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Abstract: Classroom communication is increasingly accepted as multimodal, through the orchestrated
use of different semiotic modes, resources, and systems. There is growing interest in examining the
meaning-making potential of other modes (e.g., gestural, visual, kinesthetic) beyond the semiotic
mode of language, in classroom communication and in student reasoning in science. In this paper,
we explore the use of a multi-layered analytical framework in an investigation of student reasoning
during an open inquiry into the physical phenomenon of dissolving in a primary classroom. The
24 students, who worked in pairs, were video recorded in a facility purposefully designed to capture
their verbal and non-verbal interactions during the science session. By employing a multi-layered
analytical framework, we were able to identify the interplays between the different semiotic modes
and the level of reasoning undertaken by the students as they worked through the tasks. This
analytical process uncovered a variety of ways in which the students negotiated ideas and coordinated
semiotic resources in their exploration of dissolving. This paper highlights the affordances and
challenges of this multi-layered analytical framework for identifying the dynamic inter-relationships
between different modes that the students drew on to grapple with the complexity of the physical
phenomenon of dissolving.

Keywords: multimodality; discourse analysis; social semiotics

1. Introduction

Research on the semiotic mode of language as a social action and cultural resource in
communicating meaning in classrooms has a long tradition [1,2]. Many studies of science
classroom discourse, for instance, have focused on spoken and written language (e.g., [3–5]).
In recent years, there has been an increasing interest in examining the meaning-making
potential of other semiotic modes (e.g., gestural, visual, kinesthetic) in science classroom
communication (e.g., [6,7]), and consideration has been paid to the roles of multiple
and multimodal representations in students’ meaning-making of science concepts [8–10].
Therefore, classroom discourse is increasingly being recognized as multimodal rather than
simply linguistic, through the orchestrated use of different semiotic modes, resources, and
systems [11].

This expanded concept of classroom discourse presents both theoretical and method-
ological challenges for researchers who are interested in understanding how teaching and
learning takes place through this complex ensemble of multiple and multimodal represen-
tations in a classroom settings, such as a science classroom. Research in this area explores
the nature of this coordination of multimodal semiotic resources in student reasoning
about science phenomena and to understand how the different modes interact in discourse
to generate meanings [12]. In this paper, we discuss the theoretical and methodological
challenges that emerged from recent attempts to investigate multimodal reasoning in
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science classrooms. We propose a multi-layered framework for analyzing student multi-
modal reasoning. The discussion in this paper will be grounded in an empirical study that
aimed to investigate the types of science tasks and classroom interactions that facilitated
Grade 5/6 students’ reasoning during an open inquiry into the physical phenomenon of
dissolving in a primary classroom.

Drawing upon a multimodal semiotic approach for the analysis of classroom video
data, this paper addresses the following research question: “what are the affordances
and challenges of a multi-layered analytical framework for identifying the dynamic inter-
relationships between different modes involved in student reasoning about dissolving?”
Our focus is to interrogate the affordances of this multi-layered framework, for identifying
ways in which the students used different modes to reason and generate meanings about
the process of dissolving a solid substance into a liquid, a phenomenon that is not directly
observable but can only be understood through inferences.

2. Literature Review
2.1. Video and Multimodal Analysis of Classroom Discourse

The advancement in research into naturally occurring social interactions has been
facilitated by the latest innovations in video technologies [13]. Video methods have been
developed at an unprecedent rate in educational research in recent years [14,15]. Video
data has been identified as a ‘real-time sequential medium’, which provides a ‘fine-grained
multimodal record’ and is ‘durable, malleable, and sharable’ [16] (p. 4), which allows for
a more precise, complete and fine-grained analysis of human learning, behaviors, and
practices [17,18]. The increasing affordability and accessibility of video technology has
given rise to the emergence of new methodologies, such as Multimodal Discourse Analysis
(MDA), an interdisciplinary field of study that brings discourse analysis and multimodality
studies together to understand the design, production, distribution, and interactions of
multimodal resources in social settings [19–21]. Research in the field of MDA tends to draw
upon the social semiotics approach developed by Halliday and others [21], which adopts a
functional approach to meaning making by investigating how various semiotic resource
systems have evolved to enable us to perform by making particular kinds of meanings [22].
The term “semiotic resources”, as defined by O’Halloran [23] and others [24], refers to
the modes of meaning making. These entail both material and immaterial conceptual
resources, which are ‘realized in and through modes’ [24] (p. 71). A semiotic mode is ‘a
socially organized set of semiotic resources for making meaning’ [24] (p. 71). Examples
of modes include images, writing and speech. For the clarity of the paper, we will use
the term “semiotic resources” to refer to material and conceptual resources for meaning
making, whereas we use “modes” to describe the material form(s) of a semiotic resource.
For example, a drawing from a student can represent a mixture of modes as a semiotic
resource, including both as an image and writing.

2.2. Multiple Representations and Multimodalities in Science Education

The application of a social semiotics approach to discourse analysis can be found in
an increasing body of research that investigates the use of multiple representations and
multimodality in teaching and learning science (e.g., [6,7,25,26]). A number of previous
studies have focused on the use of multiple representations and multiple modes by teachers
to support student learning [27–29]. Research in this area demonstrates affordances of
different semiotic modes. Examples of modes include image, speech, gesture, action, and so
on [20]. Ainsworth [30] emphasized the affordances of different semiotic modes in science
teaching, and the need for teachers to consider both students’ needs and representational
characteristics in designing and delivering learning experiences. The affordances of semi-
otic modes were illustrated by empirical studies that revealed the roles played by different
semiotic modes in science teaching. For example, Márquez, Izquierdo and Espinet [31]
applied Systemic-Functional Grammar (SFG) in an analysis of the specialized functions of
semiotic modes used by a teacher in teaching the water cycle concept. They demonstrated
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that, while speech introduces and identifies entities, gestures allow students to locate them
in a dynamic process. Visual modes, such as diagrams, facilitate the development of func-
tional mechanisms for the construction of water circulation explanations. As Tversky [32]
pointed out, diagrams are ideal for conveying structural organizations by drawing upon
people’s experience of interpreting special relationships. A more recent study by Moro,
Mortimer and Tiberghien [7] investigated how two teachers utilized a range of embodied
semiotic modes such as speech, gestures, gaze and proxemics to give meaning to scientific
knowledge in the classroom. Their analysis demonstrated the ways in which teachers were
able to relate the concrete and abstract aspects of a science concept (e.g., light diffraction)
through employing the embodied semiotic modes in a creative and coherent manner.

Research in this area also recognizes the need to coordinate multiple modes across
scientific and everyday knowledge, and across personal interests to facilitate student
meaning making in science [29]. Kress, Jewitt, Ogborn, and Tsatsarelis [6] documented
the complex ensemble of semiotic modes (e.g., image, gesture, speech, writing, models,
spatial and bodily movements) brought together by science teachers to construct particular
scientific meanings. Employing a social semiotics perspective, Kress and others [6] argued
that knowledge construction in science involves dynamic and transformative sign-making
from one mode of representation to another and each mode played a particular meaning-
making function. Similarly, Tang, Tan and Yeo [33] revealed students needed to construct
connections between multiple modes, including verbal, visual, gestural and mathematical
modes, in order to understand the work-energy concept.

In this paper, we explore the affordances of a multi-layered analytical framework
for investigating students’ multimodal construction of representations as they attempted
to understand and explain their thoughts about the observed physical phenomenon of
dissolving. Through a description of the multiple layers of the analytical process, our
intention is to illustrate how different units of analysis allow the researchers to gain
insights into the different aspects of the focused multimodal phenomenon (i.e., student
reasoning about dissolving), and to interrogate methodological decision making and its
consequences when analyzing student reasoning in science.

3. Research Design
3.1. Procedure, Sample

The study reported in this paper was conducted in a laboratory classroom. This
particular classroom is equipped with 10 wall and ceiling mounted video cameras with
zoom and tilt capacity, and eight radio microphones, controlled from a room with visual
access. See Figure 1 for a photo of this purposefully designed classroom.
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A class of grade 5/6 students (24 boys) from a government primary school participated
in a session with their teachers in this classroom, focusing on a science topic. The multiple
cameras and microphones meant that 10 video tracks of about 50 min were generated
for each session, with a camera focused on each of the six tables to separately capture
a video and audio recording of two pairs of students. Thus, the data available for this
analysis consists of a continuous visual and audio record of 12 pairs of students for an hour,
including a teacher-led plenary introduction and a conclusion of the session. Two ceiling
mounted cameras were also employed to provide a separate view of students from above
to capture the progress of student discussions and gestures, in conjunction with writing,
drawing and their manipulation of equipment and models. In addition, high-definition
cameras were used to take pictures of artefacts produced by the students (i.e., worksheets,
models, whiteboard drawings).

3.2. Tasks

The tasks for the science session were designed by the research team in consultation
with the classroom teacher. Prior to the sessions at the laboratory classroom, the research
team attended the participating school and joined a planning meeting with the teachers to
discuss suitable topics for the session. Open ended tasks were developed which involve
student investigations of dissolving (i.e., of icing sugar in vinegar) and of generating their
own representations to make sense of their observations. During the session, the students
worked in pairs to investigate this phenomenon. A worksheet was provided to guide
them their investigation (see Figure 2). The design of the worksheet follows the Prediction-
Observation-Explanation model proposed by White and Gunstone [34]. They were also
provided with resources, such as white boards, markers, playdough and toothpicks for
them to represent their thoughts on what might be happening during the investigation.
The session started with a teacher-led introduction of the investigations and concluded
with a whole class discussion during which the teacher asked students to share and explain
some of their representations.
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Studies on student ideas of dissolving have a long history, going back to the seminal
work of Piaget and Inhelder [35] who demonstrated that young children tend to think that
sugar ‘disappears’ when it dissolves in water, and that the mass of the solution is equal to
the initial mass of water. Research on children’s conceptions of scientific concepts in the
1980s revealed that many older students (age 9–15) also tend to think that the mass of a
sugar solution is less than the combined mass of water and sugar, for instance, “the sugar
will decompose and form a liquid with the water and so will weigh less” [36] (pp. 154–155).
Prieto et al. [37] asked students (age 11–14) to show, by means of a drawing, how they
imagined a substance that is completely dissolved in water and reported that 44% of the
students think that a solute ‘disappears’ when dissolved. These studies indicate that even
secondary students struggle with the notion of the conservation of substances, or mass.
Another commonly reported confusion concerns dissolving and melting, where both terms
are used synonymously or interchangeably, for example: “The sugar is dissolving... the
water is sort of melting the sugar crystals” [38] (p. 18). This confusion decreases with
age but is still quite common among secondary students. Studies in this field tend to
rely on student verbal responses in interviews, sometimes combined with drawings, to
identify student conceptual understandings. Therefore, these studies involve a limited
number of semiotic modes to generate insight into student reasoning related to the process
of dissolving.

4. A Multi-Layered Framework for Multimodal Discourse Analysis

The data was analyzed using a multi-layered framework (see Figure 3), which was
first developed in an earlier study that focused on student reasoning in science [12] and
refined in this study. This framework allowed the researchers to work with the data across
three timescales: macro, meso and micro, to infer how phenomenon at the macro scale
was caused by actions and activities at the meso and micro scales [39,40]. We began the
analytical process at the macro level by identifying variations in the ‘products’ of reasoning
in the form of student generated artefacts and the repeated viewing of video records
of the lesson to acquire a holistic picture of how the lesson unfolded, which led to the
identification of interesting segments for further analysis. At the meso level, we coded
and transcribed the selected segments of interactions to narrow the analytical focus of the
study. At the micro level, we conducted a frame-by-frame analysis to unpack student use
of modes in reasoning about dissolving in fine-grain details. In the following sections,
we demonstrate how each layer of the analysis could provide useful insight into student
reasoning during the science session and the interplays between the semiotic modes in
their reasoning.
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4.1. Analysis of Student Generated Artefacts

First, the artefacts of student work created during the session were collected and com-
pared. This involved worksheets, photographs of whiteboard drawings and photographs
of playdough models. These artefacts provided us with insight into the ‘product’ of the
student reasoning process. Comparing and contrasting student work demonstrated some
variations in student representations and generated questions to be further investigated by
looking into the video recorded classroom activities.

In this section, we provide an overview of the drawings made by each of the 12 student
pairs on a whiteboard, and the way they use the playdough and toothpicks in response to
the question “what they might be able to see” if they could use a magnifying glass that
“can be zoomed in millions of times”, before and after adding icing sugar, and after shaking
and waiting for a while (see Figure 2). It should be noted that the students were not taught
about particle models prior to participating in this session. The objective was to focus
on the way students represent what they thought was happening, based on their prior
knowledge. Student-generated representations were classified into categories by applying
the evaluation framework of diagrams developed by McLure, Won and Treagust [41].

Although we were not able to collect artefacts from all 12 student pairs (e.g., some
groups wiped out their drawings before we could capture them), all whiteboard drawings
referred to the phenomena as they were observed, as each pair drew a bottle, the balloon
and indicated the liquid level. The suggestion to draw what they might see with a very
strong magnifying glass was not responded to by any of these pairs. The use of playdough
and toothpicks included a range of representations. Some pairs used the playdough
to recreate a physical copy of the bottle or the balloon (1-1, 6-2) without providing an
explanation for the phenomena observed (non-explanation). Others referred to particles.
Three pairs (3-1, 3-2, 4-1) devised almost identical models, where playdough balls were
connected with toothpicks to represent ‘particles’ or ‘molecules’. However, these models
were not explicitly related to the dissolving process, or to the solution that was produced as
a result of dissolving (mixed description). It is possible that these students copied each other
since they were located at the same (3-1 and 3-2) or a neighbouring table (4-1). Two pairs
(5-1, 6-1) used the playdough to represent the liquid and the toothpicks to represent
the icing sugar (6-1) or the dissolving process (5-1). By pushing the toothpicks into the
playdough, the students of 6-1 aimed to represent the sugar’s disappearance (macroscopic
description). Finally, one pair (2-2) used the playdough to explain the dissolving process
by modelling the icing sugar as balls that gradually became smaller and then invisible
(mixed description).

4.2. Repeated Viewing and Selecting Student Groups for Further Analysis

The next stage involved repeated watching of the entire session and the identification
of instances of interest to the researchers. The initial aim of the analysis was to identify
the actions of the students as they first conducted, then reflected and finally described
the phenomena observed in the dissolving investigation. The initial viewing of the lesson
involved identifying the various modes employed by the students during the science
lesson to represent the phenomena, including: (1) Talking; (2) Manipulating; (3) Drawing;
(4) Gesturing. This analysis was facilitated by Studiocode, a computer software which
allows for a large amount of data to be analyzed in a quick and reliable way. Studiocode
allowed the research team to take the large amount of raw data: 6 tables with 2 groups of
2 students on each table (24 students in total) and to quickly identify points of interest with
the groups that could be analyzed in detail.

During this stage, our attention was focused on selecting student pairs for further
and a more in-depth analysis. The most important criterion for selection was the way
students communicated about their different representations of the dissolving phenomena.
Specifically, pairs that used talk, gestures, models and drawings to communicate with each
other (explaining, discussing, convincing) about the phenomena were selected rather than
pairs where students worked more individually. Additional criteria included the quality of
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the video and audio recording and of the pictures of the artefacts created by the pair. This
resulted in the selection of two pairs for a focused analysis.

4.3. Focused Analysis of Selected Video Segments through Coding

After the initial videos were viewed, we were able to identify student pairs of interest
whose process could then be examined in more detail, with more complex codes. To
perform the analysis, codes were chosen to examine student reasoning at a more in-
depth level. This phase of analysis focused on the stages of argumentation the students
presented in developing their representation. The argumentation codes were developed
based on the work by Erduran, Simon and Osborne [42] who built on Toulmin’s Argument
pattern/model [43]. We list the argumentation codes, definitions, and examples to illustrate
the codes from the data, as follows:

• Generating claims: an initial attempt to predict an outcome, e.g., It is going to blow up
the balloon.

• Refining claims: providing additional detail to claims already made, e.g., “You know
how in the other one it made little ones. This one it’s going to make bigger ones”.

• Revising claims: Making changes to claims based on additional information, e.g., “I
think the balloon will just stay there but then next one it will fizz up with the
baking soda”.

• Analyzing and interpreting evidence: making sense of observed results from investiga-
tions, e.g., “Oh yeah if you swish the water, it barely moves and doesn’t come apart”.

• Justifying claims: Using evidence to support claims, e.g., “Yeah see it makes like little
clumps of it”.

• Coordinating explanations: sharing ideas to form one conclusion, e.g., Student 1: “it’s
all gone.” Student 2: “It’s dissolved”.

• Reaching consensus: agreeing on a final conclusion and recording as evidence, e.g., “Okay
now it’s dissolved. It’s literally dissolved. Write down it’s completely dissolved”.

However, as the research team tried to use these codes to understand the argumenta-
tion that occurred during the lesson it was difficult to reach a clear consensus as to which
stage of argumentation the students had reached. It also proved problematic in that the
codes were too fine-grained which made it challenging to make sense of the patterns identi-
fied from the analysis. Therefore, the videos of the selected student pairs were re-analyzed
from an alternative perspective, that is, the phases of inquiry-based learning [44], using the
following set of codes:

• Making predictions, e.g., “It is going to blow up the balloon”.
• Making observations, e.g., “It is getting clearer”.
• Conducting investigations, e.g., “Okay, you open and smell it”.
• Communicating findings, e.g., “Perhaps draw a bottle and at the bottom it has

little dots”.
• Constructing representations/models, e.g., constructing a model to demonstrate

dissolving using playdough or drawing a picture.
• Drawing inferences, e.g., “Because the chemicals in the icing sugar are different from

the baking soda”.

This data was again coded using Studiocode and comparisons were made between
codes for the stage of inquiry and the stage of argumentation. Sections of the video, in
which codes for the stage of inquiry co-occurred with codes for the stage of argumentation,
were selected for transcribing. An example of this analysis is presented in Figure 4.

In this example, a pair of students’ actions were coded using the following two sets of
codes: argumentation (green) and phases of scientific inquiry (blue). As demonstrated in
Figure 4, the scientific inquiry codes seem to focus on a longer timescale compared with
the argumentation codes. Argumentation codes identify aspects of the interactions that
are related to student claim making during the investigation. This coding relies heavily
on verbal, and in particular, the spoken mode of the interactions captured on video. It



Educ. Sci. 2021, 11, 758 8 of 18

identifies ‘utterances’ as the main unit of analysis. However, the challenge of this coding
lies in making inferences about the intention of participants’ utterances so that the process
of claim making can be meaningfully separated and interpreted. For example, one of the
challenges encountered by the researchers was to differentiate between revising claims and
refining claims in interpreting student utterances. The grain size of such events is quite
small, often involving seconds of speech made by an individual and involve ‘high’ inference
from the coder. In such cases, differentiation becomes challenging if not problematic. In
contrast, the scientific inquiry analysis phase draws the researchers’ attention to ‘chunks’
of actions (both verbal and non-verbal) that align well with the unfolding of the meaning-
making events during the student investigations. It requires a relatively ‘low’ inference in
the coding process.
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4.4. Constructing Intermediate Research Artefacts: Multimodal Transcripts

Next, the transcribed data was linked to the images of representations that the students
produced (both drawn on the whiteboard or built using playdough), the written text on
the worksheet as well as still shots of the video footage to show the gestures used by the
students to develop their reasoning. This set of data was compiled into a document that
included time and transcript of the interactions, connected to the representations created
by the students and/or still shots of gestures (see Figure 5 below for an example).

Figure 5. An example of an intermediate multimodal transcript.
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The research team had an extensive discussions regarding how to display the tran-
scripts so that they incorporate both the verbal and visual aspects of the classroom in-
teractions captured on video. One of the challenges is to display actions that take place
simultaneously, for example, speech accompanied by actions. While speech can often be
organized in a sequential manner, questions were raised about how best to insert actions
into the transcript, to help the reader to make sense of the unfolding of a meaning-making
event. Figure 5 is an example of an intermediate research artefact created to support the
research team to make understand the way the multimodal phenomena of developing
an explanation for dissolving unfolded over time, and the interplay of semiotic modes
in supporting students’ attempts to develop such an explanation. In the intermediate
transcript displayed above, we used brackets to indicate the simultaneity between speech
and action. Different colors were used to highlight student spoken words in reference to
particles (in green) and the process of dissolving (in yellow).

4.5. Unpacking ‘Interesting’ Moments of Student Reasoning through Fine-Grained Analysis

The final stage of the analysis was to study, in frame by frame detail, the interaction
between pairs of students during the selected fragments. Moments of interest occurred
when the students engaged in exchanges about their interpretations of the observed dis-
solving phenomenon. In order to capture the process in its full complexity, each verbal
utterance was linked directly to the student artefacts and to their gestures, using snapshots
of video recordings. This frame by frame break-down provided a highly detailed picture
of the reasoning of the students as they developed their representations.

To allow for a deeper understanding of how students used a range of modes (speech,
gesture, drawing and materials) to represent their ideas and support their reasoning, we
proceed by analyzing the interactions in one of the student pairs (i.e., 2-2), who worked
side by side until one of the students started to explain his representation to the other.
This pair was selected because the students employed a combination of semiotic modes in
their interactions.

The process exemplifies how different semiotic modes were used in synchronous ways
to enable and support communication between the two students, who aimed to understand
the process of dissolving. In the table above, attempt to capture the use of all modes in a
concise way to represent the dynamics of the process, which has a duration of 105 s from
start to end, by dividing it into 20 steps, and by referring to the time that elapsed between
each pair of steps (second column). Each step is then represented by what was said by the
student (third column), what the student physically did during this step (e.g., drawing,
gazing, gesturing, manipulating playdough; fourth column) and a still shot from the video
that represents their actions during this step (fifth column).

The first five steps of this sequence focus on Michael, who was working and talking to
himself while breaking up a lump of playdough using a toothpick in a number of iterations
into increasingly smaller and smaller bits, until he concluded that there was ‘nothing’
(Line 5). Next, he turned to his partner, Matthew, who concentrated on drawing on the
whiteboard until this point (6). Michael began to repeat his explanation, while pointing
at the clumps of playdough. Matthew started to engage with the playdough (10), until
Michael concluded his explanation, by asking ‘Do you get what I mean?’, while opening
his hand to support his question (13). Matthew nodded (14), and then Michael continued
to say, ‘I don’t know if that makes sense’ (15). Matthew responded, ‘Yeah it does’ (16)
and Michael went on to repeat the breaking-up process, while saying ‘it went from that to
nothing’ (18-19). The excerpt is concluded by Matthew’s affirmation (20).

This fine-grained transcript of student speech and actions, while interacting with
materials, provides insight into the interactions of different modes to give rise to semantic
expansion as the meaning potential of different semiotic modes were integrated [23].
Some of the modes, occurring simultaneously, seem to overlap in conveying the same
meaning, for example, Line 14, where the speech ‘yeah’ expressed agreement is similar
to the ‘nodding’. In other cases, the speech and the action complemented each other in
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communicating ideas. For example, Michael used a number of indexical words, such as
‘this’, ‘that’, or ‘it’, which identified aspects of his playdough model.

From a scientific point of view, the reasoning of the students is interesting since it
moves from a macroscopic perspective (i.e., the playdough representing a visible amount
of sugar) to increasingly smaller, however still visible clumps, to a level where ‘nothing’
is left. From our data, we are unable to deduce whether the students’ understanding of
‘nothing’ refers to ‘not -or no longer- visible with the naked eye’ or ‘completely gone’. The
latter notion would imply that the students believe that sugar ‘disappears’ in the dissolving
process, in contrast with the notion of conservation of matter (cf., [32]). It must be noted
that Michael initially used the term ‘particles’ (Line 1), but later talked in terms of ‘clumps’.
These students, unlike some of their classmates, did not use the term ‘molecule’.

5. Discussion
5.1. Student Understanding of Dissolving

Our multi-layered analysis has generated insights into student understandings of the
phenomenon of dissolving. Similar to what has been reported in the literature, the majority
of student representations are of macroscopic or observable levels (Table 1). This is not
surprising given that the students were not instructed about explanations of particles prior
to working on the tasks. Nevertheless, four of the 12 student pairs incorporated particle
ideas in their representations, using playdough rather than drawings. The discussions
in the student pairs provided further insight into the reasoning that students applied in
comprehending the dissolving process. The use of different modes enabled and supported
students in representing their reasoning in a dynamic manner. Previous studies in this area
relied on interviews, sometimes in combination with drawings. Such methodologies are
limited in generating insights into the process of student reasoning which, as the present
study shows, often involves dynamic interplays of multiple modes at a single point in
time, especially when student reasoning is focused on processes, such as dissolving, rather
than static phenomena, such as a solution. While previous research [37] reported that
almost half of the students (age 11–14) in their sample thought that a solute ‘disappears’,
the excerpt from Michael and Matthew reveals their reasoning underlying the process
of disappearing.

McLure, Won, and Tregust [41] conducted a study for the same age group (Grade 5
and 6). However, their group were comprised of high achieving students, who were in-
structed about the particle theory of matter. Data collection was limited to diagrams and ver-
bal statements (probed by group discussion or Socratic questioning by teacher/researcher).
They found that some students produced diagrams that were categorized as simple or
complex scientific explanations. Our students were not instructed but were instead given
an open-ended task that allowed them to generate their representations based on their
observations and imagination, without being restricted to verbal modes, leading to mul-
timodal expression. Researchers did not intervene in the process. Unsurprisingly, our
students’ explanations were of a mixed description level at best, however, we captured
students’ authentic, or spontaneous, reasoning. The combination of the tasks, the resources
we provided to the students during their investigation and the ways in which the data were
collected, allowed for the identification of in-depth explanations, evident in this analysis.

Table 1. Student constructed representations of dissolving.

Category Characteristics of
Representation Table Groups Sample Representation Interpretation

Non-explanation
(descriptive without

providing an
explanation for the

phenomenon)

Drawings and playdough
used to represent

equipment (e.g., bottles
and balloon) but do not
contain explanation for

the phenomenon.

1-1, 1-2,
4-2, 6-2
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Table 1. Cont.

Category Characteristics of
Representation Table Groups Sample Representation Interpretation

Macroscopic
description

(focusing on the
observable features of

the phenomenon)

Drawings or playdough
used to represent the
process of dissolving.

5-1,
6-1
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5.2. Affordances of the Multi-Layered Analytical Framework for Identifying Student Reasoning

For a long time, technologies constrained how researchers were able to capture and
interpret meaning making. Researchers tended to rely on textual and audio records of
human interactions in their analysis. The recent rise of video technology and analytical
tools has allowed researchers to record, store, and analyse multimodal phenomena and
events. However, as Lemke [18] described, “we cannot understand the epistemology of
video as representation unless we also understand the process by which we make meaning
with video when we experience it” (p. 40). Our multi-layered framework of data analysis
(Figure 3) provides an entry point for methodological discussions of analyzing classroom
video data.

This multi-layered approach to analyzing multimodal classroom data and exploring
student reasoning, allowed us to work with the data at three timescales: macro, meso and
micro, to observe how a phenomenon at the macro scale was contributed to by actions
and activities at the meso and micro scales [39,40]. Each layer of the analysis provided
useful insights into the reasoning of the students during their science investigation and
the interplays between the semiotic modes in this reasoning. The analysis of student-
generated artefacts identified the ‘product’ of the reasoning which led to questions for
further exploration. The repeated viewings of the video recorded session allowed for
the identification of interesting interactions for further analysis. Coding, using different
frameworks (phases of inquiry and argumentation), allowed the researchers to zoom in
and out of the selected segments of interactions to identify suitable units of analysis and to
sharpen the analytical focus of the study. Finally, the frame-by-frame analysis in Table 2
allowed us to ‘slow down’ the actions captured on video so that we could analyse student
multimodal interactions in fine-grain detail.

However, we had to omit certain information. We are limited by the data sources we
used and by the format of the written paper. Most importantly, we are unable to report
moving images and sound. Thus, we lose information about how students moved their
hands and bodies and how they used their voices, for instance, to highlight or emphasise
certain observations.
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Table 2. Analysis of meaning making during observations of sugar dissolving.

Line Student Verbal Utterance Action Video Snapshot

1 Michael
(talking out loud) I’m
going to make those

little particles.

Michael cuts up
playdough into small
pieces with toothpick.
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Table 2. Cont.

Line Student Verbal Utterance Action Video Snapshot

8 Michael Do you get this? You
get what I mean?

Michael looks at
Matthew and runs his

finger from top to
bottom showing the

sequence of biggest to
smallest.
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Table 2. Cont.

Line Student Verbal Utterance Action Video Snapshot

14 Matthew Yeah.

Matthew looks at
playdough

representation and
nods.
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5.3. Research Process as Multimodal Representation Construction

Social semiotics has been used as a methodology to understand how people make
meaning using modes available to them. This perspective is also applicable to research
processes where the researchers utilize available semiotic resources to construct meanings
from multimodal data such as video data of classrooms. In our work, we were interested
in how social semiotics, as a theoretical framework and as a methodology, can help us to
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better understand student reasoning in science. This, in turn, allowed us to reflect on our
research as a multimodal representation construction process itself by which we selected,
highlighted, and assembled a variety of semiotic resources and modes in representing
and communicating our findings, including the construction of intermediate analytical
artefacts such as StudioCode timelines and multimodal transcripts. In each layer of the
analysis reported in this paper, we, as researchers, had to make decisions about where to
look, what to look for, and how to analyse the events identified. While these decisions,
such as selecting and highlighting certain aspects of the data, are often guided by the
epistemological positions of the researchers, rarely do researchers systematically reflect on
and discuss these methodological decisions in research publications.

As Bezemer and Mavers [45] argued, even the process of transcription itself should be
considered as a social meaning-making practice by which the empirical phenomena under
investigation are reconstructed. Similarly, Ayaß [46] (p. 508) argued that transcription
is ‘a constitutive part of the empirical research process’ whereby the visual and audio
records of social events are often transformed into written text, largely guided by the
transcriber’s interpretive frames and intentions. In our case, we employed video analysis
software (i.e., StudioCode) to support our analytical process by drawing our attention
to particular groups of students and segments of interactions recorded on video. In
selecting the appropriate unit of analysis for identifying students’ reasoning, we utilized
two different sets of codes, namely, argumentation and inquiry, drawing on the relevant
research literature. This allowed us to compare the two sets of coding approaches to identify
the analytical affordance of each approach. While argumentation focused our attention on
smaller grain sizes (e.g., an utterance), shorter time scales (e.g., in seconds) and required
higher inference from the researcher, the inquiry codes tended to draw our attention to
larger grain sizes, which encompass not only ‘saying’ but also ‘doing’ of the students in
each of the coded instances. This inquiry-focused analysis aligned better with our research
purpose of identifying interplays between semiotic modes in student reasoning.

The construction of multimodal transcripts ‘slowed down’ the interesting moments
identified in the StudioCode analysis through the combined use of text and still images
to identify and highlight the interplays between different modes (e.g., verbal, visual, and
kinaesthetic). The decision about what to include and omit in transcripts, as demonstrated
in the two examples (Figure 5 and Table 2), shows how the researchers engaged with the
selected segments of recorded events in an incremental process of refinement, through
which the transcript increasingly focuses on a particular aspect of interest in response to the
issues emerging from the selected segments such as interplays of semiotic modes in student
reasoning. The transcript in Figure 5 demonstrates the correspondence between speech and
visuals through the use of conventions such as colour coding and brackets, to indicate the
simultaneity of speech and action. In comparison, the transcript in Table 2 draws attention
to the simultaneous occurrence of multiple modes at any given time, guided by our refined
analytical methods.

It should be noted that representing social interactions in the form of timelines and
transcripts in research publications involves reconstruction and ‘transduction’ between
modes. The reconstruction of the observed interactions into analytical artefacts, such as
timelines of events and multimodal transcripts, can help to generate new and fresh insights.
In our study, this process of reconstruction, through transduction, helped us to ‘see’ the
unfolding of student reasoning as a multimodal process

6. Conclusions

In this paper, we applied a multi-layered analytic framework for an exploration of
classroom communication as multimodal phenomena that focuses on different units of
analysis for the purpose of generating insight into student reasoning in science. Our
analysis demonstrated the need to use multiple ways to both capture (video, artefacts,
pictures) and analyze students’ reasoning as multimodal events, involving the coordination
of speech, gesture, image, and action. While this framework was developed specifically for
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understanding student reasoning in science, we believe it has the potential to be used as a
general framework for guiding video analyses of teaching and learning across a range of
classroom situations.

Theoretically, building on the intersections of multimodality and discourse analysis
perspectives, this analytical framework supported the researchers in identifying the inter-
plays between the different semiotic modes involved in student reasoning concerning a
science phenomenon. This focus on the diversity of modes as resources for meaning mak-
ing provided strong links to recent studies on multi-representations and representational
competence [25,26], which are argued to be critical for developing students’ conceptual
understanding in science.

Methodologically, this framework raised questions about the process of ‘reconstruc-
tion’ involved in research and the need for systematic reflections on methodological deci-
sion making in the research process. It highlights that research itself should be considered
as a multimodal representation construction process by which the researcher purposefully
selects, highlights, and assembles a variety of semiotic resources and modes. We believe
that our approach to the data analysis presents an incremental process of refinement,
whereby the generation of intermediate analytical artefacts such as transcripts and time-
lines facilitates our professional vision [47], rendering visible the socially and culturally
shaped categories through which the researchers see and reconstruct the world [45]. How-
ever, we recognize that our paper is only a modest theoretical and empirical contribution
to this fast-growing field of multimodality and discourse analysis in science education.
Further research is needed to explore how this proposed framework can be applied and
adapted in investigations of student reasoning across a range of science topics and in a
range of social and cultural settings.

The present study highlighted the multimodal nature of ideas that students have about
science phenomena such as dissolving and therefore, the need to explore the interplays of
different modes in student reasoning about such phenomena. The findings of this study
can support teachers in understanding the reasoning process as students grapple with
the complexity of physical phenomena. Understanding the dynamic interplays between
different modes can support science teachers to make decision about how to select and
sequence such modes in ways that support and contribute to student learning. However,
we acknowledge that the methodology employed in the paper only presents a first step in
this direction and requires further refinement to make such dynamic interplays of modes
optimally accessible for systematic analysis. The interdependence of modes in generating
meaning poses a major challenge for research, to understand the contribution of each
mode. Furthermore, how to ‘slice’ the multimodal phenomenon of interest to identify the
varieties of meaning-making at play presents yet another challenge [48]. Our analytical
framework offers one method through which to identify these complexities. Finally, this
multi-layered framework is both time consuming and labour intensive. Future research
in this area is needed to translate such research-informed frameworks and findings into
forms that teachers can readily use in assessing student reasoning in their classrooms.
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