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Abstract: This article introduces a novel approach for generating low-sensitive Pareto fronts of
analog circuit performances. The main idea consists of taking advantage from the social interaction
between particles within a multi-objective particle swarm optimization algorithm by progressively
guiding the global leading process towards low sensitive solutions inside the landscape. We show
that the proposed approach significantly outperforms already proposed techniques dealing with the
generation of sensitivity-aware Pareto fronts, not only in terms of computing time, but also with
regards to the number of solutions forming the tradeoff surface. Performances of our approach are
highlighted via the design of two analog circuits.

Keywords: sensitivity analysis; multi-objective optimization; Pareto front; MOPSO-CD; NSGA-II;
CMOS; CCII; VF; Richardson extrapolation technique

1. Introduction

Due to the unending technology evolution and the ever greedy need for higher performance,
electronic circuit sizing has become very complex. Only skilled designers are able to propose a
priori ‘optimal’ sizing for such circuits. Due to metaheuristics (in addition to the use of circuit
simulators [1–3] for evaluating performances/constraints), designers and engineers (not only highly
experienced specialists) have been able to handle complex circuit performances and, thus, they were
capable of generating ‘optimal’ sizing that maximize/minimize such circuits/systems performances,
while satisfying ‘complex’ intrinsic/extrinsic constraints [4–8]. Evolutionary algorithms and swarm
intelligence techniques are examples of such nature inspired optimization techniques [6–10].

Most of the time, such circuits/systems performances are conflicting and non-commensurable
ones [4,6,7]. Fortunately, multi-objective metaheuristics offer excellent solutions for handling such
further complex optimization problems. They have already been used for optimally sizing analog,
mixed signal and radio-frequency circuits; see for instance [1,2,4,10–14].

Due to the variability of CMOS technology parameters and tolerance of component values,
sensitivity analysis has become unavoidable, as stressed in [15–18]. The available literature offers a
plethora of published papers offering different approaches for sizing analog circuits, while taking into
consideration sensitivity analysis. Most of them use the Richardson exploration technique within
an in-loop sizing approach; see for instance [17–20]. However, the already published techniques
generally proceed a posteriori for generating low sensitive solutions when handling multi-objective
optimization problems. For instance, Pareto front, also known as the resulting archive, can be generated
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by applying multi-objective metaheuristics. Afterwards, sensitivity analysis of the feasible solutions
can be evaluated. In this process, the solutions presenting sensitivity values higher than a certain
acceptable threshold are discarded, while only interesting ones are maintained.

As stressed in [15], the resulting feasible set may be formed by a considerably reduced (or even
null) number of solutions. The authors in [15] proposed a novel idea, allowing a full archive to
be obtained that has been formed by low sensitive solutions. It consists of sensitivity within the
inheritance process of an evolutionary algorithm, like the non-dominated sorting genetic algorithm
NSGA-II, and the proposed approach considers sensitivity values, when ranking Pareto fronts during
the algorithm execution. Different inheritance strategies have been considered and it has been shown
that the most interesting one consists of starting with a high acceptable value of the sensitivity threshold,
then linearly reducing it as iterations go on. The viability of that approach was showcased via two
CMOS analog circuits, namely: Second-generation current conveyor (CCII) and a voltage follower.
However, the significant drawback of that approach is its high computing time (around ten hours for
optimizing analog circuits).

In this article we propose a new approach, based on the use of a swarm intelligence technique
to alleviate the aforementioned burden. The proposed idea consists of taking benefits of the social
interaction between particles, by altering the choice of the swarm’s leader, within a particle swarm
optimization approach, and taking into account the sensitivity values for guiding the global move of
the swarm. Our approach, as shown below, allows reducing the Pareto front generation time to the
sixth, as compared to the one proposed in [15].

The rest of the article is structured as follows: Section 2 gives a brief overview of particle swarm
optimization technique. Section 3 details the proposed multi-objective optimization approach. Section 4
presents the results obtained when applying the proposed approach for optimizing two CMOS analog
circuits. Section 5 offers a brief discussion on the results obtained in Section 4. Finally, the conclusions
are set out in Section 6.

2. Particle Swarm Optimization Technique

Metaheuristics are nature-inspired optimization techniques. A taxonomy of such stochastic
optimization techniques is proposed in [21], where metaheuristics are classified into seven categories
according to their intrinsic mechanisms: (i) Stochastic algorithms, such as tabu search [22];
(ii) Evolutionary algorithms, such as genetic algorithms [23]; (iii) physical algorithms, such as harmony
search [24]; (iv) probabilistic algorithms, such as Bayesian algorithm [25]; (v) swarm algorithms
(also known as swarm intelligence techniques (SI)), such as particle swarm optimization (PSO) [26];
(vi) immune algorithms, such as Dendritic cell algorithms [27]; and (vii) neural algorithms, such as
Hopfield network [28]. All are known to be efficient and robust techniques.

PSO mimics swarming habits of animal species living in large colonies, namely fish and birds. It is
known to be a very rapid algorithm. Besides, it is easy to be implemented within a computer program.
Its convergence mechanism consists of moving the swarm’ particles, i.e., the problem variables in
the fitness landscape via two simple equations, representing velocity and position of each particle,
see Equations (1) and (2) that exploit psycho-social tradeoff between oneself trust and the particle’s
social relationships.

vi(t + 1) = wvi(t) + c1r1[pb(t) − xi(t)] + c2r2[gb(t) − xi(t)] (1)

xi(t + 1) = xi(t) + vi(t + 1). (2)

where i is the particle index, w is the inertia coefficient (0.8 ≤ w ≤ 1.2), c1 and c2 are respectively the
cognitive and the social acceleration coefficient (0 ≤ c1, c2 ≤ 2). r1, r2 are uniformly generated random
values (0 ≤ r1, r2 ≤ 1) regenerated every velocity update. vi(t), and xi(t), are respectively, the particle’s
velocity and position at time t. pb(t) and gb(t) are the particle’s individual and swarm’s best solution as
of time t, respectively.
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Figure 1 illustrates the basic concept of PSO algorithm that lies in using random weights to
accelerate particles towards their individual and swarm’s best locations.Electronics 2019, 8, x FOR PEER REVIEW 3 of 9 
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Figure 1. Illustration of the concept of a particle’s move within the swarm.

MOPSO-CD is a variant of PSO that can handle multi-objective problems. It considers a crowding
distance based routine to ensure good spread of the solutions along the Pareto front [29]. Its flowchart
is depicted at Figure 2. In the following MOPSO-CD is used.
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3. Proposed Multi-Objective Optimization Approach

As introduced above, gb presents the current most promising location amongst the particle’s
neighborhood. It is nothing but the first side of the balance “exploration/intensification” of the
metaheuristic’s search mechanism. It represents the global search part (contrary to gp, which represents
the second side, i.e., intensification or local search).

Each particle position change is influenced by the swarm’s best roost gb, i.e., by the experience of
the whole swarm (or the experience of its neighborhood, depending on the chosen communication
strategy). The proposed idea consists of altering the evolution process of PSO by including sensitivity
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within the choice of gb. Thus, at each iteration, the overall swarm searching process will be influenced
by the most promising solution obtained so far, i.e. current less sensitive particle. pb is not subject to
the same process, otherwise the program can easily converge prematurely. Richardson extrapolation
technique [17–20] is applied herein within the in-loop algorithm to compute sensitivity values.

For fixing gb, different strategies have been considered (see Cases #0-4 below). For comparison,
we present gb choice schemes, similar to those in [15]. Similarly, the same application examples
were considered, and the same computing machines were used, i.e., Intel I7 3GHz 8Go 64 bits PCs.
The number of iterations (100) is the stop criterion. The archive and the population sizes are both equal
to 50. Regarding PSO, we considered the following parameters: c1 = c2 = 1, w = 0.4.

• Case #0: It is a direct generation of the Pareto front, using MOPSO-CD. This case serves as a
reference for the computing time.

• Case #1: It consists of generating the Pareto front then eliminating solutions presenting sensitivity
values higher than the predefined threshold. This case serves as a reference for the number of
(remaining) valid solutions forming the Pareto front.

• Case #2: This case considers sensitivity as a constraint (penalty technique is applied).
• Case #3: It involves executing the algorithm ignoring sensitivity for the half of the total number of

iterations, then, each iteration choosing gb as the lowest sensitive particle found so far.
• Case #4: Here we consider a linear decrease of the sensitivity threshold, starting from 1 down

to the predefined acceptable one. At each iteration, the global first found particle offering a
sensitivity value lower than the ‘dynamic’ threshold, is taken as gb. Figure 3 shows the flowchart
of this case #4.
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4. Application to Analog Circuit Optimization

As introduced above, both circuits of [15], namely a second-generation CMOS current conveyor
(CCII shown in Figure 4) and a CMOS voltage follower (VF shown in Figure 5), are optimized herein to
highlight performances of the proposed approach. The sizing of these circuits is performed as in [15],
using AMS 0.35 µm technology, and with the following bias conditions: Vdd = –Vss = 1.5 V and Ibias
= 50 µA, for the VF; and Vdd = –Vss = 2.5 V and Ibias = 100 µA, for the CCII.
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The CCII is optimized to minimize the input parasitic impedance (Rx) and to maximize the current
transfer bandpass (Fci). The optimization of the VF consists on minimizing the voltage offset (Offset)
and maximizing the voltage transfer bandpass (Fcv). In both cases, the threshold sensitivity level is
1%. Table 1 summarizes the results obtained for the aforementioned cases, and shows a comparison
between those results, by applying the approach provided in [15]. Compt-time and Nb-PF refer to the
computing time and number of points forming the final archive, respectively.

Table 1. Simulation results for the different cases.

The Proposed Approach [15]

Case #0 Case #1 Case #2 Case #3 Case #4 Case #4

VF
Nb-PF 50 0 50 50 50 50

Compt- time 1h07’ 1h10’ 10h05’ 5h50’ 1h21’ 9h49’

CCII
Nb- PF 50 1 50 50 50 50

Compt- time 1h18’ 1h07’ 9h24’ 5h34’ 1h18’ 10h02’
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Figures 6 and 7 show Pareto fronts obtained for the different considered cases for both CCII and
VF. Figures 8 and 9 offer a comparison for both CCII and VF between fronts obtained by Case #4,
and that in [15], respectively.
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5. Discussion

Table 1 clearly highlights that the proposed multi-objective optimization approach outperforms
those proposed in published works dealing with the generation of sensitivity aware Pareto fronts,
particularly in [15]; it allows getting a full archive (similarly to [15]) within around one sixth of the
time. In [15], the approach consists of taking benefits from the inheritance process within genetic
algorithms, in order to convey the considered features from one generation to the other. However,
within NSGA-II, the ranking processes, as well as the evolutionary operators, are very time consuming.
Here, we exploit the fact that the information sharing between particles within a PSO swarm is very
rapid, hence the important time reduction. The computation time becomes reasonable; making our
approach more suitable for a CAD program (the overall computation time is mainly limited by the
Richardson exploration technique execution time, as it can be noticed when comparing Case #0 and
Case #4 results in Table 1). Further, as shown in Figures 8 and 9, the proposed approach allows more
interesting Pareto fronts to be generated. It is thus proven that our approach is quite suitable for
sizing analog circuits and ensures convergence to the optimal trade off surface without impairing the
expected overall performances of the metaheuristic.
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6. Conclusions

An MOPSO-CD sensitivity aware optimization approach has been proposed. It allows Pareto fronts
linking conflicting performances of analog circuits to be generated. The basic idea consists of ‘positively’
altering the exploration process of the considered metaheuristic by introducing sensitivity analysis
within the social influence of a swarm on a particle’s move decision. The proposed multi-objective
optimization approach outperforms those proposed in the current literature. In addition, it is very
suitable for being implemented within a sizing CAD tool. Similar philosophies can be applied to
handle other complex objectives, such as yield optimization, as well as to other engineering problems.

The Richardson exploration technique remains a limitation regarding the computing time reduction,
as stressed in Section 5. Our current work focusses on using metamodels for sensitivity evaluation.
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