simultaneously, we assured them that the
test results would be used exclusively for research purposes and would not affect their
scores. Before conducting this study, the researchers received approval from the school
supervisors and the Research Ethics Board (REB) designated by the University of Patras,
specifically from the Department of Educational Science and Early Childhood Education
(83965/4-11-2021).

3.2. Research Tool for Assessing CT Skills

The research tools used from time to time to assess CT vary. At the same time, most of
them involve activities in a programming environment and a small number of activities
aimed at the initial measurement of CT components without a direct connection between
CT and CS. The CT assessment test used in our research aimed to construct a test that was
not directly related to any of the teaching subjects of the Lyceum curricula. Therefore, this
test contained questions related to the transfer of knowledge, i.e., whether the students
can transfer the acquired knowledge and skills of CT and apply them to other areas, such
as problems of everyday life. According to researchers [61,68–71], the Bebras competition
and the Computer Olympiad belong to this category. This is one of the most important
reasons we formulated a test using data from both the Bebras competition and the related
Computer Science Olympiad “Talent Search” of South Africa. In addition, some of the
criteria that the questions of these competitions meet are to be independent of any program
of study and to be answered in 3 to 4 min with pencil and paper or computer without
having a unique solution [65,70,71].

Therefore, we constructed a test (Appendix A) that fulfils the following conditions:
(a). It refrains from relying on previously acquired knowledge. (b). It is not oriented to the
subject of informatics/programming. (c). It corresponds to the level of students in the last
grade of secondary education in Greece, regardless of the direction of studies they have
chosen. (d). It should be of sufficient size that it can be solved with pencil and paper in
50 min (that is, one teaching hour). (e). It consists of questions coming from a reliable CT
assessment source.

In the first stage, the test consisted of 18 questions that examined various components
of CT, such as abstraction, logical thinking, decomposition, evaluation, hierarchy, algorith-
mic thinking, problem solving, modelling, and simulation. This test was carried out at
a pilot level in two 25-member classes of third-grade students of two different Lyceums
from the one where the research would take place. This process was deemed necessary
to see the students’ reactions in real-time, assess the difficulty level of the questions in
actual conditions, assess the clarity in the formulation of the questions, and deal with any
problems that would appear. As a result of the test pilot implementation, we reformulated
some questions to be more understandable to the students. Moreover, we removed four
questions that were judged not to satisfy the required level of difficulty; that is, they did
not have a clear resolution, either because they were straightforward and answered by
everyone or because they were challenging and could not be answered by any of the
students of the pilot process.
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3.3. The Strategy of Data Analysis

To check the measurement quality of the test, mainly how well it measures students’
latent variable CT, we will use the item response theory (IRT) approach [89]. The IRT
includes a collection of modelling techniques to analyze elements of a scale or test used
to measure one or more latent variables [90]. Using IRT models, we not only improved
the scoring accuracy of a latent trait but also improved the future conduct of the test by
identifying which test items best measure the latent trait and should, therefore, be used in
any reapplication of the test [89].

Several parametric one-dimensional models can be satisfactorily adapted to the data.
For dichotomous items, as in the case of this research, parametric logarithmic models
(PL) with 1 (Rasch model), 2, and 3 parameters are the most common [89,91]. In the first
model, the parameter of the items that are differentiated is the difficulty (or location) of
the item. In the second model, two parameters for each element, the difficulty and the
discrimination, are differentiated. Finally, in the three-parameter model, the differentiation
of the correct answer’s random response or guessing parameter is added [89]. In any case,
the researchers should choose the model best adapted to the data. To better determine the
model that fits the data, on the one hand, the adjustment check should be assessed for all
items as a whole and, on the other hand, for each item separately [91]. In this direction,
the −2 log-likelihood index that follows the x2 distribution and the difference of x2 were
utilized. To test the reliability of the data (whether they provide adequate information on
students’ latent traits), we examined the item information curve. Finally, to calculate the
latent trait, we used the expected a posteriori (EAP), which is flexible and produces more
accurate scores [91].

The quality control of the test according to the IRT was carried out in the environment
of R [92] with the package “LTM” [93]. At the same time, parallel analysis was used
to test the one-dimensional of the instrument in the R environment with the “psych”
package [94]. Finally, IRT analysis was carried out in the environment of SPSS to investigate
the relationship between each student’s level of CT and other variables, such as students’
grades in STEM subjects and demographic characteristics [95].

4. Results

Concerning the one-dimensional instrument, the parallel analysis revealed only one
factor with an eigenvalue of 3.52, significantly higher than the 95th percentage value (1.97)
of the eigenvalues produced based on 2000 random samples selected from the original
sample. Therefore, the instrument measures a dimension, that is, students’ latent traits.

Moreover, the one-, two- and three-parameter models were calculated, and their fit to
the data was checked. The table shows the fit indices x2 and the comparison of successive
models with the index ∆x2. The comparison of the first model with the second supports the
second as an optimal model. Then, comparing the second with the third model confirms
the prevalence of the second model as the one that acceptably describes the data. The fit
indices (Table 3) of each test element confirm this fact. In Table 4, the last column clearly
shows that all the elements are well adapted to the data since in none of them is the value
x2 statistically significant.

Table 3. Fit indices of each model.

Log-Likelihood x2 ∆x2 ∆df p-Value

1PL −622.48 1244.96
2PL −605.35 1210.70 34.26 14 0.002
3PL −598.02 1196.04 14.66 14 0.402
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Table 4. Values of the two parameters of every element and fit indices for every element.

Parameters Fit Indices of Every Element
Elements Difficulty Distinction x2 Pr (>x2)

q1 1.266 0.324 4.0136 0.9208
q2 −0.426 1.114 6.4867 0.6337
q3 −1.030 0.605 6.0765 0.6436
q4 −0.136 1.269 5.5186 0.8515
q5 −3.020 0.705 9.9105 0.2772
q6 −0.707 0.750 5.6962 0.7426
q7 −1.245 2.033 8.0635 0.3168
q8 −2.208 1.238 7.3209 0.4653
q9 1.047 0.773 7.2294 0.6436

q10 −1.200 1.290 8.1537 0.5149
q11 0.162 0.952 9.5822 0.3663
q12 −0.122 4.272 5.3639 0.495
q13 −0.486 2.250 9.2992 0.2673
q14 0.166 2.018 10.1331 0.3564

Table 4 also shows the values of difficulty and distinction of each item according to
the prevailing model of the two parameters. More specifically, considering the difficulty
parameter of the data, we observe that this test consisted mainly of easy questions since
10 out of 14 elements had a negative difficulty. Only four items, especially 9 and 1, are
tricky. This means that in this test, most data assess students’ latent traits below the
average level (students with low and moderate performance in CT). Regarding the values
of distinction, we observe that most are more significant than the unit. Therefore, these
items can distinguish students with similar latent trait levels.

Finally, the following diagrams show the information curve provided for the latent
characteristic of each item separately (Figure 1) and all the elements cumulatively (Figure 2).
Overall, the test evaluates (63.06%) students’ latent traits up to a moderate level.
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Therefore, this test should remove items with similar difficulty that evaluate students
with low performance and add more challenging elements that will evaluate students with
high performance. Thus, in subsequent uses of the test for a better and more complete
assessment of students’ latent CT traits, we propose to exclude the elements q2 and q4 but
not q12. Q12, with a higher value of distinction and, therefore, more critical information,
covers this area of the latent trait more adequately. Also, the elements q3, q5, and q6 should
be excluded since the distinguishing value of less than one unit does not indicate that they
can provide sufficient information. At the same time, the value of the difficulty of these
items is covered by items q7 and q8.

Table 5 shows the correlations (r coefficients and 95% Confidence interval of r) of students’
latent CT traits with the written grades that the students had in the STEM subjects. There is
no statistically significant correlation with information technology. Finally, the non-parametric
Kruskal–Wallis test, which was carried out to check whether CT differs in the three study
directions, revealed a statistically significant difference (x2(2) = 9.174, p = 0.010) in favour of
students of the Science Studies (Science Studies: M = 0.33, SD = 0.84, Humanities Studies:
M = −0.36, SD = 0.61, Economics–Informatics Studies: M = −0.21, SD = 0.96).

Table 5. Correlations between the latent trait of CT and grades of STEM and Greek language courses.

95% Confidence Interval
N r Lower CI Upper CI

2PL_scores Mathematics 51 0.270 0.045 0.500
Physics 33 0.514 0.208 0.729

Informatics 32 −0.046 −0.389 0.307
Biology 13 0.806 0.459 0.940

Greek Language 80 0.272 0.056 0.464
Notes: N = Number of students that participated in each lesson test.

5. Discussion

The present research aimed to investigate the latent CT trait of students in the last
grade of Lyceum (research question 1) as well as its correlation with their performance in
STEM subjects (mathematics, natural sciences, and informatics) and the Greek language
subject (research question 2). Another focus of this study was to explore whether there was
a correlation between the latent trait of CT and the orientation choice made by the students
who participated in the survey (research question 3).
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Regarding the first question, the test above assesses students’ latent traits to a moderate
level in a very satisfactory percentage (63.06%). As it emerged from the evaluation of the
questions of our research instrument, it was obvious that the 14 questions included could be
reduced to 9 without losing the information it could provide. In particular, we concluded
that items q2, q3, q4, q5, and q6 should be removed since, on the one hand, their difficulty
level is covered by other items, and on the other hand, they have a lower discriminative
capacity. However, our research tool should be more accurate in assessing the students’
latent trait levels higher on the scale. Therefore, it would be appropriate to remove questions
of similar difficulty and discrimination, as questions of similar type can fulfil their role. We
should also enrich our research tool with questions of incredible difficulty, with a gradual
scaling and higher resolution that would allow us to distinguish the students who have
achieved higher levels of CT more clearly and accurately.

Regarding the second research question on the correlation between students’ latent
trait of CT and their written performance in STEM and language subjects, we found
a relatively strong correlation in physics and biology and a moderate correlation with
mathematics and Greek language subjects, which was not found for computer science.
These findings, in general, agree with the conclusions of the studies of Polat et al. [81]
and Sun et al. [83] for primary education and with the research of Chongo et al. [84] and
Hava and Koyunlu Ünlü [85] for secondary education. In support of our conclusions, we
should mention that according to Orban and Teeling-Smith [57], regarding physics, this
is to be expected, as most of the CT skills are taught in physics. Moreover, the results of
this study are in line with the reports of Beheshti [96] and Weintrop et al. [12], who found
high rates of CT practice use in STEM fields even in high school, which is also supported
for mathematics by Hu [51]. Furthermore, the correlation of students’ CT with the Greek
language course shows language’s vital role, as it supports all subjects [80,97]. Our findings
about the CS course can be attributed to the inherent context of the teaching approach of
this course. Namely, in the last grade of the Greek Lyceum, CS is mainly oriented towards
learning programming languages. Another justification for this finding may be related to
the background of the student population that chose Economics–Informatics, where this
course is taught in this particular school year and in this particular school.

Finally, for the third research question, in which we researched the correlation between
students’ CT and their field of study, the results indicated that students of Science Studies
showed statistically significantly higher levels of the latent trait than students of the other
two fields of study. We have yet to identify any research that tests the correlation between
CT levels and the field of study. However, it was appropriate to investigate the existence
of this correlation since, as explained above, in science and economics studies, students
take STEM subjects (mathematics, physics, chemistry, biology and CS) to a greater extent
than in humanities. At this point, the research of Chongo et al. [84], which investigated
the correlation between mathematics achievement and CT levels, involved students of
science based on the same criterion. The result of our research was expected, as the learning
background of students choosing Science Studies requires immersion in mathematics and
physics throughout Lyceum. After all, these are two scientific subjects whose teaching
and learning presuppose and promote similar, if not identical, thought processes to CT
practices. Most of the practices of CT are widely used in the teaching, learning, and
experimental processes of physics throughout high school without being explicitly defined
as CT processes [56–59]. As Orban and Teeling-Smith [57] report, physics teachers who refer
to Weintrop et al.’s [12] classification of the components of CT identify practices that they
have already used and continue to use in their teaching. A similar finding can be observed
in teaching Lyceum mathematics in the context of Realistic Mathematics Education (RMA),
which is the dominant trend in contemporary mathematics education [48–51,54].

6. Limitations and Implications

The procedure of processing the students’ responses to the designed test indicated
that it measures a student’s latent trait to a satisfactory degree. However, to confirm that it
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measures students’ computational thinking, the resulting measurement must be correlated
with another tool used to measure CT [87]. In addition, we will need to redesign the test
by reconstructing the questions, focusing on gradually increasing their difficulty level and
their distinctiveness for the test to satisfactorily assess students’ latent CT traits across the
spectrum of levels [89].

One of the limitations of the present study is that the sample selection was through
the convenience sampling method. Nevertheless, this research is only the beginning of
a process that aims to identify the direct correlation between CT and STEM and Greek
language courses, as long as this correlation is confirmed by other research in Greece and
abroad. In that case, the next stage is to recognize those practices of STEM and language
courses that are essentially CT practices and strengthen and enrich them with the ultimate
goal of developing and empowering future citizens’ CT. It is, therefore, imperative to enrich
curricula with appropriate activities which promote and enhance students’ acquisition of
the characteristics of CT in the context of STEM and language courses.

Finally, measuring CT was particularly enjoyable for the students. All students who
participated in the process were preparing to participate in the Panhellenic Exams of
the current school year. They considered measuring CT an enjoyable and exciting break,
leading to many discussions on the test questions for several weeks after its end.
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Appendix A

q1. Turn the Cards (Logic)
Question:
Cards have a letter on one side and a number on the other. A beaver shows you the

four cards below.
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E and 7
E and 2
E, V and 2

q2. Truth (Logic)
Question:
Beaver Bob only tells the truth on Monday, Wednesday and Friday and always lies on

all other days of the week. Today, he says: “Tomorrow, I will tell the truth”.

Possible Answers:
What day is it?
(A) Tuesday
(B) Friday
(C) Saturday
(D) Sunday

q3. Well Placed Towers (Hierarchical Structure)
Look at the towers shown below.
A tower is “well placed” if all the towers to the left of it are shorter and all towers to

its right are taller.
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q5. Magic Word (solving a problem)
Question:
A magic word is needed to open a box. A secret code assigns each letter of the alphabet

to a unique number. The code for the magic word is written outside the box.
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q6. Red Riding Hood (solving a problem)
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John went to the Zoo. He once changed train lines at Moor, Museum, Mart or Market.

Question
Which station did he start his journey from?
Acton, Bams, Chat or Dinmore

q8. Seating Arrangement (evaluation)
Eight friends are sitting in a circle. They are all facing inwards. We know the following

facts about where they are sitting:

1. Alice is sitting directly opposite David.
2. Henry is sitting between Greta and Eugene.
3. Franny is not next to Alice or David.
4. There is one person between Greta and Claire.
5. Eugene is sitting immediately to David’s left.
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Bert’s friend, James, has cut out a section of the paper, as shown in the diagram below.
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Possible Answers:
31
32
33
34

q10. Match-up (abstraction)
Question
LEAD is to DEAL as 9514 is to . . .. . .. . .

Possible Answers:
(a) 9514
(b) 9451
(c) 4519
(d) 4159

q11. A walk in the park (modelling and simulation)
This is the map of a park:
The green circles with letters represent the trees, and the brown lines are paths.
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• A number indicating if a line from a point is drawn to the nearest point (1), the second
closest point (the number 2), etc.

Here are four examples of Stella’s labelling system:
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