
Citation: Sergiyenko, O.; Zhirabok,

A.; Mercorelli, P.; Zuev, A.; Filaretov,

V.; Tyrsa, V. Jordan Canonical Form

for Solving the Fault Diagnosis and

Estimation Problems. Technologies

2023, 11, 72. https://doi.org/

10.3390/technologies11030072

Academic Editor: Yiqi Liu

Received: 16 April 2023

Revised: 27 May 2023

Accepted: 31 May 2023

Published: 3 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

technologies

Article

Jordan Canonical Form for Solving the Fault Diagnosis and
Estimation Problems
Oleg Sergiyenko 1,*,† , Alexey Zhirabok 2,3,† , Paolo Mercorelli 4,*,† , Alexander Zuev 3,†, Vladimir Filaretov 5,†

and Vera Tyrsa 6,†

1 Engineering Institute, Universidad Autonoma de Baja California, Mexicali 21100, Mexico
2 Department of Automation and Robotics, Far Eastern Federal University, 690922 Vladivostok, Russia;

zhirabok@mail.ru
3 Institute of Marine Technology Problems, 690990 Vladivostok, Russia; zuev@dvo.ru
4 Institute for Production Technology and Systems (IPTS), Leuphana University of Lueneburg,

21335 Lueneburg, Germany
5 Institute of Automation and Control Processes, 690041 Vladivostok, Russia; filaretov@inbox.ru
6 Engineering Faculty, Universidad Autonoma de Baja California, Mexicali 21100, Mexico; vtyrsa@uabc.edu.mx
* Correspondence: srgnk@uabc.edu.mx (O.S.); paolo.mercorelli@leuphana.de (P.M.)
† These authors contributed equally to this work.

Abstract: The suggested methods for solving fault diagnosis and estimation problems are based on
the use of the Jordan canonical form. The diagnostic observer, virtual sensor, interval, and sliding
mode observer design problems are considered. Algorithms have been developed to solve these
problems for both linear and nonlinear systems, considering the presence of external disturbances and
measurement noise. It has been shown that the Jordan canonical form allows reducing the dimensions
of interval observers and virtual sensors, thus simplifying the design process in comparison to the
identification canonical form. The theoretical results are illustrated through examples.
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1. Introduction

Different canonical forms of dynamic systems play an important role in solving
different theoretical and practical problems, see, for example, refs. [1–4]. They facilitate the
simplification of solution processes and enable simple algorithms. In particular, to solve
fault diagnosis and estimation problems, an identification canonical form (ICF) is used [1,5].

Another popular canonical form is the Jordan canonical form (JCF); it uses design
interval observers [2,6–12] and analyzes error correction properties in discrete-time sys-
tems [13]. The matrix of the JCF, under an appropriate choice of the eigenvalues, is Hurwitz
and Metzler, which means that its non-diagonal elements are non-negative. Such properties
guarantee that the interval observer generates lower and upper bounds of the state vector
for systems with uncertainties. An analysis of the JCF has shown its capability to facilitate
stability and simplify the construction of disturbance-insensitive observers, reducing their
dimensionality.

The main contribution of this paper lies in the development of methods that apply the
JCF to solve the problems related to diagnostic and sliding mode observers, virtual sensors,
and interval observers for linear and nonlinear systems; these methods are presented in
forms that are more general than those found in [1,2,7,14] and similar papers. Unlike the
known methods, the suggested approach is based on the reduced-order model derived
from the original system, which is insensitive or has minimal sensitivity to the disturbance.
This allows obtaining the observers and sensors of less dimensions, reducing the impact of
disturbances on the accuracy of diagnosis and estimation results.
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Such problems will be solved for systems described by nonlinear models

ẋ(t) = Ax(t) + Bu(t) + GΨ(x(t), u(t)) + F f (t) + Dd(t),
y(t) = Cx(t) + w(t),

(1)

where x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rl are the vectors representing the state, control,
and output; A, B, C, G, and D are the known constant matrices; matrix F and function
f (t) ∈ R describe faults. If faults are absent, f (t) = 0, if a fault occurs, then f (t) becomes
an unknown bounded function of time; d(t) ∈ Rp is the disturbance, it is assumed that d(t)
is an unknown bounded function of time, ‖d(t)‖ ≤ d∗; w(t) is the measurement noise; it is
assumed that w(t) ∈ Rl is an unknown bounded function of time: ‖w(t)‖ ≤ w∗; Ψ(x, u) is
the nonlinear term:

Ψ(x, u) =

 ϕ1(P1x, u)
. . .

ϕq(Pqx, u)

,

P1, . . . , Pq are the known constant matrices, ϕ1, . . . , ϕq are nonlinear functions. It is assumed
that the function GΨ(x, u) is bounded for all x ∈ X and u ∈ U and it satisfies the Lipschitz
condition with respect to x uniformly for t and u:

‖G(Ψ(x, u)−Ψ(x′, u))‖ ≤ N‖x− x′‖,

where N > 0 is a constant.
Consider the initially linear systems when G = 0.

2. Diagnostic Observer Design

All of the considered problems are based on the reduced order model of the system (1),
which has a minimal dimension and is insensitive to the disturbance, as described by
the equations

ẋ∗(t) = A∗x∗(t) + B∗u(t) + J∗y(t),
y∗(t) = C∗x∗(t),

(2)

where x∗ ∈ Rk, with k < n, is the vector of state, y∗ ∈ R, A∗, B∗, J∗, and C∗ are matrices to
be determined. One may say that model (2) is a simplified version of the original system.

The diagnostic observer is based on this model and generates the residual r(t) =
R∗y(t)− y∗(t) used to make a decision about the faults. We assume in this section that
w(t) = 0; if w(t) 6= 0, an adaptive threshold for r(t) can be used [1].

As usual, we assume that the relation x∗(t) = Φx(t) is true, where Φ is a constant
matrix to be determined. It is known [5,15] that they satisfy the following equations

ΦA = A∗Φ + J∗C, R∗C = C∗Φ, ΦB = B∗. (3)

As usual, to construct model (2), the matrices A∗ and C∗ are sought in ICF

A∗ =


0 1 0 . . . 0
0 0 1 . . . 0

. . . . . . . . . . . .
0 0 0 . . . 0

, C∗ = ( 1 0 0 . . . 0 ). (4)

This form enables obtaining simple equations for the matrices that describe the model (2) [5];
it also ensures the stability of the observer through feedback Kr(t) = (k1 k2 . . . kk)

Tr(t)
and desirable eigenvalues λ1, λ2, . . . , λk, which are assumed to be negative and different.
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We suggest specifying the matrix A∗ as purely diagonal JCF

A∗ =


λ1 0 0 . . . 0
0 λ2 0 . . . 0

. . . . . . . . . . . .
0 0 0 . . . λk

. (5)

It is known that the model with A∗ and C∗ in the form (4) and feedback Kr(t) can be
transformed into the model with A∗ (5) with λi < 0 to ensure stability.

Instead of applying such a transformation, we will use the JCF form of the ma-
trix F∗ in (2). In this case, the equation ΦA = A∗Φ + J∗C is presented in the form of
k-independent equations:

ΦiF = λiΦi + J∗iC, i = 1, 2, . . . , k, (6)

where Φi and J∗i are i-th rows of the matrices Φ and J∗, respectively. An additional condition
ΦiD = 0 (insensitivity to the disturbance) can be taken into account as follows. Introduce
the matrix D0 of maximal rank, such that D0D = 0. Then, Φ = ND0 for matrix N. As
a result, (6) can be rewritten as

(Ni − J∗i)
(

D0(A− λi In)
C

)
= 0, i = 1, 2, . . . , k, (7)

where In is the identical n× n-matrix.
Matrices R∗ and C∗ can be obtained from R∗C = C∗Φ, and rewritten in the form

(R∗ − C∗)
(

C
Φ

)
= 0. (8)

This equation has a solution if and only if

rank
(

Φ
C

)
< rank(Φ) + rank(C). (9)

To design the diagnostic observer, one chooses λ1 < 0 and finds from (7) the row
Φ1 = N1D0 of the matrix Φ for which condition Φ1F 6= 0 of sensitivity to the fault is
satisfied. Then one has to find from (7) the minimum number of rows Φi corresponding to
λi < 0 for which condition (9) is satisfied with Φ1. The matrices B∗, J∗, R∗, and C∗ can be
determined using (3), (7), and (8), respectively. Since the matrix (5) with λi < 0 is stable,
there is no need to use feedback.

Remark 1. If (7) or (8) has no solution, the model insensitive to the disturbance cannot be designed;
in this case, one has to use the robust method described in Section 7.

3. Virtual Sensor Design

Different sensors are an integral part of modern complex technical systems. They
are used, in particular, to measure the components of the state vector in order to address
control and fault diagnosis problems. Clearly, the greater the number of components that
are measured, the easier it becomes to obtain simpler solutions. The use of additional
physical sensors may result in extra expenses and cannot always be realized in practice.
In addition, such sensors are not highly reliable. In this case, virtual sensors are of interest;
moreover, they can be used for replacing faulty physical sensors. In practice, virtual sensors
are used to solve different problems, particularly for fault detection, isolation, data recovery,
and fault-tolerant control [16,17]. In [1,14,16–18], virtual sensors were constructed using the
Luenberger observer; in [1,14], and similar papers, the authors considered full dimensions.
In [19], the problem of designing virtual sensors with minimal dimensions, capable of
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estimating a prescribed linear function of a nonlinear system, has been solved using the
ICF approach.

The use of the JCF enables a further reduction in dimensions compared to the ICF
because the JCF ensures stability itself. As a result, the virtual sensor becomes simpler
when compared to papers such as [1,14], and similar papers. Assuming w(t) = 0 and
d(t) = 0, we consider the general problem of estimating the variable z(t) = Mx(t), where
the known matrix is M. This problem can be viewed as the design of a virtual sensor that
estimates the variable z(t). We assume that ΦD = 0 and describe such a sensor by

ẋ∗(t) = A∗x∗(t) + B∗u(t) + J∗y(t),
z(t) = Czx∗(t) + Qy(t),

(10)

where Cz and Q are matrices to be determined. It follows from z(t) = Mx(t) and (10)

M = CzΦ + QC = (Cz Q)

(
Φ
C

)
. (11)

This equation has a solution if and only if

rank
(

Φ
C

)
= rank

 Φ
C
M

. (12)

To design the virtual sensor, the value λi < 0 and rows Φi = NiD0 in (7) must be such
that the matrix Φ with the minimum number of rows satisfies condition (12), then matrices
B∗, Cz, and Q can be determined using (3) and (11), respectively.

Remark 2. If w(t) 6= 0 or the solution of (7) does not satisfy condition (12), the accuracy of the
estimation diminishes. In these cases, lower and upper bounds for the variable z(t) can be generated
by the interval observer.

4. Interval Observer Design

In recent years, different kinds of interval observers have been presented for many
types of models, including linear and non-linear continuous-time [10,20–22], discrete-
time [9,23,24], time delay [2,6], and algebraic differential [6]. They have also been success-
fully applied to solve many real-time life problems [11,16]. Exhaustive reviews can be
found in [2,7].

In this paper, the interval observers were designed to estimate the prescribed linear
function z(t) = Mx(t) of the state vector x(t). Such observers are based on the JCF-reduced
order model of the original system of minimal dimensions and are insensitive or minimally
sensitive to disturbances. This allows for reducing the interval width and the dimensions
of the observer when compared to papers such as [2,7], and in similar works, where the
full vector x(t) is estimated.

From the above, it follows that interval observers can be considered as generalized
virtual sensors when w(t) 6= 0 or ΦD 6= 0 for Φ satisfying condition (12).

Given the variable z(t) = Mx(t), we construct an interval observer with minimal
dimensions generating lower z(t) and upper z(t) bounds, such that z(t) ≤ z(t) ≤ z(t)
for all t ≥ 0, where, by using an approach similar to [2], for two vectors x(1), x(2) ∈ Rn

or matrices P1, P2 ∈ Rn×n, the relations x(1) ≤ x(2) and P1 ≤ P2 are understood element-
wise. In [8], the interval observer used for estimating the vector x(t) is based on the stable
observer, which is then transformed into the JCF. In contrast, the matrix A∗ in our approach
is sought in the JCF.



Technologies 2023, 11, 72 5 of 13

When the requirement for insensitivity to the disturbance is not present, Equation (7)
can be simplified as follows:

(Φi − J∗i)
(

A− λi In
C

)
= 0, i = 1, 2, . . . , k, (13)

and model (2) takes the form

ẋ∗(t) = A∗x∗(t) + B∗u(t) + J∗Cx(t) + D∗d(t),
z(t) = Czx∗(t) + Qy(t),

(14)

where D∗ = ΦD. The interval observer is given by

ẋ∗(t) = A∗x∗(t) + B∗u(t) + J∗y(t)− |J∗|Ekw∗ − |D∗|Ekd∗,
ẋ∗(t) = A∗x∗(t) + B∗u(t) + J∗y(t) + |J∗|Ekw∗ + |D∗|Ekd∗,

z(t) = Czx∗(t) + Qy(t),
z(t) = Czx∗(t) + Qy(t),

x∗(0) = x∗0, x∗(0) = x∗0,

(15)

where x∗0 ≤ x∗(0) ≤ x∗0 for the known x∗0, x∗0; the elements of the matrix |A| are absolute
values of the corresponding elements of A; Ek = (1 1 . . . 1)T .

Theorem 1. If Cz ≥ 0 and x∗(0) ≤ x∗(0) ≤ x∗(0), then for the interval observer (15), z(t) ≤
z(t) ≤ z(t) holds.

Proof of Theorem 1. Using an approach similar to [2], we introduce the estimation errors

e∗(t) = x∗(t)− x∗(t), e∗(t) = x∗(t)− x∗(t),
ez(t) = z(t)− z(t), ez(t) = z(t)− z(t).

(16)

It follows from x∗(0) ≤ x∗(0) ≤ x∗(0) that e∗(0) ≥ 0 and e∗(0) ≥ 0. Taking into account (14)
and (15), one obtains:

ė∗(t) = A∗e∗(t) + J∗(Cx(t)− y(t)) + D∗d(t) + |J∗|Ekw∗ + |D∗|Ekd∗
= A∗e∗(t)− J∗w(t) + D∗d(t) + |J∗|Ekw∗ + |D∗|Ekd∗,

ė∗(t) = A∗e∗(t)− J∗(Cx(t)− y(t))− D∗d(t) + |J∗|Ekw∗ + |D∗|Ekd∗
= A∗e∗(t) + J∗w(t)− D∗d(t) + |J∗|Ekw∗ + |D∗|Ekd∗.

(17)

Note that in (17) ±J∗w(t) + |J∗|Ekw∗ ≥ 0 and ±D∗d(t) + |D∗|Ekd∗ ≥ 0 hold for all t ≥ 0,
and the non-diagonal elements of the matrix A∗ are non-negative. Solutions of this system
under e∗(0) ≥ 0 and e∗(0) ≥ 0 are non-negative element-wise; that is, e∗(t) ≥ 0 and e∗(t) ≥
0 for all t ≥ 0 [2]. This with (16) gives x∗(t) ≤ x∗(t) ≤ x∗(t). Since z(t) = Czx∗(t) + Qy(t),
it follows from (16)

ez(t) = Czx∗(t) + Qy(t)− (Czx∗(t) + Qy(t)) = Cze∗(t),
ez(t) = Czx∗(t) + Qy(t)− (Czx∗(t) + Qy(t)) = Cze∗(t).

As a result, under e∗(t) ≥ 0, e∗(t) ≥ 0, and Cz ≥ 0, one obtains ez(t) ≥ 0, ez(t) ≥ 0, which
is equivalent to z(t) ≤ z(t) ≤ z(t).

To construct the interval observer that estimates the variable z(t) = Mx(t), one has
to find a minimum number of solutions of (13) with λi < 0, which form the matrix Φ that
satisfies condition (12); moreover, matrices J∗, B∗, and D∗ need to be calculated.

Remark 3. To reduce the width of the interval (z(t), z(t)), one has to find the matrices Φ and J∗
from (7), which ensures D∗ = 0 or uses the robust solution in Section 7.
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Remark 4. It can be seen that if Cz ≤ 0, bounds should be calculated as

z(t) = Czx∗(t) + Qy(t), z(t) = Czx∗(t) + Qy(t).

The suggested approach to the interval estimation of the variable z(t) = Mx(t) can be
used for a similar estimation of the vector x(t), as follows. Assume that the matrix C is of
maximal rank and

C = (C0 0), y(t) = C0x(1)(t) + w(t), x =

(
x(1)

x(2)

)
,

C0 is a nonsingular matrix. We introduce

y(t) = y(t)− Elw∗, y(t) = y(t) + Elw∗,
x(1)(t) = C−1

0 y(t), x(1)(t) = C−1
0 y(t).

(18)

Then

e(1)(t) = x(1)(t)− x(1)(t) = C−1
0 (y(t)− w(t))− C−1

0 y(t) = C−1
0 (Elw∗ − w(t)),

e(1)(t) = x(1)(t)− x(1)(t) = C−1
0 y(t)− C−1

0 (y(t)− w(t)) = C−1
0 (Elw∗ + w(t)).

Assuming that C−1
0 ≥ 0, one obtains from Elw∗ ± w(t) ≥ 0 that e(1)(t) ≥ 0 and e(1)(t) ≥ 0;

as a result, x(1)(t) ≤ x(1)(t) ≤ x(1)(t).
Thus, the variable x(1)(t) under C−1

0 ≥ 0 is estimated by (18); the variable x(2)(t) can
be estimated by using an approach similar to the observer (15). Note that the disturbance
d(t) does not affect the estimation (18).

Remark 5. Condition C−1
0 ≥ 0 is satisfied in practical important cases when components of the

vector x(1)(t) are measured by sensors and C0 = C−1
0 = Il .

5. Sliding Mode Observer Design

Sliding mode observers (SMOs) provide a solution for the problem of state and
fault estimation in dynamic systems. The design methods for such observers have been
developed in various works, including [25–33] for different classes of systems and fault-
tolerant control [34]. A distinguishing feature of these and similar papers is that when
constructing SMOs, some limitations are imposed on the original system; for example, in
references [26,35], and similar papers, the system should be a minimum phase and satisfy
the matching condition. In [30], this condition is relaxed and only requires detectabil-
ity. Moreover, SMOs are constructed based on the original system. As a result, sliding
mode observers are of full order. The slightest conditions were obtained in [36] based on
the reduced-order model of the original system with different sensitivities to faults and
disturbances. Such a model in [36] is realized in the ICF.

The suggested approach below is a modification of what was presented in [36], and is
based on the JCF. Assume that w(t) = 0. Since the JCF is stable, the additional requirements,
including the minimum phase or detectability [26,30], are not imposed upon the original
system in the suggested approach.

As noted in Section 2, by solving Equation (7), one can construct a minimal-dimension
model that is insensitive to disturbances:

ẋ∗(t) = A∗x∗(t) + B∗u(t) + J∗y(t) + F∗ f (t),
y∗(t) = C∗x∗(t),

(19)

where F∗ = ΦF. Since one-dimensional subsystems in the JCF are independent of each
other, the sliding mode observer is one-dimensional as well. One has to choose λ1 < 0
and find a row Φ1 = N1D0 from (7) that satisfies the condition for sensitivity to the fault,
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as well as Φ1 = R∗C for some matrix R∗. Note that these conditions are equivalent to
rank(CF) = rank(F) [26]. Matrix J∗ can be determined using (7); finally, matrix B∗ = Φ1B
is calculated.

As a result, model (19) becomes

ẋ∗(t) = λ1x∗(t) + B∗u(t) + J∗y(t) + F∗ f (t),
y∗(t) = x∗(t) = R∗y(t),

(20)

where x∗ = Φ1x. The sliding mode observer is of the form

˙̂x∗(t) = λ1 x̂∗(t) + B∗u(t) + J∗y(t)− k1v(t),
ŷ∗(t) = x̂∗(t),

(21)

where v(t) = sign(e(t)), e(t) = ŷ∗(t)− R∗y(t), k1 > 0.
The estimation error e(t) is described by

ė(t) = λ1e(t)− k1v(t)− F∗ f (t). (22)

Since f (t) is the bounded function and ‖v(t)‖ = 1, then ‖k1v(t) + F∗ f (t)‖ ≤ g0 for some
g0 > 0. It is known that e(t) is bounded as well and ‖e(t)‖ ≤ δ for some δ > 0.

Theorem 2. The observer (21) estimates the function f (t) as

d̂(t) = −F−1
∗ k1veq(t), (23)

where veq(t) is the so-called equivalent output injection signal representing the average behavior of
the discontinuous function v(t). According to [26], we use as veq(t) the continuous approximation
veq(t) = e(t)/(|e(t)|+ ε), where ε is a small positive scalar.

Proof of Theorem 2. We can prove that by selecting a suitable observer gain k1, e = 0 in fi-
nite time and sliding motion are achieved. We consider the Lyapunov function V(t) = e2(t)
and find its derivative with respect to time, taking into account (22):

V̇(t) = 2e(t)ė(t) = 2e(t)(λ1e(t)− k1v(t)− F∗ f (t)).

Since v = sign(e), then ek1v = k1|e| and

V̇ ≤ 2|e|(−k1 + λ1δ + f∗‖F∗‖).

If k1 > λ1δ + f∗‖F∗‖, then V̇ < 0, and the sliding motion is achieved, which is e = ė = 0 in
finite time. Then it follows from (22) that the fault is estimated by (23).

When the measurement noise w(t) 6= 0, the main result remains the same, but the
requirement for the coefficient k1 becomes more rigorous. In this case, Equation (22) for the
error e(t) is supplemented by J∗w(t):

ė(t) = λ1e(t)− k1v(t)− F∗ f (t) + J∗w(t).

As a result, the additional term appears in the derivative of the function V̇:

V̇ ≤ 2|e|(−k1 + λ1δ + f∗‖F∗‖+ w∗‖J∗‖),

and the formula for k1 changes: k1 > λ1δ + f∗‖F∗‖+ w∗‖J∗‖. The existence of the mea-
surement noise means that the estimation (23) becomes approximate:

d̂(t) ≈ −F−1
∗ k1veq(t).
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6. Nonlinear Systems

If the original system is nonlinear, the nonlinear term supplements the right-hand side
of model (2)

G∗Ψ∗(x∗, y, u) =

 ϕi1(P∗1,i1 x∗ + P∗2,i1 y, u)
. . .

ϕik (P∗1,ik x∗ + P∗2,ik y, u)

,

where P∗1,i1 , P∗2,i1 , . . . , P∗1,ik , P∗2,ik are matrices to be determined, G∗ = ΦG; G∗Ψ∗ is
a function G∗Ψ in which the vector x is replaced by x∗ and y according to Pix = P∗1,ix∗ +
P∗2,iy, i = i1, . . . , ik; the numbers i1, . . . , ik are nonzero columns of the matrix G∗.

The relations (3) are supplemented by

ΦG = G∗, Pi = (P∗1,i P∗2,i)

(
Φ
C

)
, i = i1, . . . , ik. (24)

The second one has a solution if and only if

rank
(

Φ
C

)
= rank

 Φ
C
Pi

, i = i1, . . . , ik. (25)

To construct the nonlinear term, one finds from (7) the minimum number of the matrix
Φ rows with λi < 0; set G∗ := ΦG, calculate the product G∗Ψ(x, u), and check (25). If it is
satisfied, find the matrices P∗1i and P∗2i, and i = i1, . . . , ik from (24). If (25) is not satisfied,
find another solution of (7) with the former or incremented value k. If (25) is not satisfied
for all k, the model insensitive to the disturbance does not exist. In this case, one may use a
robust approach with minimal sensitivity to the disturbance; see [33] and Section 7.

The main problem in the nonlinear case involves the stability of the observer. Consider
only the case where the nonlinear term does not affect stability, ensured by the JCF of the
matrix A∗. Introduce the error e∗(t) = Φx(t)− x∗(t). It follows from (1) and model (2)
with the nonlinear term

ė∗ = A∗e∗ + G∗Ψ(x, u)− G∗Ψ∗(x∗, y, u)
= A∗e∗ + G∗Ψ∗(Φx, y, u)− G∗Ψ∗(x∗, y, u).

Since the function GΨ(x, u) is satisfied the Lipschitz condition, then G∗Ψ∗(Φx, y, u) is
satisfied in such a condition as well,

‖G∗(Ψ∗(Φx, y, u)−Ψ∗(x∗, y, u))‖ ≤ N∗‖e∗‖,

where N∗ > 0. Since the matrix A∗ is stable, symmetric positive definite matrices exist, L∗
and W∗, such that AT

∗ L∗ + L∗A∗ = −W∗. In [4], the Lyapunov function V(t) = eT
∗ (t)L∗e∗(t)

was considered, showing that V̇(t) < 0, which is that the observer is stable, if

2N∗λmax(L∗) < λmin(W∗), (26)

where λmax(L∗) and λmin(W∗) are the maximal and minimal eigenvalues of matrices L∗
and W∗, respectively. Assume that condition (26) is satisfied; therefore, the stability of the
observer is ensured by the JCF matrix A∗.

The demand for stability is important for nonlinear diagnostic observers and virtual
sensors. For sliding mode observers, the nonlinear term can be taken into account by
using an approach similar to the measurement noise. The coefficient k1 must satisfy the
conditions

k1 > λ1δ + f∗‖F∗‖+ w∗‖J∗‖+ δN∗,

where N∗ represents the Lipschitz constant.
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For the interval observer, in addition to the demand for stability, the function G∗Ψ∗(x∗, y, u)
should exhibit monotonicity with respect to x, uniformly for y and u, in the sense of the relation
“≤”:

x∗ ≤ x′∗ ⇒ G∗Ψ∗(x∗, y, u) ≤ G∗Ψ∗(x′∗, y, u).

This is necessary to prove e∗(t) ≥ 0, e∗(t) ≥ 0 for all t ≥ 0.
Since the variable y(t) is subject to measurement noise and appears in the nonlinear

term, the right-hand sides of (15) should be supplemented by ±k∗w∗, where the coefficient
k∗ can be determined experimentally.

7. Robust Solution

If conditions (9) and (12) for virtual sensors and interval observers) are not satisfied,
the model invariant with respect to the disturbance cannot be constructed, and one has to
use robust methods. For the ICF, such a method is described in [33]. It involves minimizing
the Frobenius norm ‖ΦL‖F, which described the contribution of the disturbance in the
model, and is realized through the singular value decomposition of a matrix [33,37].

This approach cannot be used for the JCF since rows of the matrix Φ determined by
(13) are independent of each other. To solve the problems of robust diagnostics and sliding
mode observer design, one needs to choose a certain λ1 < 0 and find from (13) a row
Φ1 = N1D0 where condition Φ1F 6= 0 of the sensitivity to the fault is satisfied. Then one
has to find from (13) the minimum number of rows Φi for which condition (9) is satisfied
with Φ1. If different solutions of (13) are possible, a choice has to be made to minimize
the norm ‖ΦiD‖F. To construct virtual sensors and interval observers, the condition (12)
should be satisfied for the minimum number of Equation (13) solutions.

As a result, it can be concluded that condition (7) of invariance with respect to the
disturbance is simple; on the other hand, when condition (9) is not satisfied, one has to use
more complex rules to minimize the contribution of the disturbance in the model. Moreover,
the JCF restricts the possibility of such minimization. An analysis has shown that, in this
case, the ICF is preferable, it enables minimizing the contribution of the disturbance more
effectively. This is not true for the interval observer since the transformation of the ICF
model, designed on the basis of the singular value decomposition into the JCF model, may
increase the contribution of the disturbance.

8. Example

Consider the nonlinear control system

ẋ1 = a1u1/ϑ1 − a2a4
√

x1 − x2,
ẋ2 = a3u2/ϑ2 + a2a4

√
x1 − x2 − a5

√
x2 − x3 + ρ,

ẋ3 = a5
√

x2 − x3 − a6
√

x3 − ϑ7,
y1 = x2 + w1, y2 = x3 + w2,

(27)

where a4 = ϑ4
√

2ϑ8/ϑ1, a5 = ϑ5
√

2ϑ8/ϑ2, and a6 = ϑ6
√

2ϑ8/ϑ3. Equation (27) represents
the model of the well-known example of a three-tank system (Figure 1), where x1, x2,
and x3 correspond to the liquid levels in the tanks. The initial conditions are x1(0) = 3,
x2(0) = 1, and x3(0) = 0. It is assumed that areas of the cross-sections of tanks ϑ1, ϑ2,
and ϑ3, areas of the cross-sections ϑ4, ϑ5, and ϑ6 of pipes, and the controls u1 and u2 are
such that x1(t) ≥ x2(t) ≥ x3(t) ≥ 0 for all t ≥ 0. This assumption is made to simplify
model (27) since the main purpose of the example is to show how the JCF can be used to
solve the interval observer design problems.
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? ?

-

u1 u2

Figure 1. Three-tank system.

Clearly, model (27) is described by matrices, where F = 0. To overcome this difficulty,
we can transform (27) by introducing formal addends −(x1 − x2) + (x1 − x2), ((x1 − x2)−
(x2− x3))− ((x1− x2)− (x2− x3)), and (x2− x3− x3)− (x2− x3− x3) in the first, second,
and third equations, respectively. Then −(x1 − x2) is added to the linear part and (x1 − x2)
to the nonlinear part; other addends are considered analogously. As a result, the system is
described by matrices and nonlinearities as follows:

A =

 −1 1 0
1 −2 1
0 1 −2

, B =

 1 0
0 1
0 0

, C =

(
0 1 0
0 0 1

)
, D =

 0
1
0

,

G =

 1 0 0
−1 1 0
0 −1 1

, Ψ(x) =

 −√P1x + P1x
−
√

P2x + P2x
−
√

P3x + P3x

,

P1 = (1 − 1 0), P2 = (0 1 − 1), P3 = (0 0 1).

Calculate interval estimates for x(t).
It follows from Section 4 that x(1) = (x2, x3)

T , x(2) = x1. Since C0 = I2, we obtain

x2(t) = y1(t)− w∗1(t), x2(t) = y1(t) + w∗1(t),
x3(t) = y2(t)− w∗2(t), x3(t) = y2(t) + w∗2(t).

To estimate z(t) = x1(t), set M := (1 0 0), D0 =

(
1 0 0
0 0 1

)
. Equation (7) becomes

(Ni − J∗i)


−1− λ 1 0

0 1 −2− λ
0 1 0
0 0 1

 = 0.

Set λ := −1 and obtain k = 1 and N = J∗ = (1 0); as a result, Φ = (1 0 0), B∗ = (1 0),
D∗ = 0, Cz = 1, Q = 0, G∗ = (1 0 0). Clearly, the condition (25) is satisfied, and
P∗1 = (1 − 1 0). Model (14) is of the form

ẋ∗(t) = u1(t)−
√

x∗(t)− y1(t),
z(t) = x∗(t).

Clearly, the model is stable; the function “√” is monotonic. The interval observer estimating
the variable x1(t) is given by

ẋ1(t) = u1(t)−
√

x1(t)− y1(t)− k∗w∗1(t),
ẋ1(t) = u1(t)−

√
x1(t)− y1(t) + k∗w∗1(t).

Note that the approach suggested in [2] gives the observer of dimension 6, and its
estimates contain the disturbance ρ(t), which is absent in our approach.

For the simulation, assume for simplicity that a1 = a2 = . . . = a6 = 1, ϑ7 = 0; |ρ| ≤ ρ∗,
|w1| ≤ w∗1, |w2| ≤ w∗2. Then take u1(t) = 0.5 and u2(t) = 0.2, x1(0) = 3, x1(0) = 1,
and x1(0) = 4. The simulation results with D[ρ] = 0.6, D[w1] = 0.1, k∗w∗1 = 0.3 and ρ = 0,
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D[w1] = 0.2, k∗w∗1 = 0.6 are shown in Figures 2 and 3, respectively, where the graphs of
the functions x1(t), x1(t), and x1(t) are presented. Clearly, the product k∗w∗1 is greater,
and the interval x1(t), x1(t) is wider. Moreover, the value of the disturbance ρ does not
affect the interval width; this confirms that the model is decoupled from the disturbance.

Figure 2. Graphs of the functions x1(t), x1(t), and x1(t) with k∗w∗1 = 0.3 and D[ρ] = 0.6.

Figure 3. Graphs of the functions x1(t), x1(t), and x1(t) with k∗w∗1 = 0.6 and ρ = 0.

9. Discussion

The problems of designing diagnostic observers, virtual sensors, interval observers,
and sliding mode observers based on the Jordan canonical form have been addressed and
resolved. The methods for solving these problems have been developed for both linear and
nonlinear systems, taking into account external disturbances and measurement noise. The
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observers are based on the reduced-order model of the original system; they are invariant
with respect to the disturbance or have minimal sensitivity to the disturbance. It was
shown that when the invariance, with respect to the disturbance, can be achieved, the
JCF allows reducing the dimensions of observers and virtual sensors, making the design
procedure simpler when compared with the ICF. On the other hand, when the invariance,
with respect to the disturbance, is impossible, and a robust solution is used, the JCF has to
use more complex rules to minimize the impact of the disturbance in the model. Moreover,
the JCF restricts the possibility of this minimization. An analysis has shown that, in this
case, ICF is preferable; it enables minimizing the contribution of the disturbance more
effectively. This is not true for the interval observer since the transformation of the ICF
model, designed on the basis of the singular value decomposition into the JCF model, may
increase the contribution of the disturbance. Theoretical results are illustrated through the
well-known tree-tank system. Future work will investigate the JCF stability in the system
with external disturbance.
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