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Abstract: Students in the twenty-first century are accustomed to using technology in all aspects of
their lives and have never known a world without it; the classroom is no exception. Augmented
reality (AR) is a technology that bridges the virtual and physical worlds to make learning more
engaging and enjoyable. In this paper, we present a mobile application aimed at novice learners that
makes use of technology for the teaching and learning of computer system engineering concepts.
Currently, students typically learn about finite-state machine (FSM) concepts from lectures, tutorials,
and practical hands-on experience combined with commercial timing simulation tools. We aimed to
enhance these traditional, lecture-based instruction and information delivery methods. We developed
an AR-based FSM visualization tool called AR4FSM to help students more easily grasp concepts
through immersion and natural interaction with an FSM. We used a blend of multimedia information,
such as text, images, sound, and animations superimposed on real-world-state machine diagrams,
presenting the information in an interactive and compelling way. An experiment with 60 students
showed that the app was perceived positively by the students and helped to deliver FSM-related
concepts in a way that was easier to understand than traditional, lecture-based teaching methods.
This instruction methodology not only engaged the students but also motivated them to learn the
material. The findings of this study have inspired us to use this application to teach FSM topics in
the classroom.

Keywords: active learning; augmented reality; educational technology; engagement; finite-state
machine; instruction methods; mobile applications; teaching and learning

1. Introduction

The current generation of university entrants is very well conversant with the use of
multimedia technology, which is largely the result of the tremendous growth in communica-
tions and information technology in recent years. Technologies have become indispensable
components of their lives, which has also significantly changed the way they acquire new
knowledge. Although outdated teaching methods and paradigms are still being enforced
and seem to be working, most universities are interested in bringing about a change. They
are already benefiting from implementing newly available multimedia technologies to im-
prove instruction methods with the goal of creating deep learning and explaining complex
concepts in an easier way. This is also recommended by practitioners and researchers who
argue that blending technological learning solutions with traditional classroom practice
can create a better learning environment [1,2]. Additionally, Mayer’s cognitive theory of
multimedia learning (CTML) proposes that the brain does not view a multimedia presenta-
tion of words, visuals, and aural information in a mutually exclusive manner; rather, these
elements are dynamically chosen and structured to build logical mental constructions [3].
This suggests that human beings can use two processing channels during the learning
process, and both are maneuvered in active processing, but each individual channel suffers
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from capacity limitation. Therefore, it is recommended to leverage two channels in mul-
timedia representation as it allows us to process more information than a single channel.
This means the instruction material which includes different representation modes, such as
text and graphics, or different sensory modes, such as visuals and auditory, can be used
effectively to enhance the learning process, as described by the modality principles [4]. This
can be extended to different realities, such as physical and virtual.

Recently, virtual technology has become one of the most popular trends in daily
life [5]. Virtual reality (VR) provides a simulated experience which can be different from
the physical world. AR goes a step further and amalgamates virtual, digital contents with
real-world contents in a synchronized way. This bridging of the gap between the virtual
and physical world can replace memory-based learning with a more fun-driven way of
learning, thus fostering more conceptual and meaningful learning, as argued by John
Biggs [6]. Web 2.0 tools, such as blogs, wikis, and multi-user virtual environment (MUVE),
have been integrated into teaching and learning to make classrooms more active through
content sharing and idea collaboration. AR and 3D Virtual Worlds (3DVWs) provide an
immersive environment by enabling the perception of objects from different perspectives
simultaneously and inspiring students to interact, which was not possible with earlier
technologies [7]. Though newer technologies offer many advantages, they have downsides
as well. The teacher is often reluctant to embrace newer technology due to a lack of skills,
and this inculcates poor teaching habits among the students [8]. However, the benefits
offered by AR outweigh the disadvantages, as the main feature of AR is that it is driven by
the learning-by-doing paradigm.

Since its introduction as a training tool for airline and Air Force pilots during the
1990s [8], AR is now widely used in many fields, including medicine [9], rehabilitation [10],
lab orientation [11], tourism [12], publicity [13], training [14], and education [15]. It is
used in STEM education more frequently nowadays [16]. Several studies reported the
effectiveness of the use of AR for better learning performance and motivation, student
engagement, facilitating interaction and collaboration, providing just-in-time information,
creating situated learning environments, and increasing the capacity for innovation [17].
The use of AR for teaching fosters active engagement with students, which results in
high-quality teaching and learning [18]. It also allows the students to take control of their
learning, saving the teacher’s time, which was originally spent repeating explanations.

In engineering education, the use of visual representations and physical models is very
important, as their absence makes it hard to grasp difficult concepts in an abstract way and
means students must rely on mere imagination. AR is particularly helpful in such cases,
and it is used in electrical engineering for explaining concepts related to magnetism [19],
electricity [20], and antenna waves [21].

FSM is one of the most essential topics in digital electronics because it provides a
formal methodology for a designer to translate the specification of a digital control circuit
to actual circuits. Therefore, it is extremely important that the student fully understands
the working principles of FSMs in order to implement digital systems. However, it is not
possible to easily observe the behavior of a FSM using state tables or waveforms generated
by simulation tools. State diagram representation is easier to grasp, but its static nature
makes it hard for students to observe the workings and verify the functionality. A visual
simulation, while keeping intact the simple and easily observable state diagram representa-
tion of the FSM, makes it easier to understand the functionality and principles of the FSM.
Furthermore, AR is very cheap to use and does not involve many occupational risks. The
current study solves this problem through the design and development of an AR applica-
tion, AR4FSM, that provides students with an opportunity to interact with the graphical
model of the FSM with the goal of understanding the behavior and working principles
of the FSM. The AR4FSM application was envisioned to offer concept development and
knowledge retention.

The development of a new AR application does not guarantee that its integration into
the existing instruction methodology will be successful. The acceptance of the technology
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is ensured if students are ready for the technology and it meets their expectations, as
explained in the technology acceptance model (TAM) [22]. This model is used to perceive
the ease of use and the usefulness of a technology, which can influence people’s behavior
toward accepting the technology. For engineering students, and, in particular, computer
and software engineering students who are tech savvy, we can safely assume that they are
ready to embrace AR technology as they already access online activities during lectures
using mobile devices connected to internet through WiFi. Almost all students experience
AR technology on or off campus in one way or another [11]. The application was tested with
ECSE students to ascertain their expectancy and acceptance of AR. The students in ECSE
have the capability to develop AR systems in one way or another. For example, electrical
engineers are good at developing hardware, software engineers are better equipped with
the ability to develop software applications, and computer system engineering combines
the best of both worlds. The author, as well as the participants of this study, belongs to
computer system engineering. We used a short questionnaire based on TAM3 to measure
the rate of students’ acceptance of the AR4FSM [23]. To our knowledge, no prior studies
have reported the realization of a mobile application integrating AR technology to facilitate
students’ grasping of complex FSM concepts. It should be noted that, in this phase of the
study, we did not focus on evaluating the effectiveness of AR4FSM in education.

This paper is organized as follows. Existing AR applications used in engineering edu-
cation are presented in Section 2. Section 3 provides the details related to the development
of the application and its features. The research study is described in Section 4. In Section 5,
the results of the system evaluation are presented, followed by the discussion in Section 6.
Finally, Section 7 concludes the paper.

2. AR in Engineering Education

Many existing studies in the broader literature examined the use of AR technologies
in various educational disciplines and found that they have positive effects on students’
motivation during the learning process [24]. AR has been used to explain basic educational
concepts, such as the earth–sun relationship [25], and complex concepts in electromag-
netism [19,26]. It is also used in numerous other fields, such as textiles [27,28] and train-
ing [29]. This technology-enhanced instruction methodology has been very effective in
explaining difficult concepts to undergraduate students in the four basic STEM (science,
technology, engineering, and mathematics) disciplines [7,16,30]. AR has also been widely
used in various disciplines of engineering. For example, the CAM-ART application was
designed for the teaching of building design, assembly projects in construction, and the
understanding of the construction elements in the civil engineering discipline [31]. Engi-
neers can now conduct virtual site visits and perform a comparison between the as-built
and as-planned status of projects using AR applications [32].

A series of recent studies indicated that AR has been successfully deployed for the
teaching of electrical and computer engineering concepts. For example, AR applications
were deployed for the learning of electrical machine behavior by bridging the gap between
theoretical explanations and laboratory practices [33]. A pedagogical virtual machine
(PVM) proposed by [34] linked physical object activities with learning activities. The PVM
collected data being transmitted to the embedded computer and processed them to produce
a more meaningful representation. Based on the predefined learning design, these data
were then translated to learning activities. The learner could visualize the workflow of
the learning activities, track their progress, and obtain instant feedback based on their
performance of the learning activity. AR-based applications for the assembly and explo-
ration of modularized mobile robot tasks are already in use [35]. They provide assemblers
with a more sophisticated learning experience and a deeper understanding of the software
components inside embedded computing at the same time. AR applications were also
used to enhance interaction with laboratory equipment, deepen conceptual understanding,
and improve learner engagement [36]. This was achieved by integrating vision-based
control with AR and touchscreen interaction. The mobile device augmented live video with
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graphics when aimed at a laboratory testbed. The learners could manipulate it to control
testbeds and perform experiments. In contrast to typical graphical interfaces, the devices
were in charge of parts of laboratory testbed measurement, estimation, and control.

Most of the prior work related to the application of AR in the field of digital circuits and
digital systems focused on either logic gates’ functionality or the simple circuits constituted
by these gates. For example, an interactive, marker-based AR application embedded the
functionality of basic logic gates to provide a real-time laboratory environment [37]. An
enhanced version provided the simulation of a logic circuit wired on a breadboard using
the logic gates [38]. The application used image processing and pattern recognition to
identify the ICs in pictures taken by the camera. Identified virtual objects, such as IC
identifiers, pin configurations, and logic diagram information, were superimposed on the
real-world image. The authors used the same technique to create an AR application that
could determine the resistance values of resistors in a given circuit by scanning color codes
and calculate theoretical current, voltage, and power.

As explained earlier, the FSM topic is important and tricky for students to understand.
There are several simulation tools, such as ModelSim and WinState, which are used for
functional verification of FSMs. ModelSim is a simulator in which hardware FSMs are
described using VHDL, and it then shows the output as per the described FSM. Using the
tool and interpreting the waveforms requires prior understanding of the basic concepts of
FSM and proficiency in VHDL, which novice learners lack. Therefore, this method is good
for applying the concepts learned but not suitable for teaching these concepts to beginners.
WinState is a MS-Windows-compatible software tool used for tutorial-style teaching that
aids the understanding of the mechanisms of an FSM [39]. It makes use of computer screen
animations to visually convey the required design and analysis procedures, thus allowing
students to construct the FSM, simulate it to verify the functionality, and detect errors. It
requires the students to go through the complete design procedure before they can visualize
the results. This lengthy process may be hectic and demotivating for the students. The
aforementioned issues motivate the need for a tool that can convey complex FSM concepts
in an easy, quick, and engaging way.

The student’s addiction to mobile phones can be used to the student’s advantage,
and this was one of the sources of motivation for this research. This distraction due to
non-academic use of mobile technology can be avoided by fostering its positive use for ped-
agogical purposes: to promote student engagement and create an interactive environment
for meaningful learning [40]. This makes AR an ideal teaching support tool as it enables
the visualization and manipulation of interactive models while encouraging students to
participate in a more creative and fun process [41]. This motivated us to use mobile-based
AR technology to enhance the instructions for delivering some fundamental concepts of
digital system design. We transformed the concepts related to FSM into mobilized lessons,
the term described by [42], transforming teacher-focused instructions into student-focused
instructions. This was to help students gain long-lasting visual and conceptual knowledge
and to gain an understanding of how students perceive and interact with classroom tech-
nology. The development of computational environments with more intuitive interfaces
and a high level of interaction allows students to grasp concepts without much difficulty.

This paper addresses this gap by introducing the realization of a mobile-phone-based
AR application for teaching FSM concepts, which are an integral component of digital
systems, developed using successive approximation model I (SAM I) [43]. This model
can enhance students’ learning experiences and increase their understanding of complex
FSM concepts by creating active learning experiences in a classroom setting and provides
the students with a tool for independent learning outside of lecture hours. The students
were provided with the FSM diagram drawn on paper. The AR4FSM superimposes the
digital contents (an animation together with information extracted from the image) on a
real-life image of an FSM and allows students to interact with it by changing the input
and visualizing the transitions from one state to another through the movement of an
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avatar. Furthermore, another important question that was addressed was how the students
perceive this application.

3. Application Development
3.1. Finite-State Machine Model

Invented by Edward Forrest, the Moore finite-state machine is a mathematical model
of computation used to simulate sequential logic and represent execution control flow [44].
This comes from “automata theory”, which is a branch of computer science, and is used to
model problems in many fields, including mathematics, artificial intelligence, games, or
linguistics. The FSM has three different representations: a state table, a state diagram, and
digital waveforms. A formal definition precisely defines the FSM and tends to avoid any
uncertainties. A finite automaton is a 5-tuple (
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Figure 1. State transition diagram of a basic FSM.

3.2. Instruction Design Model

We used the successive approximation model (SAM 1) for instruction design, which is
a simplified version of the ADDIE (analysis, design, development, implementation, and
evaluation) model and can be applied to many learning situations. This is considered good
for small projects and teams and suited our research, which required a working prototype
earlier in the process. This model helps in building a quick prototype and makes it easier
to reevaluate and assess the material. This is also particularly useful when feedback from
multiple stakeholders needs to be collected with the aim of improving the quality of the
product, leading to a more creative design.

3.3. Choosing AR Technologies

One of the key challenges in realizing AR systems is choosing the right hardware which
meets the requirements. One option is to use wearable technology, such as head-mounted
displays and smart glasses, but they suffer from limited battery life [46]. Another option
is to use fixed-screen AR technologies, such as desktop computers, as a two-dimensional
medium on monitor displays, but these displays cannot be used in traditional lecture
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environments. Handheld devices, such as mobile phones and tablets, are compact and come
with the required technology, and everyone knows how to use them [47]. An overwhelming
majority of undergraduate students owns a smartphone, and most of them already bring
them to the lecture environment [48]. For the aforementioned reasons, smartphones may
be a preferred choice for realizing an AR system for use in lecture settings when compared
with other devices. Furthermore, mobile devices are already equipped with a variety of
sensors and cameras which can benefit AR [49].

A mobile-based AR experience can be realized through web services or a custom
application [50]. A web-based application can access the AR systems using the internet,
thus avoiding the hassle of installing the app on mobile and updating it in the future,
as would be required if the app was not native to a particular system. However, web-
based apps require an active internet connection all the time to run. In contrast to web
apps, custom mobile apps need to be installed on the phone, but they can work offline
without requiring an active internet connection. Furthermore, mobile apps are faster and
more efficient, as all computations are performed locally on the device and no external
communication over the internet is needed. Speed and the ability to work offline are
two crucial factors that motivated the authors to design an AR system based on mobile
devices [51].

3.4. Application Implementation

We developed an Android mobile application that is easy to deploy within classrooms.
We chose Android Studio for developing our application due to its unified environment.
It provides the capability to design a user interface, define functionality, and package
the code into an .apk file, the standard extension for Android applications. We chose
to work with API level 19 (kitkat) and above as it covers 95 percent of mobile phones
that use Android (including entry level devices with small RAM) and enables access to
more advanced APIs at the same time. Android’s default programming language is Java,
which we found to be advantageous due to its outstanding object-oriented programming
(OOP) handling capabilities. Java also makes code modularity and maintenance much
easier. Furthermore, code modularity and management becomes easy due to Java memory
management attributes.

During the initial iterations, the OpenCV library was used for object recognition. In the
FSM feature, a marker-based AR system was used. The printed FSMs on paper consisted of
a marker in each of the states to make the application aware of their positions. To recognize
these markers, OpenCV employs machine learning to create a model for detection and then
performs the AR algorithm over the FSM model. Although machine training produces
relatively high accuracy, the performance in terms of speed of detection is not good or
robust enough to undermine user satisfaction. The initial version of the application could
handle only a maximum of four input conditions and two states at the most.

In the final iteration, we made the transition from the not-so-robust, marker-based
algorithm to a text-based detection algorithm. The API used for this was Google Mobile
Vision, which has the best text-detection feature currently available by far, thus making the
FSM simulation much more robust. It was also decided that two states were not enough to
help students learn concepts fully, but increasing the number of states raised the level of
difficulty and made it hard to build a working prototype. This required the remodeling of
the framework of the code in order for it to have an automated method for dealing with
any number of states in an FSM. In practice, however, it was ideal for the app to have a
maximum number of four states in the FSM due to the capabilities and limitations of the
detection API being used. This was a major change from the previous iteration, where the
application was designed for two states only. This means that, with further development
of the API, the code provided is easily modifiable to handle more than four states. The
instruction materials for two-, three-, and four-state FSMs are shown in Figure 2a, Figure 2b,
and Figure 2c, respectively.
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3.5. AR4FSM Software Architecture

The software architecture of the AR4FSM is outlined below in Figure 3. The AR
application was based on markerless tracking technology that targets portable devices and
smartphones in particular. It uses image recognition and, more specifically, recognizes the
text using Google Mobile Vision APIs. The screen controller includes placement of input
boxes and switching screens within the app, while the camera controller is used to validate
camera permissions and open a camera view within the app. Once the user enters the
camera view, the interaction with real-world objects is defined by the tracking methods
that are used. Within the Android studio, we defined activities that describe the actions
that different user inputs correspond to. For each action within a feature, an individual
activity was defined for it, and a main activity was also designed for facilitating overall
interactions. Additionally, we set a layout for each feature that guides the user through
different views in the application as seen from the user interface. The functionality of the
overall app was defined separately into multiple classes for code reusability, wherein each
feature has its own specific processing algorithm that it undertakes on detecting the object
it is looking for.
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The front-end code structure within the “res” folder is shown in Figure 4a. When
packaged, all the files have a separate configuration process, which is dependent on the
type of file, that is followed when the app is built. Therefore, certain file types (i.e., as
distinguished by front-end and back-end code) need to be stored in the correct folders. The
subfolders that were modified during the front-end development for AR4FSM are shown
in extended format to the right as well. There are only definitions of the subfolders and
files that were altered or edited during the developmental process which may be required
for future developers in case the app’s functionality is extended.

• anim—It is a packed animation. This is an animation natively created by Android widgets;
• drawable—The miscellaneous images, icons, and figures that are used in the application;
• layout—This contains the descriptions for the page layouts. In essence, every activity

describes the user views of the app and the interactions that change the view of the
app within every feature;

• raw—The audio files or any haar cascade file for OpenCV’s object recognition should
be stored here;

• values—This is used for defining constant values for the attributes in the application
such as color, text, and other fixed values that are used across the whole application.
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The back-end functionality of the application was implemented in Java with different
classes, as shown in Figure 4b, with “MainActivity” being the most important class. It
defines the logic for switching from the homepage view to a particular feature’s view. Here,
we define the classes that were adopted for back-end development:

• FSMActivity—Manages text detection and captures the user’s input while running
the FSM feature;

• FSMModel—This contains the model of the FSM which defines the structure and
framework of FSMs;

• FSMParser—This generates Boolean-type equations from the text detected on scanning
an FSM. These equations correspond to the transactions that the FSM needs to make.
It builds upon the scanned result obtained from FSMScanningActivity;

• FSMScaningActivity—Manages text detection when the app is scanning the FSM from
the paper;

• HelpScreen—The view provided to the user, as shown in Figure 4;
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• MathToolBox—Calculates the path the stick man animation should take between two
fixed points;

• PagerAdapter—Allows for switching of tabs in the help screen;
• SoundPlayer—Customized sound player for playing audio during animation;
• StateEnteringActivity—The view provided to the user for entering state names;
• Tab1—Help screen guide for FSM with two states, as shown in Figure 2a;
• Tab2—Help screen guide for FSM with three states, as shown in Figure 2b;
• Tab3—Help screen guide for FSM with four states, as shown in Figure 2c.

3.6. Tracking

In many AR applications, digital world contents are overlaid on real-world contents,
necessitating the device’s ability to perceive the surroundings and the user’s movement in
real time. This phenomenon of recognizing an object or scene is called tracking. There are
three methods of tracking: marker-based, markerless, and hybrid tracking [52]. The marker-
based AR approach augments digital information by recognizing objects and locations
through the camera in a smartphone by means of markers associated with the objects
to be recognized. These markers cannot be identified by other sensors such as digital
compasses or GPS, which is a downside of marker-based AR. This technique suffers from
the drawback that it requires the positioning of the markers on the object, which should be
visible and cannot be obscured by any other objects throughout the process of augmentation.
To supplement present, marker-based AR challenges, Park and Park [53] investigated
invisible-marker-based AR, such as that which employs infrared markers. Vision-based AR
technologies augment digital information by detecting the attributes of objects and tracking
them after they have been recognized. These approaches offer the advantage of being able
to follow objects without the usage of a marker, but they are challenging to implement
because of the need for real-time image processing and augmentation.

3.7. Application Features

The AR4FSM is a task-based application where students are required to complete a task
by interacting with the provided instruction material and learning the concepts through a
sense of immersion. The students are provided with a manual finite-state machine diagram
with all the states and the transition conditions as shown in Figure 5 below. When first
turning on the app, the user is brought to the homepage, where they are prompted to click
on the FSM option on the screen to begin the application, as shown on left of Figure 5a.
The initial version of the application also included features such as gate logic and resistor
value calculation using AR, which are not the subject of this paper and were, therefore,
excluded from the final version. The user is then prompted to enter the state names of their
FSM into the required fields, as shown on right of Figure 5a. Complex FSMs need a key in
the diagram set by the user to differentiate between states and conditions. Therefore, to
maximize ease of use, state names are entered beforehand. This is opposed to having the
user manually enter a key for each state when designing the state diagram, which would
be more tedious and time consuming. The names of the states entered should precisely
match the names of the states present in the state diagram, and the names are case sensitive
as well. There is also an option to change the avatar that is used in the FSM animations, as
shown in Figure 5b.

Following the entry of the state names, the user is instructed to scan the FSM by
pointing the camera at the FSM sketched on the accompanying handout shown in Figure 6a.
As illustrated in Figure 6b, once the scan is complete, the screen is populated with FSM
parameters such as state names, transition conditions, inputs, outputs, and their initial
values. The user is next asked to confirm if the information obtained from the scan is
accurate. Upon student confirmation, the user can select “Continue” to continue if they
wish. The user has the option of scanning the information again if it is wrong or missing.
The FSM’s transition conditions are assigned automatically based on the diagram’s position
and number of states.
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A help button is provided to access the help menu, as shown in top-left corner of
the Figure 7a. As you enter the help screen, a pop-up dialogue box appears immediately,
providing tips on the design of the FSM, as shown in Figure 7b. Instructions are also
provided on how to concatenate and invert conditions. To concatenate the conditions,
the “&” symbol is used in between and is then split into its constituent parts during the
simulation. The “and” keyword was originally an option as well but was removed in the
final iteration as it created many unwanted results due to the word “and” being contained
in many other names. In order to invert the conditions, the “not” keyword was used at
the front of the condition, for example, “notConditionX”. Alternate expressions used for
not conditions, such as “!” and “~”, were disregarded as the text recognition had difficulty
recognizing them, and smaller symbols were often misinterpreted.

The last step for the user is to run the actual visual simulation. Their avatar, an
animated character, as mentioned earlier, appears on top of the start state. This avatar
can be changed by the user through the option provided on the screen. The user can
now simulate the FSM and visualize the transition by interacting with it by changing the
input values. The list of input signals and their initial values are placed at the bottom of
the screen, and the user can toggle the values between “0” and “1” by simply tapping
on the corresponding input name. After setting the desired input values, the user taps
the Next button, thus allowing the avatar to make a transition to the next state based
on the evaluation of transition conditions. The avatar, present in the current state, as
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shown in Figure 8a, moves to the next state along the path of true condition by generating
pleasant music.
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The avatar traverses from the current state to the next state, i.e., from state “One”
(when X = 1) to state “Two”, when condition “notX” is true (X = 0), as shown in Figure 8b.
Once it reaches the destination state, distinctive music is generated. If the conditions are
not met for any state transitions, then, when Next is clicked, there is a short animation of a
figure moving around and then back to the same state.

A button provides a reset option, which returns the animation to its initial state. When
there are no conditions in the FSM, the animation progresses from one state to the next in
the order entered by the user each time the Next button is pushed. The avatar’s transition
from state “One” to state “Two” is shown in Figure 9a, and from state “Three” to “One” is
shown in Figure 9b. When the avatar moves to the next stage after evaluating inputs, the
name of the destination state is displayed on the screen to make it more user friendly and
easier to follow.

The FSM state diagram becomes more packed and cramped with text as the number
of states increases, as shown in Figure 10. Due to the shrinking size of the zones that each
condition is supposed to fit in, diagrams with five or more states become impossible for
users to design and test effectively. Following extensive testing with a variety of other
students, it was determined that, for best performance, AR4FSM should be confined to four
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states and a maximum of 15 input conditions as this gives the best accuracy. Extending the
number of states requires only modifying a few variables in the software.
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4. Materials and Methods
4.1. Research Objective

The objective of this study was to improve the existing method of instruction by
incorporating modern technologies to facilitate the delivery of FSM principles while also
engaging and motivating students. The major component was to design and develop
an application that allows them to interact with it and perform visual simulations. The
second goal of this study was to measure the rate of students’ expectancy and acceptance of
this application being deployed in class in the future to enhance engagement, motivation,
and understanding.

4.2. Research Subject

A total of 60 students (aged 19–22) from the department of Electrical, Computer, and
Software Engineering (ECSE) took part in the study. Both male and female undergraduate
students were included. All the participants were engineering students, with the bulk of
them enrolled in computer and electrical engineering programs in their second and third
years. Furthermore, the participants had previously encountered AR of some kind. The
participants were given a smartphone with an AR app installed on it. Alternately, students
could download the AR4FSM from the app store onto their own phone if they wished to do
so. Students were given a task to complete in order to evaluate the app’s features, such as
bit stream pattern identification using FSM. The instruction material comprised a printed
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handout that contained a three-state FSM for recognizing a bit stream with a length of two
bits similar to the one shown in Figure 2. Students were given a short demonstration prior to
the experiment and went through the whole process of scanning the FSM and changing the
input, resulting in state transition which could be visualized through text, avatar movement,
and music. Different sounds are generated when the avatar is making a transition from one
state to another state and when it reaches the destination state. This procedure is similar to
the one described in Section 3.6, which explains the application features. Once a participant
had experienced the AR4FSM by accomplishing the task of traversing different states of
the FSM, they were asked to fill out a paper-based questionnaire.

4.3. Research Sample Selection

All ECSE students who were potential participants received an invitation to participate
in the study via the department mailing list, along with a participation information sheet.
By filling out a consent form and returning it to the researchers, the students gave their
consent to participate in the study. The researchers then called these participants and set up
a time to conduct the survey. First, 60 students who gave their consent to participate in the
study were contacted. The next participant was contacted if a person wanted to withdraw
after obtaining consent. The facilitators and students who took part were from the same
department. The study was conducted at the University of Auckland City Campus during
university hours but not during lecture time. Participants were selected on a first-come,
first-served basis.

4.4. Apparatus

Participants could interact with the real-world FSM drawn on the handout using
a smartphone and control the movement of the avatar by changing the inputs in the
AR environment. The study was mostly conducted with an Android-based Samsung
Galaxy S10 Wi-Fi SM-T700 16 GB model running Android 9.0 Pie with Samsung Exynos
Octa-Core CPU processors, 2 × 2.73 GHz Mongoose M4 and 2 × 2.31 GHz Cortex-A75
and 4 × 1.95 GHz Cortex-A55, an ARM Mali-G76 MP12 GPU graphics card, and 3 GB
LPDDR3 RAM. Alternatively, students could download this application from the Play
Store and install it on their phone. The code was also available from a GitHub repository
which could be accessed by contacting the corresponding author. We made use of the
built-in technologies of the mobile for AR system, such as the camera to capture real-
world views, a touch screen for interaction, and speakers to play music. Unlike many
other existing applications, the instruction contents were not fixed, and any FSM drawn
on a paper following the guidelines provided in the help menu could be used as an
instruction material.

4.5. Questionnaire

A short questionnaire comprising two parts was designed to evaluate the mobile
AR-based application The first part used a 5-point scale, ranging from strongly disagree
to strongly agree, to capture the response of participants, and the second part collected
open-ended feedback in terms of likes/dislikes and suggestions. Six questions in the
questionnaire focused on the quality of the application design and how easy it was to
use the application, as well as the learning experience of the FSM, including the learning
interest, engagement, active learning, level of understanding, academic outcome, and the
extent to which the participants would like to have the respective learning tool applied in
their class. As mentioned earlier, we based our questionnaire on TAM3 [54] to measure
the rate of students’ acceptance of the use the AR4FSM app. We selected and adopted
questions presented by [31]. We omitted simple technology-related questions as these were
not applicable to engineering students, especially ECSE students who are tech savvy and
highly experienced. The questionnaire enlisted the questions given in Table 1.
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Table 1. Survey questions.

Sr. # Question

Question 1 The application was easy to use (expectancy).
Question 2 Application can help in delivery of the contents in an easier way (expectancy).
Question 3 Application can make the course contents more engaging (acceptance).
Question 4 Application can help in better understanding of the FSM concepts (acceptance).
Question 5 Application can help in achieving course learning outcome (acceptance).
Question 6 AR application should be used in a classroom environment acceptance).

5. Results

A total of 60 students participated in the study: 46 (76.67%) male and 14 (23.33%)
female students. All of them were undergraduate students from the ECSE department. The
findings of the evaluation of the application are depicted in the graph shown in Figure 11,
which shows that 81.67% (mean = 3.96, SD = 0.96) of the students agreed that the mobile
app was easy to use, of which 26.67% strongly agreed that app was user friendly. In
response to question 2, 85% (mean = 42; SD = 1.04) of the participants agreed that the
application delivered the FSM-related contents in an easier way. Similarly, more than
88.33% (mean = 4.4; SD = 0.84) of the students agreed that AR made the lecture contents
more engaging, as evident from the response to question 3, which related to engagement.
In response to question 4, 90% (mean = 4.4; SD = 0.84) of students agreed that the use of the
AR application helped them to better understand the concepts, and 86.66% (mean = 4.2;
SD = 0.94) of students agreed that it helped in achieving the learning outcomes. Only 70%
(mean = 3.6; SD = 1.09) were in favor of the use of AR technology in the class.
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In response to an open-ended question related to anything which a user might like or
dislike in this app, the positive comments were:

• The animation character and sound did draw my attention;
• The application did engage me and provided me with immersive experience;
• It was wonderful and exciting way of learning;
• It is helpful when checking the correctness of the designed FSM without the need of

coding it.

Students disliked the following:

• It as bit on slower side;
• Avatar is not attractive and could be better than it is;
• It can eat up a lot of lecture time;
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• It needs multiple scans if FSM is not drawn clearly on the paper.

Most significant suggestion for improvement given by the students were:

• A running commentary or more explanation of the process along with the music;
• Add more Avatars which are rich in colours;
• This app should be used during the sophomore year when students are first introduced

to finite state machine concepts.

6. Discussion

The findings show that the mobile AR application, AR4FSM, received positive feed-
back from the students with regard to the ease of use. One of the most crucial factors
in designing an application is its ease of use, as it plays a pivotal role in the success of
the application. According to researchers, inadequate AR application design in terms
of usability considerations may cause distractions and reduce students’ overall learning
effectiveness. An application that is not easy to use often results in users abandoning it.
Success lies in making it easier for the user to learn the features and providing a greater
user experience. This is in line with the findings of [52], who discovered that the ease-of-use
factor can reduce the level of satisfaction among students, and, as a result, the researchers
advised that ease of use should be improved and strengthened.

The students overwhelmingly agreed on the point that AR4FSM made the delivery of
content easier. This is largely because AR technology can present information in a way that
cannot be otherwise visualized by students’ minds in the classroom. This AR app provided
the students with extra digital information about FSMs, which helped in explaining abstract
and difficult contents that would not be easy to understand otherwise. Furthermore, adding
extra information in the form of a visual model not only helped students to get a deeper
understanding of the lesson topic but also entrapped their attention and motivated them to
study. AR is especially good for visual learners as information is offered to them in their
preferred style.

Similarly, the students were of the view that AR made the lecture content more
engaging. This can be attributed to the involvement of emotion when using AR, which is
the key to boosting student engagement. Through AR, students become part of the lesson,
and they become emotionally attached to the topic, which is not possible with the use of
text only. For any FSM drawn on a paper, based on the current state and the status of inputs,
the student can make a prediction about the next state using his knowledge, but there is
no way to see it happening and get feedback. When using AR4FSM, students can change
inputs, then visualize the transition of the avatar from current state to predicted state. The
avatar’s movement from one state to another based on input selection gives immediate
feedback by confirming their input option. If the avatar proceeds to the projected next stage
along the predicted path, it affirms the student’s understanding, which has a good impact
on student’s motivation. There is no need to mention that AR is a modern technology
that immediately grasps the attention of students and that control over learning provides
the confidence. All these factors contribute to motivating the student [55]. According to
the ARCS model of motivation, the combination of challenge and feedback in the form of
verifying their performance in learning activities enhances confidence and satisfaction [56].

The findings show that when students were asked about their understanding of FSM-
related concepts, the AR4FSM received positive feedback. This is in accordance with the
earlier studies which verified that most engineering students prefer learning through visual
resources and learn better in an interactive learning environment [57]. The use of an AR-
based, interactive pedagogical tool in engineering education enhances learning quality. The
students agreed that AR4FSM could aid in the achievement of learning objectives because
it presents the concepts related to FSM in a simple and meaningful way that looks like real
life. Students can visualize and examine the impact of stimuli in an interactive way. With
the help of technology, they experience something that might not be possible otherwise.
Though most students agreed to the use of AR4FSM inside the classroom, the result was
slightly on the lower side. This could be due to the amount of time spent on downloading
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and installing the application, device limitations, and connectivity. The prototype version
might also be the reason for the slightly lower level of acceptance. Additionally, the use
of AR in the engineering classroom eats up a lot of time, which is not appreciated by
engineering students as it forces the lecture to cover the remaining contents at a slightly
quicker pace. This is also reflected in the comments made by the students in response
to the open-ended questions. However, AR4FSM does not impose temporal and spatial
boundaries, meaning that it can be used inside as well outside the lecture hours. This type
of blended learning is already gaining popularity as restrictions due to the pandemic start
easing, and universities are already migrating to this pedagogical style where face-to-face
lectures are being blended with online activities or it is seen as an alternative to face-to-face
lectures. This integration of AR technology with traditional or instructor-led teaching
allows the students to enjoy the best of both worlds and caters to the needs of all types of
learners. The instructor-led portion of teaching allows learners to engage easily, while the
online portion allows for the management of the pace of learning [58]. This means students
can learn while away from class or in distance education settings.

Another point raised in the open-ended discussion was about the display size; it could
hinder the engagement of a student if the device has a smaller display which makes it
hard to read the text. Gabbard and Swan II [59] came to similar conclusions, stating that a
small display could be an issue if AR is too complicated for existing mobile devices and the
interface has too many elements and menus to manage. Furthermore, the effectiveness of
the application depends on the quality of interaction. Any hindrance to interaction results
in hindering the learning process. This issue was already addressed in this research by
the restriction of the number of FSM states under investigation. This problem could also
be solved using tablets, which have bigger displays compared to mobiles, but this is the
only benefit they offer. Tablets are a less portable version of smartphones, and they are less
commonly used for messaging and calling. Smartphones, on the other hand, offer all those
functionalities offered by the tablet, and it is much easier to carry them. Another option
could be the use of fixed-screen AR technologies, such as desktop computers, as a two-
dimensional medium on monitor displays, but these displays cannot be used in traditional
lecture environments and can only be used either in lab setups or small classrooms where
computers are available to all students.

6.1. Implications of the Study

The findings of this study demonstrate that AR4FSM creates opportunities for teachers
to present abstract concepts in a way that students can grasp. The interaction offered by
AR can help to enhance the classroom experience and inspire the minds of students. One of
the major issues in adopting the AR technology in teaching is its seamless integration into
instruction methodology, which is primarily hindered by the lack of teacher and student
ability to adapt to new technology. This mainly depends on the ease of use of the technology
and the students’ belief that the use of the technology will help improve their academic
performance. Therefore, it is important to assess the acceptance of applications before
using them in large classrooms, such as at the University of Auckland, where the class size
exceeds two hundred students. The outcome of this study will help researchers to make AR
technology more acceptable for the students and integrate it into instruction methodology
in a meaningful way.

6.2. Limitations of the Study

This application is only available for Android operating systems running on Android
version 8.1 and above. The questionnaire used could have been more detailed. In addition,
the results were based on a self-report study, as it involved participants filling in question-
naires regarding their user experience of the AR4FSM app. A qualitative method with
detailed interviews and observation of the participants could have been more prolific and
factual. The participants were recruited using a convenience sampling technique, as it was
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fast and easier, thus the study is subjected to limitations in generalization and inference,
resulting in low external validity of the research.

7. Conclusions

In this study, a smartphone-based AR application called AR4FSM was developed with
the goal of making complicated FSM principles more understandable and interesting for
students. Students responded positively to this application, and we recommend using
it in the classroom for teaching FSM principles with some improvements to supplement
instructional materials such as the handouts. It is an excellent learning tool since it allows
for the understanding of concepts gained through deeper interactions with the real world.
In addition, this strategy is better suited to some students’ learning styles, resulting in a
more comprehensive teaching approach that more successfully responds to all students’
needs. If we provide information to the mini millennials using this sort of technology
instead of standard lectures, they are more likely to be engaged with the learning process.

In the future, first of all, we plan to update the AR4FSM application based on the
feedback received from participants and reviewers to further improve its acceptability in
the classroom setting. This will be performed by redesigning the engineering instruction
method related to the FSM by embedding the AR4FSM experience into existing instruction
material in a meaningful way. We also intend to find the extent to which it motivates the
learners and identify if students’ learning outcomes are improved as a result of its use.
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