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Abstract: As wearable technology (WT) has evolved, devices have developed the ability to track
a range of physiological variables. These include maximal aerobic capacity (VO2max) and lactate
threshold (LT). With WT quickly growing in popularity, independent evaluation of these devices
is important to determine the appropriate use-cases for the devices. Therefore, the purpose of this
study was to determine the validity of WT in producing estimates of VO2max and LT in athletic
populations. METHODS: 21 participants completed laboratory LT and VO2max testing, as well as an
outdoor testing session guided by the WT being tested (Garmin fēnix 6® watch and accompanying
heart rate monitor). Statistical analysis was completed, using hypothesis testing (ANOVA, t-test),
correlation analysis (Pearson’s r, Lin’s Concordance Correlation [CCC]), error analysis (mean absolute
percentage error [MAPE]), equivalence testing (TOST test), and bias assessment (Bland–Altman
analysis). RESULTS: The Garmin watch was found to have acceptable agreement for VO2max when
compared to the 1 min averaged values (MAPE = 6.85%, CCC = 0.7) and for LT and the onset of
blood lactate accumulation (OBLA), (MAPE = 7.52%, CCC = 0.79; MAPE = 8.20%, CCC = 0.74,
respectively). Therefore, the Garmin fēnix 6® produces accurate measurements of VO2max and LT in
athletic populations and can be used to make training decisions among athletes.

Keywords: Garmin; training; endurance; running; elite athletes; OBLA

1. Introduction

Among the two most important parameters for predicting endurance performance are
maximal aerobic capacity (VO2max), and lactate threshold (LT) [1–4]. VO2max represents the
highest amount of oxygen an individual is capable of bringing into the body and utilizing
to produce energy [4]. The lactate threshold is the point just prior to an exponential rise
in lactate concentrations, a metabolic byproduct of anaerobic metabolism that increases in
concentration during exercise, especially intense exercise [4]. Traditionally, LT has been
obtained in a laboratory setting with the use of blood lactate analyzers and a graded
exercise test, either on a bike or treadmill [4]. To determine VO2max, the use of a metabolic
cart to measure oxygen consumption during a graded exercise test can determine an
individual’s maximal aerobic capacity [4]. While field-based tests have been developed
for the estimation of VO2max they are not as accurate as laboratory measurements [5–7].
While the field tests do have the benefit of increased accessibility as a result of not requiring
expensive equipment and trained technicians to administer the tests, it also opens up the
ability to test multiple people simultaneously. As wearable technology (WT) continues to
evolve, it may serve as another tool to determine VO2max and LT as predictive measures of
endurance performance.

Wearable technology utilization continues to grow in popularity and prevalence, both
in recreational and higher-level athletics [5–14]. As WT becomes more sophisticated, its us-
age will increase to a greater portion in each population [15]. Wearable technology devices
are usually worn around the wrist or chest but can vary in terms of sensor placement [16].
Some of the ways WT can be used are varied, including medical [17], biomechanical [18],
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physiological [16], tactical [19], and for training decisions [20]. Some of the variables mea-
sured or estimated by current WT include factors such as heart rate, VO2max, LT, blood
oxygen saturation, energy expenditure, sleep quantity, heart rate variability (HRV), and
ground contact time. A review of technology in team sports identified four general cate-
gories of use for integrated technology, including [21] quantifying movement patterns, [15]
assessing the demands of training and competition, [22] measuring physiological and
metabolic responses, and [23] determining velocity and sprint effort [24]. Wearable devices
that can estimate LT using heart rate, muscle oxygen and sweat sensors have been intro-
duced [25–29]. Another potential benefit of WTs is that they can estimate VO2max and LT
in a non-invasive manner. The values produced by the technology can be used to make
training decisions based on individual physiological responses. Obtaining these values
via WT in the field could offer an advantage to athletes and teams in terms of cost and
availability [16].

As we have established, VO2max and LT are critically important values in determining
endurance performance, as an increase in these metrics allows athletes to sustain a higher
intensity of exercise for longer, which is particularly important for endurance-based perfor-
mances. While WT has its advantages and disadvantages in estimating these values, up to
this point, studies have primarily been conducted using the general population rather than
athletic populations. It remains unknown how well this technology works with higher-level
athletes compared to the general population. Trained individuals and athletes have higher
VO2max values and reach LT at higher running speeds than untrained individuals. This
may present a challenge for wearable technology in determining the VO2max and LT of
highly trained individuals, compared to untrained or lightly trained individuals. While
previous research has validated VO2max [16,30,31] and LT [25,26] in WT using the general
population, it is important to determine whether limitations exist in athletic populations for
use in collegiate and professional athletics. Recruitment of high-level athletes makes this
work unique and will allow athletes, coaches, researchers, and others to better understand
the use-case of this technology and who may benefit from its use. Therefore, the purpose of
this study was to determine the validity of wearable technology to estimate VO2max and LT
in athletic populations.

2. Materials and Methods
2.1. Study Design

Prior to data collection occurring for this investigation, the protocols were approved
by the University of Nevada, Las Vegas Institutional Review Board (IRB, 1525606-12).
All participants signed an informed consent and filled out pre-assessment documents
prior to completing the study. Data collection occurred over two days and included a
laboratory testing day and an outdoor/field testing day. After consenting to the study,
demographic data were obtained (24.24 ± 6.30 years, 11 male, 10 female, 171.68 ± 8.01 cm,
65.14 ± 9.41 kg, BMI = 22.01 ± 1.91, 17.04 ± 5.69% fat mass, 39.25 ± 3.26% muscle mass,
42.49 ± 22.96 km per week, all reported as mean ± SD).

Next, a treadmill-based graded exercise test utilizing speed and grade progression
every two to three minutes was performed to determine both LT and VO2max. Blood lactate
levels were measured via the handheld Lactate Plus analyzer (Nova Biomedical Corp,
Waltham, MA, USA). Oxygen consumption was determined by the ParvoMedics TrueOne
2400 metabolic cart (ParvoMedics Inc, Salt Lake City, UT, USA). The lactate threshold was
determined by graphing the data and determining the point just prior to an exponential rise
in lactate concentration (>1 mmol/L rise) that also corresponded to a final concentration
above 4 mmol/L. The onset of blood lactate accumulation (OBLA) was determined by solv-
ing the slope-intercept equation for speed when lactate concentration equaled 4 mmol/L.
VO2max was determined by taking the highest average oxygen consumption during the
graded exercise test for a set timeframe. VO2max values for 4-breath, 15 s, 30 s, and 1 min
average timeframes were obtained by the metabolic cart to compare to the wearable device.
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After laboratory values were obtained for LT and VO2max, participants returned
between two and seven days (5.56 ± 2.53) after the laboratory-based test to complete
the outdoor testing session. The outdoor run was conducted in one of two places, the
University track or a flat area of campus, depending on track availability. Ten participants
ran the track, and eleven completed the protocol on campus. The altitude was ~686 m, and
the average temperature during outdoor testing was 22.01 ± 9.57 ◦C. The outdoor testing
involved completing two separate runs while wearing the fitness tracker watch (Garmin
fēnix 6®, Garmin Ltd., Olathe, KS, USA) and accompanying heart rate monitor (Garmin
HRM-Run®). A factory reset on the watch was performed before each test so that previous
data did not influence the estimate of VO2max or LT. The first run was a 10–15 min run at
above 70% of the estimated max heart rate (MHR). This gave the device enough data to
estimate VO2max, using a linear extrapolation of heart rate (HR) and running speed [21,22].
For the 10–15 min run to determine VO2max, the average distance, time, pace, and HR were
2.52 ± 0.37 km, 12.63 ± 3.19 min, 5.1 ± 1.43 min/km, and 154.8 ± 10.28 bpm, respectively.
After the 10–15 min run, participants were given up to 10 min to rest before the next run,
which was a graded exercise test guided by the watch. Participants were provided with a
HR range via the watch and instructed to run at a pace that could be maintained within that
intensity range. The HR window progressively increased every 3–4 min, and participants
were required to speed up to match the new HR window. This continued until the watch
concluded the test or the participants voluntarily stopped prematurely, which concluded
the outdoor data collection. For the progressive exercise test to determine LT, the watch
utilizes HRV during exercise to identify LT [23]. The average distance, time, pace, and HR
for the graded exercise test was 3.42 ± 0.98 km, 16.71 ± 5.41 min, 4.99 ± 1.45 min/km,
164.25 ± 9.81 bpm, respectively. If the fēnix 6 was not able to produce an estimate, either
because the participant had to end early or the watch failed to produce an estimate for
unknown reasons, participants were asked to return on a different day to perform the
outdoor test again. If the device was unable to produce an estimate after two different
attempts, participants were not tested a third time. There were two participants for whom
the watch was unable to generate an estimate of LT. There was one participant whose data
were not recorded prior to resetting the watch and was lost. Therefore, while the total
number of participants was 21, LT analysis was performed with 18 subjects, and VO2max
with 20.

2.2. Participants

For this study, apparently healthy individuals who exercised regularly (>3 times per
week) were recruited. Of those that were tested, 21 scored in the 95th percentile or above
for their VO2max values, based on their age and biological sex, and were included in the
athletic population dataset for the current investigation.

2.3. Data Analysis

Data for lactate concentration and speed were input directly into Google Sheets (Al-
phabet Inc., Mountain View, CA, USA), and further analysis to determine LT and OBLA for
each participant was completed within Google Sheets. VO2max and associated percentile for
each timeframe (4-breath, 15 s, 30 s, and 1 min) was determined by the ParvoMedics soft-
ware and input into Google Sheets. All granular calculations were completed within Google
Sheets. All hypothesis testing, summary statistics, validation measures, and figures were
completed and generated in jamovi (jamovi project, version 2.2, https://www.jamovi.org/,
accessed on 22 March 2023). These include ANOVA’s with post hoc pairwise comparisons
with Tukey adjustments for multiple comparisons (when appropriate), descriptive statistics,
error analysis (mean absolute percentage error), correlation analysis (Pearson’s r, Lin’s
Concordance Correlation Coefficient [CCC]), equivalence testing (TOST Paired Samples
Test), and bias assessment (Bland–Altman analysis). TOST test lower and upper bounds
were set at +0.5 and −0.5 Cohen’s D for each test. Data analysis for VO2max was completed
by comparing the fēnix 6 estimates of VO2max to each laboratory timeframe. Data analysis

https://www.jamovi.org/
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for LT was completed by comparing the fēnix 6 estimates of speed at LT and HR at LT to the
laboratory values (speed at LT, speed at OBLA, and HR at LT). Determination of validation
was pre-determined, and any device that produced a CCC ≥ 0.7 and a MAPE < 10% was
considered valid [16].

3. Results
3.1. VO2max

The 21 participants used for this analysis had an average VO2max percentile of 98.24 ± 1.3%,
based on the 30 s averaged VO2max values. The one-way ANOVA for VO2max at each time
showed a significant difference for the global test (F = 5.59, p < 0.001, η2 = 0.19). Further
post hoc pairwise comparisons with Tukey adjustments for multiple comparisons were
performed. The fēnix 6 estimate was significantly different from the 4-breath average
(t = −4.52, p < 0.001, Cohen’s D = 1.43), but not different for any of the other time compar-
isons (see Table 1). Error analysis showed that the fēnix 6 VO2max estimate had a MAPE
of less than 10% when compared to the 30 s and 1 min averaged time parameters (see
Table 1). Correlation analysis produced a CCC ≥ 0.7 for the 1 min averaged time only (see
Table 1). Equivalence testing via TOST test was violated for all four time parameters (see
Table 1 and representative plots in Figure 1). Bland–Altman bias values and 95% confidence
intervals can be found in Table 1, and associated plots can be found for all time parameters
in Figure 2.

Table 1. VO2max descriptive and validation statistics results.

Fēnix 6
VO2max
Estimate

Lab
VO2max—4
Breath Avg

Lab
VO2max—15

Sec Avg

Lab
VO2max—30

Sec Avg

Lab
VO2max—1
Min Avg

Mean
(mL/kg/min) 54.00 64.73 59.43 57.88 56.89

Standard Deviation 5.18 8.83 7.80 7.62 7.60
MAPE 16.91% 10.04% 7.67% 6.85%

Pearson
Correlation 0.81 0.82 0.82 0.81

Lin’s Concordance 0.34 0.58 0.67 0.70

Bland–Altman Bias −10.485
(−13.09, −7.88)

−5.18
(−7.33, −3.03)

−3.62
(−5.68, −1.56)

−2.65
(−4.75, −0.55)

TOST Test (Upper) <0.001 <0.001 <0.001 <0.001
TOST Test (Lower) 1.00 0.994 0.917 0.653

n = 20. MAPE = Mean Absolute Percentage Error, TOST Test = Two One-Sided T-Tests. Bland–Altman bias values
and 95% confidence intervals provided. Values that met the predetermined validation criteria are bolded.
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Figure 1. A representative sampling of TOST test results for VO2max and LT data. Far left = Lab HR at
LT to fēnix 6 HR at LT, middle left = speed at OBLA to fēnix 6 LT speed, middle right = fēnix 6 VO2max

to 30 s avg VO2max, far right = fēnix 6 VO2max to 1 min avg VO2max. Upper and lower bounds set at
+0.5 and −0.5 Cohen’s D. All tests shown violated equivalence testing parameters except lab HR at
LT to fēnix 6 HR at LT (far left).
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Figure 2. Bland–Altman plots for VO2max time parameters. Top left = fēnix 6 and 4-breath avg, top
right = fēnix 6 and 15 s avg, bottom left = fēnix 6 and 30 s avg, and bottom right = fēnix 6 and 1 min
avg. The horizontal solid line represents a theoretical difference of 0, the middle-dotted line represents
the average difference, and the top and bottom dotted lines represent upper and lower bounds of the
95% limit of agreement interval. The diagonal solid blue line represents the proportional bias line
with associated confidence intervals in gray shading.

3.2. Lactate Threshold

The one-way ANOVA for speed at LT showed no significant difference for the global
test (F = 1.32, p = 0.28, η2 = 0.07). HR at LT was not different between laboratory measures
or the fēnix 6 device (t = 0.261, p = 0.797, Cohen’s D = 0, see Table 2). Error analysis
showed that the fēnix 6 had a MAPE below 10% for all three parameters (see Table 2).
Correlation analysis produced a CCC ≥ 0.7 for both speed parameters but not HR (see
Table 2). Equivalence testing via TOST test was violated for both speed parameters but was
met for HR (see Table 2 and representative plots in Figure 2). Bland–Altman plots can be
found for speed and HR parameters in Figure 3.



Technologies 2023, 11, 71 6 of 10

Table 2. Lactate threshold descriptive and validation statistics results.

Fēnix6 LT
Estimate (mph) Lab LT (mph) Lab OBLA (mph) Fēnix6 HR @ LT

(bpm)
Lab HR @ LT

(bpm)

Mean 7.99 8.44 8.60 174.44 173.94
Standard Deviation 1.04 1.35 1.33 4.79 8.87

MAPE 7.52% 8.20% 3.60%
Pearson Correlation 0.87 0.87 0.42
Lin’s Concordance 0.79 0.74 0.35

Bland–Altman Bias −0.45
(−0.79, −0.12)

−0.61
(−0.94, −0.27)

0.5
(−3.54, 4.54)

TOST Test (Upper) 0.762 0.947 0.015
TOST Test (Lower) <0.001 <0.001 0.040

n = 18. Bland–Altman bias values and 95% confidence intervals provided. Values that met the predetermined
validation criteria are bolded.

Technologies 2023, 11, x FOR PEER REVIEW 6 of 10 
 

 

3.2. Lactate Threshold 
The one-way ANOVA for speed at LT showed no significant difference for the global 

test (F = 1.32, p = 0.28, η2 = 0.07). HR at LT was not different between laboratory measures 
or the fēnix 6 device (t = 0.261, p = 0.797, Cohen’s D = 0, see Table 2). Error analysis showed 
that the fēnix 6 had a MAPE below 10% for all three parameters (see Table 2). Correlation 
analysis produced a CCC ≥ 0.7 for both speed parameters but not HR (see Table 2). Equiv-
alence testing via TOST test was violated for both speed parameters but was met for HR 
(see Table 2 and representative plots in Figure 2). Bland–Altman plots can be found for 
speed and HR parameters in Figure 3. 

Table 2. Lactate threshold descriptive and validation statistics results. 

 Fēnix6 LT Estimate (mph) Lab LT (mph) Lab OBLA (mph) Fēnix6 HR @ LT (bpm) Lab HR @ LT (bpm) 

Mean 7.99 8.44 8.60 174.44 173.94 

Standard Deviation 1.04 1.35 1.33 4.79 8.87 

MAPE  7.52% 8.20%  3.60% 

Pearson Correlation  0.87 0.87  0.42 

Lin’s Concordance  0.79 0.74  0.35 

Bland–Altman Bias  −0.45 
(−0.79, −0.12) 

−0.61 
(−0.94, −0.27) 

 0.5 
(−3.54, 4.54) 

TOST Test (Upper)  0.762 0.947  0.015 

TOST Test (Lower)  <0.001 <0.001  0.040 

n = 18. Bland–Altman bias values and 95% confidence intervals provided. Values that met the pre-
determined validation criteria are bolded. 

 
Figure 3. Bland–Altman plots for lactate threshold parameters. Top left = fēnix 6 LT speed and lab 
LT speed, top right = fēnix 6 LT speed and lab OBLA speed, and bottom = fēnix 6 LT HR and lab HR. 
Figure 3. Bland–Altman plots for lactate threshold parameters. Top left = fēnix 6 LT speed and lab LT
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4. Discussion

In this study, the validity of the VO2max and LT estimates by wearable technology in
athletic populations was tested against gold-standard laboratory tests. Studies have tested
these metrics amongst the general population; however, to our knowledge, the validity
among athletic subjects has not been reported. The physiology of untrained and trained
individuals is different, with trained individuals having a higher VO2max and LT values.
This introduces unique challenges to technology seeking to provide accurate estimates of
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these physiological metrics. In the current investigation, we observed mixed results for the
fēnix 6, although generally acceptable. The estimate for VO2max was accurate and valid
compared to 1 min averaged VO2max values. The LT estimates were accurate and valid
when comparing speed at LT as well as the speed at OBLA. However, HR at LT was not
considered valid.

VO2max is a crucial aspect of endurance performance [1,3,4], with many arguing that it
is the most important measure (though not the only important measure, and potentially
the second most important) [2]. Knowing VO2max allows coaches and athletes to tailor
training intensity specifically for an individual. Tracking the aerobic capacity over time can
also give insights into the effectiveness of the training program. However, gold-standard
measurements are expensive, require technicians with proper training to administer the
test, and require athletes to take a day off from training to complete the testing protocol.
These aspects make WT a desirable alternative to standard laboratory testing methods in
addition to the fact that they are cost-effective testing methods and can track changes in
VO2max over time. Maximal aerobic capacity can be estimated by several devices, and they
use a submaximal running or cycling test while measuring HR to estimate VO2max. Thus,
the estimates can be achieved during normal training protocols without needing to take a
day off for testing. This provides efficiency and potentially very useful training feedback
and information for athletes and coaches.

The results from the previous literature studying the VO2max and LT estimates in WT
have shown acceptable accuracy when compared to laboratory measurements. While no
standardized statistical analyses for WT validation have been established, most investiga-
tions perform a form of error analysis and correlation analysis. Investigations of different
models of wearable devices have been shown to have acceptable accuracy in their VO2max
estimates, including the Garmin fēnix 3 HR [32], Garmin Forerunner 920XT [31], and
the PulseOn wrist-based monitor [30] (PulseOn Oy, Neuchâtel, Neuchatel, Switzerland).
Meanwhile, others have not had acceptable accuracy in their VO2max estimate, including
the Polar V800 [31] (Polar Electro, Kempele, Oulu, Finland). Investigations into WT to
determine LT has had positive results, with the Humon Hex (Humon, Cambridge, MA,
USA) and the BSX Insight (BSX Athletics, Austin, TX, USA) both being found sufficiently
accurate in their estimates [25,26]. Thus, the performance of this device surpasses some
previous devices for VO2max. Additionally, having the ability to determine VO2max and LT
in athletic populations using the same device, rather than two different devices, is a benefit
to athletes and coaches. However, it seems likely that the technology used in previous inves-
tigations to determine LT via measuring muscle oxygen levels could be utilized to produce
a more accurate estimate of LT when used in conjunction with HR. Based on the current
findings, the VO2max estimate appears to be accurate for athletic populations (those who
scored above the 95th percentile for VO2max for their age and sex). The Bland–Altman plots
revealed a tendency for error as VO2max increased, so future research should be directed to
validating devices in individuals with very high aerobic capacity (>60 mL/kg/min).

While it has been proposed that VO2max is the most important indicator for endurance
performance (or potentially the second most important), LT is widely accepted to be the
next most important factor for predicting success in endurance sports [1–4]. Knowledge of
an athlete’s LT may be even more relevant to building a training protocol than VO2max, as it
is easy to obtain a speed or HR associated with LT, which can be used to set intensity zones.
Therefore, WT with the capability of estimating LT accurately, will provide great benefits to
athletes and coaches. Similarly, having WT that can provide data regarding the changes
in LT throughout the course of regular training allows for “fine-tuning” of an athlete’s
training protocol, even within a microcycle. However, the Bland–Altman plots from the
data obtained in the current investigation show a tendency towards bias for LT estimates of
those with very high LT values, as well as for those with a HR at LT that differs significantly
from ~175 bpm. This may be a limitation that athletes and coaches may need to be aware
of and may also represent an area of interest for researchers to evaluate in the future.
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As stated earlier, this study is unique as it tested the VO2max and LT estimates of
WT in an athletic population. As the general population had previously been studied,
this provides a better resolution as to the appropriate use cases of WT. While there is
no wide consensus in terms of what validity thresholds should be used [16], commonly
used thresholds have been a MAPE < 10% and CCC ≥ 0.7, which have been adopted
for this analysis. These thresholds seem to be appropriate for the general population;
however, coaches and athletes may want to establish more stringent validity criteria for use
in collegiate and professional athletics. As researchers continue to independently evaluate
the validity and reliability of these devices, thresholds need to be established. A tiered
threshold may be of value to help understand the appropriate use cases for different devices.
While thresholds have not been established, even tests used to determine validity vary
across the published literature (and requested tests by reviewers can add to the variability).
Appropriate analytical techniques have been suggested, such as error analysis, correlation
analysis, and equivalence tests [16,33]. We have included all in the current investigation;
however, it is very rare that researchers include equivalence testing in their validation
analyses. As such, it is unclear what cutoffs should be used to determine validity, which is
why we have not factored in the performance on the TOST test into the validity decision.
We utilized a TOST test with upper and lower bounds of +0.5 and −0.5 Cohen’s D above,
but as equivalence testing becomes more prevalent in the literature, those values may need
to change.

Limitations

As the current investigation evaluated the validity of only a specific wearable device
(the Garmin fēnix 6), any extrapolation to other devices should be avoided. While the
purpose was to examine the validity of this device in athletic populations (>95th percentile
in terms of aerobic capacity), readers should not use this study to determine the validity
among the general population. We recommend looking towards previously published
work for that population.

5. Conclusions

In summary, we tested the estimates of VO2max and LT in wearable technology (Garmin
fēnix 6) against gold-standard laboratory values. Determination of error and correlation
was completed to determine the overall validity. The predetermined validity criteria were
established at a MAPE < 10% and CCC ≥ 0.7. This device was determined to be valid for
VO2max estimates in athletic populations and should be compared against 1 min averaged
VO2max values. It was also found to be valid for determining speed at LT and OBLA.
Therefore, this device may be used to determine the VO2max and lactate threshold values
for athletic individuals if laboratory values are not able to be obtained.
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