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Abstract: The quadrotor is an ideal platform for testing control strategies because of its non-linearity
and under-actuated configuration, allowing researchers to evaluate and verify control strategies. Sev-
eral control strategies are used, including Proportional-Integral-Derivative (PID), Linear Quadratic
Regulator (LQR), Backstepping, Feedback Linearization Control (FLC), Sliding Mode Control (SMC),
and Model Predictive Control (MPC), Neural Network, H-infinity, Fuzzy Logic, and Adaptive Con-
trol. However, due to several drawbacks, such as high computation, a large amount of training
data, approximation error, and the existence of uncertainty, the commercialization of those control
technologies in various industrial applications is currently limited. This paper conducts a thorough
analysis of the current literature on the effects of multiple controllers on quadrotors, focusing on
two separate approaches: (i) controller hybridization and (ii) controller development. Besides, the
limitations of the previous works are discussed, challenges and opportunities to work in this field
are assessed, and potential research directions are suggested.

Keywords: controller improvement; controller survey; hybrid control; linear control; learning based
control; nonlinear control; quadrotor

1. Introduction

A quadrotor is an unmanned aerial vehicle (UAV) that manages its operation using
cross-configured two pairs of opposite directional rotors. It takes flight by maintaining
produced thrust and torque by rotors. The necessary actions can be characterized by the roll,
pitch, yaw, and upward-downward thrust for quadrotor movement. However, Autopilot
design for autonomous quadrotors is a difficult task that entails several interconnected
components [1].

Multifarious applications of quadrotors among civilians and the military draw at-
tention among researchers and practitioners to explore more. The civilian application
includes aerial photography, an inspection of industrial pipelines, traffic monitoring, crop
monitoring, fire detection, rescue operations, weather forecasting, news coverage, etc.,
whereas military application incorporates border patrolling, surveillance, and warfare [2].

Quadrotor offers fixed-pitch rotors and Vertical Take-Off Landing (VTOL). However,
it is highly challenging to maneuver because the system is under-actuated with four inputs
to control six outputs. Different control strategies have been developed to handle the
procedure by considering application factors like high agility, smooth maneuverability,
outdoor noise, disturbances, and payload.
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Several type of quadrotor controller have been introduced by the referenced litera-
ture, which includes Proportional-Integral-Derivative (PID), Linear Quadratic Regulator
(LQR), Backstepping, Feedback Linearization Control (FLC), Sliding Mode Control (SMC),
Model Predictive Control (MPC), Linear Quadratic Gaussian (LQG), Neural Network,
H-infinity, Fuzzy Logic, and Adaptive Control. These controllers can be classified into
three categories such as linear, nonlinear, and learning-based controller [3–5]. For instance,
Mahony et al. (2012) provides a primer on modeling, estimation, and control for multirotor
aerial vehicles, including the quadrotor configuration [6]. Zhang et al. (2014) provides a
tutorial on platform configuration, modeling techniques, developing a detailed nonlinear
model, analyzing aerodynamic effects, and identifying a quadrotor model [7]. However,
much literature also introduces another type of controller known as the hybrid controller
that includes two or more control strategies.

This study briefly introduces and analyses some commonly used controllers such
as PID, LQR, Backstepping, FLC, SMC, MPC, Neural Network, H-infinity, Fuzzy Logic
Adaptive Control for a quadrotor. This study’s main contribution is a comprehensive
discussion that includes the applications and the limitations of the controllers to provide a
proper understanding that may help the user choose a suitable one. Moreover, the present
study remarkably overcomes several shortcomings of the literature [2,5,8–13] especially in
the performance evaluation, challenges and solutions of the controllers to a certain extent
on the quadrotor platform based on past studies.

1.1. Linear Control Techniques

LQR control, PD or PID control, H∞ algorithm, and gain scheduling are the most
commonly and conventionally applied linear control techniques. In the early 1970s, a
full-scale helicopter, CH-53A, could achieve waypoints autonomously using a classical
linear controller [5].

1.1.1. PID Controller

PID controller can be considered as one of the most widely used feedback controllers
for quadrotors [14] because of its simplicity to design and low complexity in implementa-
tion on the system. Moreover, it shows high efficiency both in simulation and experimental
work on the quadrotor platform. The great advantage of this controller is that it is not
mandatory to know the dynamics of the quadrotor properly to design the controller where
the trial and error approach for tuning gains of the controller can be sufficient. Stud-
ies show that many researchers successfully implemented PID controller on quadrotor
platform [15–28]. Interestingly, Ghiglino et al. (2013) developed online self-tuning PID to
tackle disturbances, whereas other types of PID perform offline optimization, which often
very time-consuming [29]. Figure 1 illustrates a block diagram of a PID controller.

Figure 1. A block diagram of PID controller.

The classical PID controller is only applied with the linear model. This controller
allows designing the controller according to the desired model performance. However, it
becomes more challenging to design a well-performed PID controller when the model is
nonlinear. The gain cannot be chosen systematically as the classical PID controller requires.
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1.1.2. LQR Control

Linear Quadratic Regulator (LQR) is a type of commonly used optimal linear con-
troller for quadrotor as shown in Figure 2. This controller adopts a cost function minimizing
approach, also known as the optimal control method, in order to compute the states of
any system. LQR can offer a fast response, and it is easy to design. Referenced litera-
ture applied LQR on quadrotor platform in several cases [20,30–37]. However, in many
cases, it was observed that LQR offers steady-state error during tracking [15,38,39]. There-
fore, Alsharif et al. (2017) introduces LQI in order to overcome the steady-state error and
stabilize the system when the system is affected by noise and uncertainty [40].

Figure 2. A block diagram of LQR.

LQR also requires a linear model to get an adequately controlled system, and it can
handle multiple input and output simultaneously, unlike the PID controller. The main
drawback of LQR compared to PID is that it often provides a steady-state error due to the
lack of an integral part [41].

1.1.3. H∞

H∞ is a very popular control approach to ensure the robustness of the system among
the linear controllers. Researchers prefer to use this control approach when a system
includes uncertain parameters and unmolded dynamics. Interestingly, a study reports
that it is able to overcome uncertainties up to 75% of the model [42]. Literature shows
the implementations of the controller on the quadrotor platform in different ways. Some
researchers use simple linear [43–45] while others introduce non-linearly [46–48]. An-
other group of researchers is interested in combining with other controllers in order to
improve the performance of the controller when the system is surrounded by noise and
disturbance [47,49,50].

H∞ is a robust controller that is highly performed when system contains multi-
variables and states are cross-coupled. Notwithstanding, it requires a well-designed model
to achieve satisfactory performance and high-level of mathematical understanding to
develop [51].

1.1.4. Gain-Scheduling

A group of linear models is designed to improve a linear model’s capabilities at
some operating points. This model-based approach is known as gain scheduling. Gain
scheduling can be considered as one of the successful strategies to deal with the nonlinear
model. Literature report several studies where a gain-scheduling approach like PID
improves both linear and nonlinear controllers [52–56], LQR [57], SMC [58,59] etc.

1.2. Nonlinear Control Techniques

As a linear model has some limitations like poor performance around different operat-
ing points and incapability of dealing with the nonlinear part of a model, several nonlinear
control approaches have been developed. Nonlinear control approaches have been de-
veloped based on a nonlinear dynamic model that may incorporate model uncertainties
like noise, disturbance and gust, unmodeled parameters, or dynamics and parameter
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variations. Feedback linearization, model predictive control, backstepping, sliding mode,
and adaptive controller are commonly used nonlinear control techniques.

1.2.1. Feedback Linearization

In feedback linearization (FL), the state variables of a nonlinear dynamic system are
transformed into a new coordinate system of a linear dynamic system using linear tools,
and afterward, it is again transformed back to the original dynamic system through inverse
transformation [5]. Several successful implementations of this controller are available in
the literature [60–65]. R. Bonna and J. F. Camino (2015) used feedback linearization for
trajectory tracking to control rotational and translational dynamics [66]. Freddi et al. (2014)
designed a quadrotor model in any failure case of a rotor by using feedback linearization. In
that work, two different loops were used where one was used for regulating trajectory, and
another was used for modifying the desired trajectory that was succeeded in a simulation
environment [67]. Abdellah Mokhtari et al. (2006) designed a feedback linearization with
the observer in order to ensure robustness to the system with a minimum amount of sensors
when the system is affected by wind [68]. A block diagram of FLC has been illustrated
in Figure 3.

Figure 3. A block diagram of FLC.

A systematic framework for modeling a controller is the main advantage of feedback
linearization. It is a well-performed controller when the difference between linear and
nonlinear models is insignificant. However, it cannot guarantee a satisfactory response in
the presence of model uncertainties and offer the functionality of constraints handling as
well. Hence, the robustness of this controller is not always satisfactory [2,69,70].

1.2.2. Backstepping

Backstepping is known as a recursive technique to control any under-actuated linear
or nonlinear system Figure 4. It disseminates the controller into several steps and makes
the system stabilized progressively [5]. It is useful when some states of the system are con-
trolled by other states [71]. Notably, backstepping can offer promising performance when
the dynamics and external disturbance are known precisely. Madani and Benallegue (2006)
have applied the backstepping control approach based on Lyapunov theory to stabilize
the quadcopter in the desired position and attitude. In that work, an under-actuated
subsystem has been introduced to control horizontal position through roll and pitch angles,
whereas a fully actuated subsystem is used to control vertical position through yaw and
a propeller subsystem to control propeller forces [72]. Xing Huo et al. (2014) applied an
integral backstepping controller to stabilize quadrotor attitude. In that work, the controller
could ensure the promising performance of all the states of the system considering the
external disturbances to the system in the simulation environment [73]. Zheng Fang and
Weinan Gao (2011) advanced the earlier controller by adopting an additional feature that
finally can be named as adaptive integral backstepping control algorithm in order to im-
prove the robustness of the system in the presence of external disturbances on a quadrotor.
The integral approaches can remove the steady-state error, minimize the response time,
and control overshoot [74]. Niroumand et al. (2013) introduces fuzzy logic with integral
backstepping for the improvement of robustness and better disturbance rejection [75].
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Figure 4. A block diagram of Backstepping.

Backstepping is one of the most chosen nonlinear control techniques that require a
systematic procedure and follows recursive design methodology. It can outline the non-
linear terms in the system and, it does not require a precisely designed model, unlike
feedback linearization. It can overcome the mismatched perturbations and can attain stabil-
ity asymptotically. However, the main drawback of this controller is over-parameterization
that implies its requirement of many parameters to give a satisfactory performance to the
system that sometimes becomes very difficult to find out accurately [73,76,77].

1.2.3. Sliding Mode

The sliding mode controller (SMC) is a switching control technique. In this control
technique, the system states are commanded towards a suitably chosen desired surface
known as the sliding surface, where system states remain on the body with the help of
a properly designed control law [78]. Literature introduces several successes of simple
sliding mode control for quadrotors [79]. R. Xu and U. Ozguner (2006) proposed a sliding
mode control to stabilize the under-actuated subsystem of the quadrotor with a PID
controller’s help. They validated the robustness of the controller by dealing with parametric
uncertainties [80]. Swamp (2016) introduced a second-order sliding mode control that was
designed based on Lyapunov theory to stabilize the quadrotor. This second-order sliding
mode controller demonstrated promising results comparing to the conventional sliding
mode and ensures robustness as well [81]. A simple SMC has been portrayed in Figure 5.

Figure 5. A block diagram of Sliding Mode Controller.

SMC technique has achieved great attention for designing robust controllers in high-
order nonlinearity of any system under uncertainties. It is less sensitive to disturbances
and parametric uncertainties that can ensure robustness to the system. However, it offers a
chattering problem that happens because of continuous switching of the controlled model.
As a result, it may provoke energy loss, unmodeled dynamics, and system instability that
is hazardous for the system sometimes [79,82–84].

1.2.4. Model Predictive Control

Model Predictive Control (MPC) becomes one of the widespread controllers nowadays
because of its capability in working with constraints and disturbances, predictive behavior,
simplicity in tuning, and advanced performance with multi-variables at the same time. It is
considered as a nonlinear control system that works on predicting future states and error [5].
MPC works on the basis of optimization where the cost function is minimized depending
on the current control inputs and future time interval by handling the constraints of states
and inputs [85]. Raffo et al. (2008) proposed an MPC to track the reference trajectory
considering disturbances and integrated a nonlinear H-infinity to obtain the robustness
of the system in quadcopter [46]. In a previous study, MPC is applied to attain robust
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performance from the system under wind-gust disturbance conditions for attitude reference
tracking in the quadcopter. The system could successfully track the reference points by
using a single MPC technique where constraints have been considered at control inputs [86].
Patrick Bouffard et al. (2012) used Learning-Based Model Predictive Control (LBMPC) for
robustness, and it is also demonstrated that the performance can be improved by updating
the model online, which performs better than linear MPC [85]. A few experimental works
on MPC are available in literature [56,85–89] while most of the time, nonlinear controllers
with complexity are theoretical and simulation-based for quadrotor. A simple MPC has
been shown in Figure 6.

Figure 6. A block diagram of MPC.

MPC has been used in different processes of chemical industries and refineries for more
than three decades. Currently, researchers show great interest in applying it in all types of
complex controlling systems because of its versatile capability, as aforementioned [85].

1.2.5. Adaptive Controller

The adaptive controller offers a mechanism of parametric adjustability to control a
system. Structurally this nonlinear controller includes two loops where one is used for the
normal feedback process, and another one is used for parameter adjustment [90]. Adaptive
control is widely applied in quadrotor, and most of the time, it is coupled with other con-
trollers like neural network [91–93], SMC [94–96], fuzzy control [97], backstepping [98–101],
gain-scheduling [102], LQR [103]. Koshkouei and Zinober (2000) combined multiple tech-
niques like adaptive backstepping with sliding mode control in order to obtain the ad-
vantages of the controllers. The adaptive technique helps to overcome the problem of
parametric uncertainty; Lyapunov theory that belongs to backstepping ensures the sta-
bility of the system, and sliding mode control tackles the unmeasured disturbances [104].
Interestingly, literature shows two types of adaptive control approach [105] based on de-
sign philosophies such as self-tuning regulator [106] and model reference [54,102,107–109].
Sadeghzadeh et al. (2011) introduced eight different ways to design model reference adap-
tive controller and they chose MIT rule to design the controller in their respective study [54].
In Figure 7, a block diagram of the adaptive controller has been portrayed.

The adaptive controller is mainly popular when the system is exploited with para-
metric uncertainty and model uncertainties like noise or disturbance [110]. There are five
different ways for parameter adjustment of an adaptive controller like gain scheduling
approach, auto-tuning, model reference, self-tuning control, and dual control. This con-
troller is mainly used when process dynamics vary, the character of disturbances changes
and engineering efficiency is concerned [90]. However, it becomes challenging to ensure
robustness when the unknown parameters enter complicatedly in-process model [111].
Moreover, sometimes it performs slower in order to adapt the required parameters [90].
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Figure 7. A block diagram of Adaptive Controller.

1.3. Learning Based Control Techniques

The learning-based controller is such a control technique that does not require an
accurate and precise dynamic model, preferably some trials and flight data for training the
system to control a quadrotor [5]. Fuzzy logic and neural network are considered under a
learning-based controller.

1.3.1. Fuzzy Logic Control

Fuzzy logic control is generally introduced as a model-free and heuristic controller.
It is considered as the successful outcome of fuzzy sets and systems. Successfully fuzzy
controller proves its efficiency on complex nonlinear and nonanalytic systems [112]. In
particular, the fuzzy controller has achieved popularity on quadrotor platforms both in
standalone approach or combined with other control approaches. Santos et al. (2010)
developed an intelligent fuzzy controller that could ensure satisfactory performance in
the system’s stability and precise movement. The controller parameters tuning with
the help of inter-dependent variables were the most successful part of the work [113].
Coza and Macnab (2006) combined both adaptive and fuzzy controllers with stabilizing
quadrotors under buffering wind with an unknown payload [97]. Three different types of
fuzzy models [114] are very popular in the literature, such as Takagi-Sugeno (T-S) fuzzy
model [115–117], Mamdani fuzzy model [118,119] and type-II fuzzy [120,121] that are
being applied on a quadrotor.

Fuzzy control can be considered as one of the most suitable controllers for a nonlinear
system with uncertainty. It has achieved great interest among the researchers as it offers
the best-fitted solution when the system is complex, ill-defined, and uncertain. The most
interesting part of the fuzzy controller is that it can offer the implementation of expert
knowledge linguistically and can imitate human reasoning to simplify any complex sys-
tem [114]. Nevertheless, it is not easy to design the linguistic control rule and analyze
the system stability. In addition, it requires much time for parameter tuning [122,123],
offers approximations errors [124–126] and shows the presence of unknown nonlinear
functions [126,127] when it is required to deal with under-actuated systems. The designer’s
expertise and good experience are also significant to make it functional properly [128].

1.3.2. Neural Network Control

An artificial neural network, inspired by human brain structure, has extensively been
used in modern control engineering because of its ability to deal with intractable and cum-
bersome systems from extracted data through a systematic learning process. This controller
can adapt itself to new environments and extract the required information from noisy,
vague, and inconsistent data during the learning process [129]. Several successful attempts
can be found in the literature of neural networks as quadrotor controllers [130–132]. A
sample of the block diagram a Mamdani fuzzy controller is illustrated in Figure 8.

The neural network has achieved popularity because of its advantages like human
reasoning for data analysis from incomplete and inconsistent information, high excellence
in learning and adaptability, and robustness to the system [11,105]. Despite all these factors,
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it requires ample training and cannot ensure stability to the system always [11]. A review
of different controllers has been addressed in Table 1.

Table 1. A review of different controllers.

Controllers Advantages Disadvantages

PID Easy to choose gain; Can overcome
steady-state error.

Cannot handle constraints, noise and
disturbance; Cannot deal with multiple
inputs and outputs at the same time.

LQR Can deal with multiple inputs
and outputs.

Sometimes fails to overcome
steady-state error.

H∞ Well performed when system is
multivariable with cross-coupling
among channels.

Requires well-designed model.

Feedback Linearization Systemactic model framework;
Well-performed when linear and
nonlinear models are almost similar.

Incapability of constraints handling and
model uncertainities, poor robustness.

Backstepping Systematic and recursive designed;
Precisely designed model is not required;
Can handle nonlinearities to the system;
Can overcome mismatched perturbations
and ensures stability.

Over-parameterization; Difficult to
choose proper parameters.

SMC Well-performed in high-nonlinearity;
Less sensitivity in disturbances and
model uncertainities.

Chattering problem sometimes create
system instability.

MPC Predicts future behavior of the states;
Deals with multiple inputs and outputs
at the same time; can handle constraints
at inputs and outputs; Can overcome
noise and disturbances.

Slow in tracking.

Adaptive Very effective when parameters are
unknown, dynamic and disturbance
model changes continuously;
Engineering efficiency is
comparatively satisfactory.

Takes time to adapt with the parameters.

Fuzzy Logic Offers effective solution of a complex,
ill-defined and uncertain model; Does not
require accurate model.

Difficult to design control rule and
system analysis; Takes linger time for
parameter tuning; Approximation error;
Presence of unkown nonlinear function.

Neural Network Model free; Excellent in parallel
distributed processing, learning and
adaptation; Provide robustness to
the system.

Requires ample of data for learning; Poor
system stability.

Figure 8. A block diagram of Fuzzy Controller (Mamdani Model).
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2. Evaluation of Controllers
2.1. Stability of Nominal System

Almost all the linear and nonlinear controllers can ensure system stability at the nomi-
nal state and ensure nominal performance as well. However, learning-based controllers
like fuzzy and neural networks do not offer system stability at nominal conditions but can
provide high maneuvering performance.

2.2. Robustness

In general, linear feedback controllers are not able to ensure the robustness of the
system except H∞. Moreover, a few controllers like adaptive and MPC controllers can
offer robust stability to the design and acceptable robust maneuvering performance among
nonlinear controllers. In contrast, others are only able to provide robustness in performance.
Interestingly, fuzzy and neural networks are not efficient enough to give robust stability to
the system to ensure robustness in the system’s maneuvering performance.

2.3. Complexities

In general, linear controllers are easy to implement on the system and that’s why
for experimental work, linear controllers are very famous among the researchers. On the
other hand, nonlinear and learning-based controllers are, in general, medium to high in
implementation complexity, albeit they are better at showing satisfactory performance than
linear controllers.

3. Challenges and Solution

The earlier section describes the comparison among the controllers based on nominal
stability, robustness, and implementation complexity. In the section, it is found that some
controllers like LQR and PID are good at offering stability at nominal conditions while
they are inefficient in ensuring robustness. Table 2 details the solutions from the referenced
literature on quadrotor. On the other hand, learning-based controllers like fuzzy and neural
networks are not able to ensure nominal stability, whereas they are highly efficient in robust
performance. Therefore, hybrid controllers are initiated as a unit where multiple controllers
can work altogether in order to ensure both nominal stability and robustness to a system.
For instance, LQR turns into LQG (as shown in Figure 9) when LQR adopts Kalman Filter
to establish a state observer and overcome the noise of the signal [133].

Figure 9. A block diagram of LQG.

Literature introduces some successful simulated performance and well-performed
experimental works to overcome the incapacity and inefficiency of controllers. This study
classifies the solutions based on literature into two types such as (a) a combination of
other controllers with the existing controller or hybrid controller and (b) improvement
of the current controller. Additionally, the improvement can be performed by adopting
additional features or algorithms such as observer, estimator, integral, filter, compensator,
etc., improvement of control algorithm by modification such as cascaded feature, self-
tuning, discretization, etc. or considering both approaches.
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Table 2. Performance improvement of controllers.

Controllers Controller Hybridization Improvement of Existing Controller

PID H∞ [134], fuzzy [135–137], neural
network [138–141], feedback
linearization [142,143],
backstepping [63,144–146],
SMC [80,147,148].

Nonlinear PID [149–153], cascaded
PID [154,155], gradient optimization
based PID [156,157], particle swarm
optimization PID [158], self-tuning
PID [29,159], genetic algorithm based
PID [160,161], fractional PID [162], online
iterative learning [163].

LQR PID [41,41], adaptive control [103,164],
feedback linearization [165],
backstepping [166], SMC [167],
fuzzy [168], neural network [169].

Full-order state observer [33], discrete
LQT [170], LQR with filter [24,171–174],
optimal trajectory planner [175],
distributed LQR [176], optimization [177],
extended LQR [178].

H∞ MPC [50], PID [49,179], LQR [45]. Requires well-designed model.

Gain Scheduling PID [52–56], LQR [57], SMC [58,59]

Feedback Linearization H∞ [180], LQR [165], adaptive [181,182],
backstepping [71], SMC [94].

Sliding mode observer [183], dynamic
extension [184], recursive Bayesian
filter [185], disturbance observer [186,187],
lie derivative [188], block control
algorithm [189], sliding mode
compensator [190].

Backstepping Neural network [191,192], feedback
linearization [144], sliding mode
control [72,193–199], fuzzy logic [200],
fuzzy and SMC [201], PID [202–204].

Integral with sliding mode [198,199],
integrator [205,206], Frenet-Serret
Theory—FST [145], nonlinear disturbance
observer [207], EKF [208,209], command
filter [210,211], command and auxiliary
filter [211], robust adaptive function [212],
particle swarm optimization [77,213],
extended state observer [214], Nussbaum
compensator [215], state transformation
approach [216], time-variation
formulation [217].

SMC PD [218,219], backstepping [72], feedback
linearization [220], adaptive and
backstepping [221].

Observer [222,223], integral [224,225],
second order SMC [226,227], block
control approach [228], adaptive control
law [229], global fast dynamic
terminal [230], fuzzy logic with gain
switching [54], least square method [231],
immersion and invariance method [232],
adaptive control law [233], chattering
elimination function [234], fractional
order [235].

MPC PID [236], LQR [237], H∞ [46],
SMC [238].

EKF [239], Gaussian Process model [240],
Minimax optimization [241], convex
optimization [242], disturbance
observer [243] etc. or techniques such as
piecewise affine [86,244], model
reduction [245], cascade feature [246], two
layer approach [247], state-dependent
coefficient representation [248], Fast
Gradient method [249], Reinforcement
learning [250].
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Table 2. Cont.

Adaptive Neural network [91–93], SMC [94–96],
fuzzy control [97], backstepping [98–101],
gain-scheduling [102], LQR [103].

Deadzone [251,252], parameter
projection [251,252], e-modification [253],
cerebellar algorithm [91,252],
L1 [110,254,255], command filtered
compensation [256], simpler state
feedback [257], linear matrix
inequality [258].

Fuzzy Logic PID [22,135,259,260], SMC [58,201,261],
backstepping [126,262], neural
network [263–265], LQR [266].

Cell decomposition [267], parallel
distributed compensation [266,268],
cascade [269], genetic algorithm [270,271],
EKF [266].

Neural Network PID [99,272,273], adaptive [91,99,274],
backstepping [99,275], vision based
control [276], fuzzy [265].

Neural observer [93], neuro sliding mode
observer [277], high gain observer [278],
online [279] and offline [130] learning,
Nonlinear Auto Regressive eXogenous
input (NARX) model [280],
backpropagation [273,281], Radial Basis
Function [282], Modular Deep
Recurrent [283], direct inverse
control [90,139], dynamic
inversion [284,285].

4. Conclusions

The present study outlines a review of different commonly applied controllers on a
quadrotor. Different control techniques have their own specialties and limitations with
their unique algorithms. Therefore, the applications and performance of the quadrotor
decide the suitable controller.

Linear controllers always draw the attention of the researchers because of their sim-
plicity in design and implementation with good experimental data. Nonlinear controllers
offer features like robustness, noise and disturbance rejection, constraint handling at input
and outputs, and more accurate trajectory tracking. However, a few experimental works
are available in the literature using the nonlinear controller. Highly accurate parameter
tuning and unmodeled parameters and dynamics make it difficult to achieve similar results
from both the simulation and experiment. In the case of learning-based controllers, high
computation, substantial training data, approximation error, and the presence of uncer-
tainty are the challenges to be overcome in order to obtain satisfactory results though they
are able to ensure promising performance when the system is troubled by uncertainty.

Significantly, this study discusses necessary solutions based on past studies to prevail
over the available shortcomings through hybridization or improvement of an existing
controller. Interestingly, some studies adopt multiple controllers and algorithms to en-
sure the promising performance of the controllers. Therefore, the required performance
improvement of any controller depends on choosing a suitable controller, adoption of
addition or modification of a controller or algorithm, or both the controller and algorithm.
Future works include but are not limited to reviewing available modeling, navigation, and
guidance of quadrotors.
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