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Abstract: I present a novel machine learning approach to predict sex in the bioarchaeological record.
Eighteen cranial interlandmark distances and five maxillary dental metric distances were recorded
from n = 420 human skeletons from the necropolises at Alfedena (600–400 BCE) and Campovalano
(750–200 BCE and 9–11th Centuries CE) in central Italy. A generalized low rank model (GLRM) was
used to impute missing data and Area under the Curve—Receiver Operating Characteristic (AUC-
ROC) with 20-fold stratified cross-validation was used to evaluate predictive performance of eight
machine learning algorithms on different subsets of the data. Additional perspectives such as this one
show strong potential for sex prediction in bioarchaeological and forensic anthropological contexts.
Furthermore, GLRMs have the potential to handle missing data in ways previously unexplored in the
discipline. Although results of this study look promising (highest AUC-ROC = 0.9722 for predicting
binary male/female sex), the main limitation is that the sexes of the individuals included were not
known but were estimated using standard macroscopic bioarchaeological methods. However, future
research should apply this machine learning approach to known-sex reference samples in order to
better understand its value, along with the more general contributions that machine learning can
make to the reconstruction of past human lifeways.

Keywords: SuperLearner ensemble machine learning; cross-validation; generalized low rank model;
bioarchaeology; sex prediction; central Italy

1. Introduction

Accurate sex prediction of archaeological skeletal remains is a fundamental step for
reconstructing biological and demographic profiles of past humans. After an archaeological
site is surveyed and excavated and unknown human remains are identified, documented,
and recovered, the sex and age of deceased individuals are commonly estimated using
macroscopic methods of the pelvis, skull, and teeth [1–3]. However, because female and
male biological maturation rates differ [4,5], sex misidentification can lead to data recording
bias and depreciated interpretability. After sex has been macroscopically estimated and
with the assistance of other biological and archaeological contextual information, the
identities and lifeways of the deceased can be reconstructed in bioarchaeological contexts.
However, traditional macroscopic sex estimation methods possess varying degrees of
accuracy [6–11]. For example, the pelvis and cranium might provide conflicting sex
estimation results even within the same individual. This process is further complicated
by other aspects, particularly of age, as tooth crown calcification and eruption and bone
epiphyseal fusion are useful until early adulthood when 3rd molars erupt and bony
ossification centers fuse skeletal elements into their final, united shapes. Pelvic, cranial
suture, and sternal rib end methods are used to predict age in individuals through later
stages of adulthood, albeit with wider margins of error.

Craniometric dimensions are frequently used as proxies for genetic relatedness of past
humans due to their potentially heritable nature and correlations with neutral and adaptive
genetic variation and selection [12–20]. In the absence of genetic information, these methods
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are used to approximate the genetic and evolutionary relationships of past humans [21],
thus making accurate sex classification an integral first step in the reconstruction of other
biological and demographic parameters. Hence, further examinations of sex correlations
with other lines of evidence such as burial location, material culture, musculoskeletal stress
markers, health, diet, disease, trauma prevalence, and biological relatedness will be skewed
if sex is first misclassified.

Machine learning is slowly gaining a foothold in bioarchaeology and forensic an-
thropology despite our discipline’s deep ties to statistics and computational research for
investigation of large quantitative datasets. Cunningham’s [22] pioneering machine learn-
ing social anthropological work for rule-based kinship structure detection set a high bar for
anthropologists of all subdisciplines to aspire. However, her work remains largely unrecog-
nized even though it exemplifies the types of problem-and-dataset-driven questions faced
by bioarchaeologists. This discrepancy persists despite the promise for bioarchaeological
machine learning applications for predicting sex, age, ancestry, body mass, and stature
in forensic anthropology, radiography, and anatomy [23–31]. Even less bioarchaeological
research has focused on missing data imputation [32].

Therefore, more examples are needed to better contextualize our methodological un-
derstandings of sex estimation techniques. This research is an extension of
Muzzall et al. (2017) [33], which improved sex prediction accuracy of the William W.
Howells Worldwide Craniometric Dataset and provided another example of the strong
potential for machine learning to assist in sex prediction in bioarchaeological contexts.
Here, I use a generalized low rank model to impute large amounts of missing data for a
stratified cross-validated supervised ensemble machine learning approach. This frame-
work consists of eight algorithms total and is fit to cranial interlandmark and dental metric
distances to predict binary sex from six pelvic and cranially estimated samples at Alfedena
(600–400 BCE) and Campovalano (750–200 BCE and 9–11th Centuries CE) in central Italy.

Italy is home to one of the most colossal bioarchaeological contexts on Earth and
represents humans’ deep history throughout the region. Its central Mediterranean location,
deep temporal breadth, and geological and environmental diversities have been influential
in shaping the genetic, morphological, and cultural histories of the region [34–39]. Humans
here developed some of the richest and most divergent forms of social interaction through
worship, architecture, iconography and writing, and empires that persisted for long periods
of time and across the globe via trade, warfare, and colonization. Central Italy was a
particular crossroads between Africa and Europe and the Near East and Iberia and was
home to many chiefdoms and nation-states that contained both shared and varied forms of
settlement patterns, social and burial organization, material cultures, mortuary behaviors,
and skeletal-dental morphologies. As a result, Italy’s bioarchaeological record provides a
space to experiment with new methodologies for sex prediction.

2. Materials and Methods
2.1. Dataset

The dataset consists of metric cranial and dental data from n = 240 males and n = 180
females from central Italy: four locations from the Iron Age necropolis at Alfedena (600–
400 BCE), the Iron Age graveyard at Campovalano (750–200 BCE), and the Medieval
cemetery at Campovalano (9–11th Centuries CE) (Table 1). The ground truth sexes of these
individuals were not known due to their antiquity and were estimated using standard
macroscopic methods found in [1] by the original archaeologists [40,41] and by the author.
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Table 1. Location, time period, and sex distributions for males and females from Central Italy used
in this study.

Location Time Period Male Female

Alfedena Arboreto 600–400 BCE 9 10
Alfedena Campo Consolino 600–400 BCE 61 19
Alfedena Scavi Mariani 600–400 BCE 37 28
Alfedena Sergi Museum 600–400 BCE 19 13
Campovalano Iron Age 750–200 BCE 89 77
Campovalano St. Peter 9–11th C. CE 25 33

Total 240 180

Cranial metric data were collected from twelve standard anatomical landmarks: four
from the face, four from the cranial vault, and four from the cranial base (Table 2). This
produced a total of eighteen cranial interlandmark distances, six from each of the four
landmarks from the three cranial regions.

Table 2. Cranial anatomical landmarks used in this study. The four landmarks from each of the three
regions produced eighteen total interlandmark distances—six for each region [1].

Face Definition

Nasion (n) The intersection of the naso-frontal suture in the midsagittal plane

Prosthion (pr)
The location of the anteriorly located portion of the anterior
surface of the alveolar process at the most anterior point of the
alveolar process

Right frontomalare The location where the zygomaticofrontal suture intersects the
orbital marginorbitale (fmorR)

Left zygomaxillare (zymL) The most inferior and anterior location on the
zygomaticomaxillary suture

Vault

Bregma (b)

The landmark where the sagittal and coronal sutures meet in the
midsagittal plane. In cases where the sagittal suture deflects
laterally, an estimation must be made of the location in the
midsagittal plane

Lambda (l)

The landmark where the left and right lambdoidal sutures
intersect the sagittal suture. The landmark must be estimated
when the suture intersection is obliterated, or where strongly
serrated sutures are present

Right Asterion (astR) The juncture of the lambdoid, parietomastoid, and
occipitomastoid sutures

Left Frontotemporale The most medial and anterior point on the superior temporal line
on the frontal bone(ftL)

Base

Nasion (n) The intersection of the naso-frontal suture in the midsagittal plane

Basion (ba) The inner border where the anterior portion of the foramen
magnum is intersected by the midsagittal plane

Hormion (h) The juncture of the sphenoid and vomer bones in the midsagittal
plane

Left Porion (poL) The most superior point on the external margin of the external
auditory meatus

Dental metric data consisted of maximum mesiodistal dimensions of the right (or left-
substituted when the right antimere was missing) maxillary canine (XC) and buccolingual
breadths of the right mesial (P3) and distal (P4) premolars and first (M1) and second (M2)
molars [42]. Thus, six different subsets of the data were used: (1) six metrics from the face,
(2) six from the vault, (3) six from the base, (4) eighteen from the cranium (the combined
face, vault, and base metrics), (5) five from the dentition, and (6) twenty-three from the
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total combined cranial and dental data. Tukey boxplots are used to illustrate sex differences
in these metrics.

2.2. Missing Data

Missing data were prevalent from all areas of measurement and proportions of missing
values for the face, vault, base, and dentition are shown in Table 3. A generalized low rank
model (GLRM) was used to impute the missing values. GLRMs function as an extension of
principal component analysis (PCA) for low rank matrix tabular dataset approximation, by

“approximating a data set as a product of two low dimensional factors by mini-
mizing an objective function. The objective will consist of a loss function on the
approximation error together with regularization of the low dimensional factors.
With these extensions of PCA, the resulting low rank representation of the data
set still produces a low dimensional embedding of the data set, as in PCA” [43]
(p. 3)

Table 3. Percentage of missing data for each variable.

Bony Region Measurement Proportion Missing Male Proportion Missing Female

Face n_pr 63 67
n_fmorR 54 58
n_zymL 57 65
pr_fmorR 63 68
pr_zymL 63 69
fmorR_zymL 63 71

Vault b_l 38 47
b_astR 38 46
b_ftL 42 51
l_astR 37 44
l_ftL 44 54
astR_ftL 46 54

Base n_ba 61 66
n_h 63 68
n_poL 53 61
ba_h 65 69
ba_poL 57 62
h_poL 61 66

Dentition XC 59 69
P3 53 63
P4 50 66
M1 49 46
M2 53 53

A generalized low rank model is essentially an unsupervised approach for data com-
pletion that uses clustering of known data in reduced dimensional space. The advantage of
this data-adaptive approach to reconstruct missingness in the skeletal and dental remains
instead of column mean, median, or k-nearest neighbor imputation is that it effectively
uses clustering of features to impute the missing data, which makes sense given that the
missingness of the data arises directly from missingness in the skeletal remains themselves.
Missingness indicators were also added as columns to the dataset to indicate exactly where
missing and imputed data were located. These columns also functioned as predictor vari-
ables in the machine learning models to see if the location of missing data was related to
sex prediction ability.

2.3. Ensemble Machine Learning

Machine learning is defined as “a vast set tools for understanding data” [44] (p. 1).
It originated as a combination of computer science and statistics, but its greatest strength
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is its breadth of research application [45,46]. Early examples stem from the social and
cognitive sciences that attempted to predict and imitate human behavior [47–49]. In this
research I use a supervised classification machine learning approach because the goal is to
predict a categorical outcome (predict male sex from binary male/female options) using
the craniodental features as predictor variables.

Ensembles are useful supervised machine learning methods because they optimize
predictor accuracy through combinations of a suite of less accurate models [50]. They are
preferred to fitting single algorithms for prediction because classification performance of
single algorithms might differ due to variance (sensitivity to differences in the training
data), algorithmic bias (erroneous assumptions about the relationships between the se-
lected algorithm and the data), and/or algorithmic hyperparameter settings (pre-defined
options that are selected before model training). The SuperLearner approach [51,52] is an
algorithm that uses cross-validation [53] to estimate the performance of several machine
learning models, and/or the same algorithm(s) with different hyperparameter settings.
It then produces an optimal weighted average of those models (an “ensemble model”),
using external cross-validation. This method is as accurate asymptotically as any single
best-performing algorithm. I fit the eight algorithms (five constituent algorithms, the
weighted SuperLearner ensemble, the benchmark mean of the Y outcome variable, and the
resulting “DiscreteSL” single best performing algorithm/combination of algorithms) to
predict binary sex classification for each of the six subsets of the data described above as the
predictors: the face, vault, base, combined cranial regions, dentition, and combined cran-
iodental data. In this sense, SuperLearner is essentially stacked/blended learning where
the SuperLearner ensemble algorithm provides the ideal combinations of base learners by
utilizing weighted combinations to provide asymptotically optimal learner configurations
across algorithms and different subsets of the data.

Besides the SuperLearner approach, there are other ways to utilize machine learning
ensembles. For example, the random forest algorithm is in itself an ensemble—it is “ran-
dom” because it is based on individual bootstrap-aggregated (a sampling with replacement
model averaging technique for variance reduction) decision trees and also because each
individual tree uses a subset of predictor variables at each decision split (instead of using
all predictors like a regular decision tree does); it is a “forest” because many trees are
grown. The predictions based on each of these trees in the forest is then applied to the
out-of-bag samples—holdout data not included in the training process of each tree—to
evaluate performance and provide error estimates. The outcome variable is then predicted
based on the majority vote of class labels for all the trees in the case of classification, or
the prediction average across all trees in the case of regression. Bagging and boosting can
be used to improve the performance of a variety of other algorithms as well. The eight
different algorithms used in this study are defined in Table 4.
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Table 4. Definitions of the eight machine learning algorithms used in this research.

Algorithm Description Reference

Logistic regression

Logistic regression models the relationships
between the outcome variable (male/female sex)
and the predictor variables. It computes the
probability that the Y variable (sex) belongs to
one of the two binary classes.

Dobson, 1990 [54]

Lasso

Lasso (least absolute shrinkage and selection
operator) is a form of penalized regression (L1)
that produces a sparse solution to remove
predictor variables from the model that are not
related to the outcome.

Friedman et al.,. 2010 [55]

Decision tree

A decision tree is a relatively simple tree-based
method that gauges the probability of classifying
the outcome based on the predictor variables
before splitting a given decision node a certain
number of times until there are no longer enough
observations to split.

Breiman et al., 1984 [56]

Ranger (random
forest)

Ranger is a decorrelated random forest ensemble
classifier method that uses the average of
multiple bootstrapped decision tree models for
classification. Unlike single decision tree models
that use all predictors at each split, random
forests use only a random subsample of the total
predictors for each split in each tree.

Breiman, 2001 [57]; Wright and Ziegler, 2017 [58]

Xgboost

A gradient boosted tree is another tree-based
method that fits a tree to the residuals of the
previous tree in succession. It downweights
easily predicted cases but upweights those that it
cannot predict. This continues over many
iterations so that weak trees are “boosted” into
strong ones.

Freund and Schapire, 1999 [59]; Chen et al.,. 2019 [60]

SuperLearner

The SuperLearner algorithm is an optimal
weighted ensemble average that improves
predictor construction and is flexible in that it
can perform well on different data distributions
and protects against overfitting through external
cross-validation. Individual algorithm weights
can be investigated to see which ones contribute
most to the ensemble.

van der Laan et al., 2007 [51]; Kennedy, 2017 [61]

Mean of Y

The mean of Y (dependent variable) is the
benchmark algorithm based only on the mean.
This is a very simple prediction so the more
complex algorithms should perform better than
this one. It should not be the best
single-performing algorithm and should have a
low weight in the weighted-average ensemble. If
it is the best performing algorithm something is
likely wrong.

Polley and van der Laan, 2010 [52]

DiscreteSL

The discrete SuperLearner is the single best
performing algorithm(s) as identified by the
SuperLearner. Alternatively, this might also
correspond to the combination of best
performing algorithms at different
cross-validation folds, in which case the
DiscreteSL AUC-ROC will not be identical to
that of a single algorithm.

Polley and van der Laan, 2010 [52]
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2.4. Evaluating Model Performance

Stratified 20-fold cross-validated Area Under the Curve—Receiver Operating Charac-
teristic (AUC-ROC) was used to evaluate the performance of the individual algorithms
while an external/nested 20-fold cross-validation layer was used to estimate performance
on the blended SuperLearner ensemble model via a separate holdout sample [61,62].

Stratified k-fold cross-validation is a process that divides the data into equally sized
portions and trains a model on k-1 portions of the data so that the model can learn the
relationship between male/female sex outcomes and the various craniodental predictor
variables. The one holdout portion is used for testing purposes (but not for fitting the
SuperLearner) and this process is repeated k times. I chose 20 folds, so each algorithm
was trained on 19 portions of the data (95%) and tested on the one holdout (5%). This
process was repeated twenty times, with the holdout set rotated each time. This process
allows every data point to be in the test set once. This also produces standard errors for the
performance of each algorithm that can be compared to the SuperLearner average.

The receiver operator characteristic curve itself represents the probability that a binary
outcome (male or female predicted sex, in this case) is correctly classified [63] while the
AUC-ROC provides the degree of separability for the sexes that the model achieves. The
receiver operator characteristic curve models the sensitivity (true positive rate) versus
specificity (true negative rate) at various thresholds along the receiver operator character-
istic curve. Maximization of AUC-ROC is ideal, which ranges from zero (no predictive
ability) to 0.5 (equivalent to random guessing) to 1.0 (perfect prediction). AUC-ROC is
more useful for prediction of imbalanced classes and to prevent overfitting of a single class
compared to simple classification accuracy.

Instead of fitting the models separately and looking at the performance (lowest risk),
algorithms should be fit simultaneously. Risk is the average loss function used here and
measures how far off the prediction was for a given observation and is calculated by
nonnegative least squares error; the lower the risk the fewer errors were made by the
model. SuperLearner also identifies which single algorithm (or combination of algorithms)
is best (the “DiscreteSL” discrete winner), in addition to calculating the weighted average of
the ensemble itself. Coefficient weights can be viewed to see each algorithm’s contribution
to this weighted ensemble average. Analysis was conducted in R version 3.6.2 and the
ck37r, SuperLearner, and ggplot2 packages [64–66].

3. Results

Results indicate that ensemble machine learning has strong potential for sex prediction
and yielded AUC-ROC values greater than 0.90 for the cranial metric data and ~0.74 for the
dental metric data. Males are larger than females in all dimensions as shown by the Tukey
boxplots in Figures 1 and 2 although distributions for the sexes overlap considerably.

AUC-ROC performance for each algorithm along with their standard errors and
confidence intervals are shown in Table 5. The combined craniodental data had the
highest AUC-ROC with 0.9722, followed by the combined cranial (0.9644), face (0.9426),
vault (0.9116), base (0.9060), and dentition (0.7421). Expectedly, the mean of Y is the worst
performing algorithm in all cases (AUC-ROC = 0.500 for each). The SuperLearner algorithm
has the highest AUC-ROC for all six bony regions while ranger is a close second for the
face, vault, base, cranial, and combined craniodental data. Logistic regression, lasso, and
ranger are all close seconds for the dental data.

Additionally, the single best algorithm (or combination of algorithms)—the Discrete-
SL—was the ranger random forest algorithm for all 20 cross-validation folds for the face,
base, combined cranial data, and combined craniodental data. However, for the vault,
ranger was the best performing algorithm 19 times and the decision tree algorithm once.
For the dental data, logistic regression was the best performing algorithm 14 times, lasso
4 times, and ranger twice—this algorithmic confusion could be related to the considerably
lower AUC-ROC for the dentition compared to any of the cranial data.
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The SuperLearner weight distributions show which of the individual algorithms
contributed most to the ensemble (Table 6). For the combined craniodental data, lasso
contributed a coefficient of 0.4522, indicating that it contributed this percentage to the
SuperLearner ensemble. This was followed by lesser contributes from the ranger algorithm
(0.1734), xgboost (0.1700), logistic regression (0.1319), and decision tree (0.0726). For cranial
data, ranger contributed a coefficient of 0.4610, followed by lesser contributions from
logistic regression (0.1940), lasso (0.1411), decision tree (0.1267), and xgboost (0.0772).
Contributions to the face stem mostly from ranger (0.4634) and logistic regression (0.4193),
for the vault from ranger (0.5004) and decision tree (0.3234), and for the base from ranger
(0.8878). For the dentition, contributions stem mostly from logistic regression (0.5591) and
ranger (0.3582).
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Table 5. Cross-validated AUC-ROC statistics for the six different measurement regions. 0.5 is the equivalent of random
guessing; 1 means perfect prediction.

Bony Region Algorithm AUC-ROC Standard Error Confidence
Interval (Lower)

Confidence
Interval (Upper)

Face Mean of Y 0.5000 0.0493 0.4034 0.5966
Decision tree 0.8069 0.0259 0.7562 0.8577
Xgboost 0.8998 0.0152 0.8701 0.9295
Lasso 0.9042 0.0161 0.8727 0.9357
Logistic regression 0.9088 0.0157 0.8781 0.9395
Ranger 0.9306 0.0122 0.9066 0.9545
DiscreteSL 0.9306 0.0122 0.9066 0.9545
SuperLearner 0.9426 0.0111 0.9208 0.9644

Vault Mean of Y 0.5000 0.0493 0.4034 0.5966
Logistic regression 0.8458 0.0200 0.8067 0.8850
Lasso 0.8486 0.0198 0.8099 0.8873
Xgboost 0.8690 0.0188 0.8322 0.9058
Decision tree 0.8998 0.0218 0.8570 0.9425
DiscreteSL 0.9030 0.0164 0.8709 0.9351
Ranger 0.9065 0.0158 0.8756 0.9374
SuperLearner 0.9116 0.0147 0.8827 0.9404

Base Mean of Y 0.5000 0.0493 0.4034 0.5966
Logistic regression 0.7667 0.0238 0.7201 0.8132
Lasso 0.7685 0.0238 0.7219 0.8152
Decision tree 0.7986 0.0248 0.7500 0.8472
Xgboost 0.8646 0.0177 0.8298 0.8993
Ranger 0.9051 0.0146 0.8764 0.9338
DiscreteSL 0.9051 0.0146 0.8764 0.9338
SuperLearner 0.9060 0.0146 0.8774 0.9347

Cranial Mean of Y 0.5000 0.0493 0.4034 0.5966
Decision tree 0.9125 0.0189 0.8754 0.9496
Lasso 0.9236 0.0138 0.8966 0.9506
Logistic regression 0.9282 0.0128 0.9032 0.9533
Xgboost 0.9306 0.0128 0.9054 0.9557
Ranger 0.9519 0.0103 0.9317 0.9720
DiscreteSL 0.9519 0.0103 0.9317 0.9720
SuperLearner 0.9644 0.0084 0.9480 0.9807

Dental Mean of Y 0.5000 0.0493 0.4034 0.5966
Decision tree 0.6537 0.0280 0.5989 0.7086
Xgboost 0.6551 0.0270 0.6021 0.7081
Ranger 0.7171 0.0250 0.6680 0.7662
DiscreteSL 0.7213 0.0256 0.6711 0.7715
Lasso 0.7412 0.0250 0.6921 0.7903
Logistic regression 0.7417 0.0252 0.6924 0.7910
SuperLearner 0.7421 0.0248 0.6935 0.7908

Combined
craniodental Mean of Y 0.5000 0.0493 0.4034 0.5966

Decision tree 0.9060 0.0196 0.8675 0.9445
Xgboost 0.9375 0.0116 0.9148 0.9602
Logistic regression 0.9426 0.0111 0.9209 0.9643
Lasso 0.9528 0.0104 0.9324 0.9731
Ranger 0.9549 0.0100 0.9353 0.9745
DiscreteSL 0.9549 0.0100 0.9353 0.9745
SuperLearner 0.9722 0.0070 0.9585 0.9860
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Table 6. Algorithm weight contributions to the SuperLearner ensembles.

Bony Region Algorithm Mean (Contribution to Ensemble) Standard Deviation Min Max

Face Ranger 0.4634 0.1058 0.2389 0.6044
Logistic regression 0.4193 0.0373 0.3262 0.4779
Xgboost 0.1159 0.0928 0.0000 0.3199
Lasso 0.0013 0.0059 0.0000 0.0263
Decision tree 0.0001 0.0004 0.0000 0.0017
Mean of Y 0.0000 0.0000 0.0000 0.0000

Vault Ranger 0.5004 0.1205 0.1910 0.7078
Decision tree 0.3234 0.0935 0.1591 0.5442
Logistic regression 0.1412 0.0520 0.0556 0.2234
Xgboost 0.0350 0.0561 0.0000 0.1483
Mean of Y 0.0000 0.0000 0.0000 0.0000
Lasso 0.0000 0.0000 0.0000 0.0000

Base Ranger 0.8878 0.0701 0.7068 0.9811
Logistic regression 0.0758 0.0259 0.0189 0.1264
Xgboost 0.0364 0.0590 0.0000 0.2168
Mean of Y 0.0000 0.0000 0.0000 0.0000
Lasso 0.0000 0.0000 0.0000 0.0000
Decision tree 0.0000 0.0000 0.0000 0.0000

Crania Ranger 0.4610 0.1162 0.2750 0.6789
Logistic regression 0.1940 0.0859 0.0299 0.3193
Lasso 0.1411 0.0753 0.0380 0.2882
Decision tree 0.1267 0.1028 0.0000 0.3101
Xgboost 0.0772 0.0826 0.0000 0.2452
Mean of Y 0.0000 0.0000 0.0000 0.0000

Dental Logistic regression 0.5591 0.0608 0.4472 0.6747
Ranger 0.3582 0.0953 0.1797 0.5286
Decision tree 0.0747 0.0719 0.0000 0.2339
Xgboost 0.0080 0.0160 0.0000 0.0573
Mean of Y 0.0000 0.0000 0.0000 0.0000
Lasso 0.0000 0.0000 0.0000 0.0000

Combined
craniodental Lasso 0.4522 0.0918 0.2598 0.6602

Ranger 0.1734 0.1048 0.0000 0.3853
Xgboost 0.1700 0.0739 0.0416 0.2906
Logistic regression 0.1319 0.0892 0.0000 0.3308
Decision tree 0.0726 0.0755 0.0000 0.1891
Mean of Y 0.0000 0.0000 0.0000 0.0000

4. Discussion

AUC-ROC of this SuperLearner ensemble machine learning framework demonstrates
strong potential for cranial sex prediction of archaeological human skeletal remains in this
particular central Italian context. An important potential contribution of this research is
that it reframes the problem of sex estimation as a predictive one and does not rely on
assumptions of p-values, traditional hypothesis testing, or causal inference approaches.
Instead, the focus was on model performance, standard errors, and confidence intervals.
Additionally, the goal here was not to optimize any algorithms for maximum predictive
accuracy, but to instead provide a gentle overview of the process and to stimulate the reader
into thinking about how this approach could be applied in their own research contexts.
This method can also potentially be employed in the field to help resolve disagreements
between experts or for indeterminate remains.

Results also support previous research that ensemble machine learning has strong
potential for sex prediction in the bioarchaeological record [33]. Although the actual
ground truth (in the binary sense; sex and gender are more dynamic than this in reality)
male/female sexes of the individuals included in this study were not known, results
support previous research that indicates contrasts between male and female morphological
and burial patterns in central Italy during the Iron Age [39–41]. Among the three different
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cranial regions, the face had the highest AUC-ROC values, followed by the vault and base.
This could provide further support for the utility of the face for population reconstruction
despite its greater environmental plasticity compared to the base and vault due to sensory
functions of sight, smell, and taste [67].

Of particular interest were the general size differences between males and females.
Despite their overlapping measurement distributions—and if the modeling process was
strongly influenced by size alone—it would be reasonable to expect that the dentition
would have had higher AUC-ROC values similar to those of the cranial data. Whether or
not the antimeric substitution of left teeth for right teeth in the absence of a right-side tooth
and/or the sheer amount of missingness influenced the much lower dental AUC-ROC is
unknown. More cranial-dental comparisons are necessary to evaluate the reliability of the
dentition in this framework.

The ensembles themselves can be strengthened by including a greater diversity of
algorithms and customizing them with varying hyperparameters (pre-training settings)
to find the most accurate and best performing tunings [68]. Other considerations can be
more thoroughly incorporated as well, such as different confusion matrix derivations to
evaluate performance, such as precision and recall to further highlight class imbalance
problems, balanced estimator constructions, false discovery rate, and F1 score. Negative
log-likelihood could also be used as the optimizer instead of nonnegative least squares.
Other algorithms and methods also might be more appropriate—only a few algorithms
with default settings were incorporated in this project but many others can be included
in the ensemble (e.g., Bayesian additive regression trees [69]). Features could be screened
to identify more interpretable models and custom algorithms can be included to the
researcher’s exact specifications (see Kennedy, 2017 [61] for the R walkthrough). Moreover,
deep learning—a subdiscipline of machine learning that utilizes multi-layered artificial
neural networks for modeling, predicting, inferring, and understanding data—might
be even more useful [70]. When dataset sizes and the number of algorithms exceed
personal compute potential, the software packages for analyses mentioned in this research
have instructions to be run in parallel across multiple cores on a single computer or
across multiple machines in cluster or remote settings. Perhaps of great interest to the
bioarchaeologist, variable importance information can be extracted from various algorithms
to see which cranial and dental dimensions have the highest weights for sex classification.

It is critical to note that due to the antiquity of the samples included in this research,
the ground truth sexes of the individuals included were estimated macroscopically using
pelvic and skull traits. As a result, future researchers should consider implementing this or
similar frameworks using known-sex reference skeletal collections from the Hamann-Todd
Osteological Collection (housed at the Cleveland Museum of Natural History), the Robert J.
Terry Anatomical Skeletal Collection (Smithsonian Institution, National Museum of Natural
History), or the 21st Century Identified Skeletal Collection (University of Coimbra, Portu-
gal). However, my goal was not to concretely establish this ensemble machine learning
method in any dogmatic way, but to instead onboard the reader to the basic concepts and
their application in bioarchaeology. This study is merely a demonstration of the methods
and an advertisement of the potential for generalized low rank imputation and ensem-
ble machine learning processes in bioarchaeological and forensic contexts. Known-sex
references samples should be a prerequisite for confirmation of methods presented here,
and larger sample sizes might also be important. Cadaver samples and skeletal collec-
tions such as those mentioned above would be particularly useful for these procedures.
Furthermore, I encourage future researchers to examine the effects that different missing
data handling methods (listwise deletion, mean, median, k-nearest neighbor, bootstrap,
expectation-maximization, multiple imputation, GLRMs, etc.) have on error estimates in
cases of sex prediction in the bioarchaeological record.

Ensemble machine learning techniques should be considered as part of the bioarchae-
ologist’s toolkit as an additional method for comparison to macroscopic interrogations of
the skeleton and dentition that we rely upon for reconstruction of the biological profiles
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of past humans. These techniques can potentially assist not only in bioarchaeological
reconstructions, but also in forensic applications for identification of missing persons and
perhaps even to material, faunal, and floral assemblages as well as mortuary studies and
settlement organization. Furthermore, GLRMs warrant further exploration and should
be considered by bioarchaeologists as a potentially strong data preprocessing tool when
faced with missing data and analytical techniques that require full datasets for computa-
tion. Social scientists in general would benefit from updating their instrumentation with
cross-validated ensemble machine learning techniques when research requires an outcome
to be predicted.
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