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Abstract: The agricultural sector is undergoing a revolution that requires sustainable solutions to the
challenges that arise from traditional farming methods. To address these challenges, technical and
sustainable support is needed to develop projects that improve crop performance. This study focuses
on onion crops and the challenges presented throughout its phenological cycle. Unmanned aerial
vehicles (UAVs) and digital image processing were used to monitor the crop and identify patterns
such as humid areas, weed growth, vegetation deficits, and decreased harvest performance. An
algorithm was developed to identify the patterns that most affected crop growth, as the average local
production reported was 40.166 tons/ha. However, only 25.00 tons/ha were reached due to blight
caused by constant humidity and limited sunlight. This resulted in the death of leaves and poor
development of bulbs, with 50% of the production being medium-sized. Approximately 20% of the
production was lost due to blight and unfavorable weather conditions.

Keywords: aerial photography; agricultural crop; digital image processing; pattern identification

1. Introduction

Currently, agri-food producers require technological tools to increase crop production
levels to satisfy the food demand of the population [1–3]. Food security must be provided,
since the world’s population has a growth rate of approximately 1.09% per year, which
demands greater requirements for the agricultural industry to provide increasingly higher
yields [4]. However, agricultural production costs ignore the immediate negative impacts on
other users [5]. In this context, traditional agricultural practices are causing environmental
damage, leading to the degradation of natural resources such as soils due to the excessive
use of fertilizers and pesticides that the farmer scatters homogeneously to avoid delays in
product development [6,7]. Precision agriculture (PA), a combination of technology and
agronomy, offers a viable solution to the challenges faced by traditional farming practices.
PA focuses on the integrated management of plots by using technology tools such as the
Internet of Things (IoT), machine learning, and drones to gather data on crops’ growth
and health.

PA seeks to identify the variations in the conditions of the plot to carry out differential
spatial management. UAVs (unmanned aerial vehicles) have generated tremendous interest
in crop monitoring due to the great potential they can offer in the agricultural sector to
verify the parameters that affect the development of plants [8,9]. Aerial images identify
growth scans and areas of crop deterioration [10]. This technology helps soil conservation
and sustainable agriculture, specifies the causes of soil damage, and identifies damage
caused in the early stages of cultivation [11].
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PA enables decision-making to improve production through an adequate understand-
ing of the means of agricultural production [12]. Additionally, the current ability to process
images with increasingly faster computers aids in analyzing some features of an object. The
use of digital image processing (DPI) helps to solve the problems of image segmentation,
object area, and characteristics on image-invariant scales, among others. According to [13],
information can be obtained with the support of UAVs, which can later be used with
different IPR techniques to obtain different behavior patterns in a given area. Various
techniques, such as thresholding, different transformations of color spaces, normalized
difference vegetation indices (NDVIs), and Excess Green Vegetation (ExG), among others,
have been implemented to extract characteristics that define the state of crops such as
grains and vegetables [13].

DPI has become an essential tool in precision agriculture. An example of its application
is the use of the red–green–blue model (RGB) to carry out Lab color space transformations
and the k-means algorithm to extract weeds from onion crops. For example, in [14], the
authors mentioned that RGB space colors offer a very high spatial and temporal resolution.
In this work, they performed a biomass monitoring system by processing RGB images
obtained by a camera mounted on an unmanned aerial vehicle. They reported a 95%
accuracy by implementing image analysis instead of invasive sensors. This application
highlights the potential for using advanced technologies in PA. DPI enables farmers to
detect crop problems early, allowing for targeted interventions and reducing costs while
minimizing the environmental impacts. The application of DPI in precision agriculture
has the potential to revolutionize the agricultural sector and ensure sustainable agriculture
practices [15,16]. Notably, image processing and computer vision applications in the
agriculture sector have grown due to reduced equipment costs, increased computational
power, and growing interest in non-destructive food-assessment methods [17].

In recent years, there has been increasing interest in using data analysis and machine
learning techniques to identify the patterns affecting crop growth and productivity. The
authors of [18] presented a Mutual Subspace Method as a classifier in different farm fields
and orchards, achieving 75.1% accuracy in high-altitude image-acquisition systems. By
analyzing large amounts of data, such as weather patterns, soil quality, and crop yields,
farmers and researchers can gain insight into the factors that influence crop growth and
use this information to improve agricultural practices. Alibabaei et al. estimated tomato
yield based on climate data, irrigation amount, and water content in the soil profile as input
variables for Recurrent Neural Networks. The results showed that the Bidirectional Long
Short-Term Memory model achieved an R2 of 0.97 [19].

The remarkable work provides alternative solutions for crop monitoring and prevent-
ing disease factors. However, the conditions of an area with an arid climate can affect the
quality and quantity of the food harvest, which makes it a challenge to propose alternatives
that can improve and make agricultural processes more efficient without compromising
land resources [20].

In this context, this study focuses on the state of Zacatecas, Mexico, a significant agri-
cultural region known for producing corn, beans, and chili peppers. This study proposes
a solution to increase the production percentage and minimize losses by analyzing the
patterns that most impact crop growth during its phenological stage.

Crops suffer losses during their development cycle, and it is necessary to increase
production each time. Therefore, this work aims to analyze which patterns most affect
crop growth during its phenological stage and identify these patterns at an early stage. In
this way, a proposed solution to increase the production percentage of the crop is offered,
and a determination is made of which patterns most influence crop growth throughout
its phenological stage in the state of Zacatecas, Mexico. It was concluded that humidity,
cloudy weather, and leaf blight greatly impacted crop development and overall agricultural
production. This fungal disease can damage the foliage and ultimately lead to crop loss.
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2. Materials and Methods
2.1. Development of Experimentation

Crop development for this work occurs in the municipality of Fresnillo, Zacatecas,
Mexico, with Cartesian coordinates 23◦06′30.6′′ N102◦38′26.3′′ W, as shown on the maps
in Figure 1. A UAV Phantom 4 Pro with an RGB camera, a GPS/GLONASS system, and
a 20-megapixel camera 4K resolution flew over onion crops (Allium Cepa) to capture
photographs throughout the crop cycle. It presented a flight every week from March to
July 2019 for 16 weeks, obtaining an average of 758 images in a land area of approximately
three hectares at 20 m in height and a series of 5m. These series verified the optimal height,
starting at 2 m and continuing at 5, 10, 15, 20, and successively up to 120 m.

(a) (b)
Figure 1. (a) Location of Zacatecas state in Mexico. (b) Location of the municipality of Fresnillo in the
state of Zacatecas.

2.2. Data Processing

Image processing allows the detection of the vegetal area. Using grayscales allowed
spotting damage due to blight, and a transformation to Jet coloration helped recognize wet
areas. For weed detection, a color transformation of the RGB-CIELAB plane was made
using the algorithm of near neighbors. See Figure 2.

Original aerial
images database

Vegetal Area
Segmentation
 

Vegetation

RGB to Grayscale

Colormap JET Humidity Zones

Leaf blight damage
crop detection

Color space transformation
from RBG to CIELAB

Near neighbors rule Weed

Figure 2. General diagram from data processing.

2.2.1. Vegetal Area Segmentation

In another work, ref. [21] used a color segmentation technique to obtain and separate
green areas in an image by calculating the excess green value ExG, as shown in Equation (1).

Due to variations in illumination in photographs, an experimental modification with-
out significant luminosity variation was made, described in Equation (2), as suggested by
Tang and Liu [22], in order to trace a green sphere in a video, looking for a better way to
segment the plant area.
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The following images compare the segmentation performed using the ExG index and
the one proposed under the name justGreen, as determined by Equations (1) and (2).

ExG = 2g− r− b (1)

justGreen = g− r
2
− b

2
(2)

where r, g, and b are red, green, and blue color channels in the RGB space, respectively.

2.2.2. Blight Damage Detection

The grayscale conversion model, described in Mathworks™ [23] and indicated by
Equation (3), was applied to RGB images, as mentioned by [22]. Only the luminescence
values were implemented, omitting saturation and hue, obtaining a linear combination of
RGB values in a grayscale.

grayscale = 0.299R + 0.587G + 0.114B (3)

where R, G, and B are the color channels in the RGB space. Grayscale images have 8-bit
values from 0 to 255, allowing threshold values for image segmentation.

2.2.3. Humidity Detection

Each pixel in the image grayscale is mapped to the colormap jet (200). Transforming
the color to the jet plane generates an RGB image with uninterrupted areas of pure color
from a binary image, generating a multicolored image.

2.2.4. Weed Detection

To perform weed detection in the CIELAB, color-space-based segmentation (CIE 1976
L a b) was implemented as a model used to describe all colors the human eye can perceive.
It is described in Equation (4), an international standard for color measurement specified
by CIE in 1976 [24]. This color space consists of an L brightness layer with a black–white
ratio from 0 to 100, with the chromaticity layer a indicating where the color falls along
the green–red axis, with negative values for green and positive for red. The chromaticity
layer b indicates the blue–yellow axis with negative values for blue and positive values
for yellow.

L = 116 f
(

Y
Y0

)
− 16

a = 500
[

f
(

X
X0

)
− f

(
Y
Y0

)]
b = 200

[
f
(

Y
Y0

)
− f

(
Z
Z0

)] (4)

The transformation of primary colors is performed and integrated into the XYZ color
model, where X, Y, and Z represent vectors in a three-dimensional space of the color
described in Equation (5).

X = 0.4303R + 0.3416G + 0.1784B

Y = 0.2219R + 0.7068G + 0.0713B

Z = 0.0202R + 0.1296G + 0.9393B

(5)

where R, G, and B refer to the red, green, and blue colors of the RGB color model, while X,
Y, and Z represent the CIE color set.
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f is described by Equation (6):

f (q) = 3
√

q; q > 0.008856
f (q) = 7.787q + 16

116 q ≤ 0.008856
(6)

and the CIE XYZ are the tristimulus values of the reference white point. For this study, illu-
minant D65 was used, where [X0 Y0 Z0] = [0.9504, 1.0, 1.0888], simulating midday
light with a correlated color temperature of 6504 K.

In the color space in this representation, L represents the luminosity of an object, a
represents the variation from green to red, and b represents the variation from blue to
yellow. With this color transformation, a sample region was selected for each color. The
average color of each sample region was calculated in space ab, using Equation (4). These
samples were used as color markers to classify each pixel in the image. Once the color label
was found, the near-neighbors technique was implemented, which is a machine-learning
method that classifies an unknown sample according to its neighbors [25]. Each pixel is
classified based on calculating the Euclidean distance between that pixel and each color
marker, as indicated by Equation (7).

d(x, y) =
√
(a−marker1)2 + (b−marker2)2 (7)

where a and b are the CIELAB color channels a and b while marker1 and marker2 are the
values of the markers found for the pixels. The smallest distance denotes the match with
a particular color label. The label corresponding to the green color was selected, and the
erosion and dilation operations were applied to extract the weed areas.

3. Results

The temperature and rain conditions obtained throughout the phenological cycle
are shown in Figure 3. The minimum temperatures varied between 7 ◦C and 15 ◦C. The
maximum temperatures fluctuated between 20 ◦C and 26 ◦C, remaining stable.
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Accumulated precipitation was nil for most of the period, except for weeks 10 (18 mm)
and 16 (14 mm). Due to low sun conditions, an ideal environment for fungus propagation
was generated, causing significant damage. Both graphs were created with data extracted
from AccuWeather© [26].

Figure 4 compares the crops’ temporal development and the different processes ap-
plied to the selected representative images obtained from the plot, where the Original Image
(OI), Vegetation Image (VI), Leaf Blight Image (LBI), Humidity Zones Image (HZI), Weed
Images (WI), and Error Identification Images (EII) were analyzed. These terms represent
the subtraction of OI and WI when analyzing the error between both.

 2 of 11 

 Internal

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. General processing stages; images of crop development at 20 m in different weeks: (a–c) in
week 4, (d) in week 9 (g,h) in week 16; (e) image at 2 m in week 13, (f) image at 5 m in week 15.

In this selection, the segmentation of the areas was applied in VI green using Equation (1),
representing vegetation segmentation, including cultivation and weeds.

In LBI, the RGB image is taken from the grayscale image to highlight the damage
caused by white leaf blight, while the rest of the image contains grayer tones, making
detection at low altitudes easy. At heights greater than 5 m, the damage caused by fungi
is not visually detectable enough. HZI is the result of making a Jet-type mapping of the
grayscale images, in which the dry areas are highlighted in reddish color while the humid
areas are presented lighter colors, in blue passing through yellow.

The RGB to CIELAB transformation was applied to detect weeds using the nearby
neighbors’ decision rule and Euclidean distance metric with erosion and dilation. Results
were affected by image brightness, with correct results only obtained in certain lighting
conditions [18], such as a cloudy day between 9:30 am to 11:00 am during week 16.
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In the first weeks, abrupt changes affecting onion development were undetected. At
the same time, it was not possible to detect the crop at heights greater than 20 m. Therefore,
there were no significant results in the first four weeks.

On the right side of the images, a sample of the analysis is presented at different
heights (2, 5, and 20 m). The ideal height to detect vegetation areas, even with visible
damage, was determined to be 5 m. However, the humid areas are visible at 20 m since
they do not depend on the height of the plant but on water leaks or excessive irrigation.

3.1. Segmentation of Plant Area

The plant area was segmented using two different indices. First, the ExG index was
used. However, this index produced a poor response in photographs with excessive or poor
lighting. Therefore, the plant area was also segmented using JustGreen, an experimental
index described in Equation (2). JustGreen provided a more robust response to the amount
of illumination, allowing a more accurate estimation of the plant area than the ExG index.
Figure 5 compares the ExG and JustGreen indices. 3 of 11 
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Figure 5. Comparison between the ExG and JustGreen indices: (a) original image, (b) segmentation
by ExG, (c) segmentation by JustGreen.

As shown in Figure 5b, the plant area is lost in photographs with different lighting. In
Figure 5c, the result of the JustGreen concerning the ExG is more reliable than the original
image in Figure 5a The JustGreen implemented transformation, allowing the vegetation
only to be seen, as shown in Figure 4 VI. This figure presents a sample of the area obtained
in Equation (1) to estimate the vegetation and obtain its segmentation.

3.2. Leaf Blight Damage

The damage caused by leaf blight can stop the growth of the plant. Hence a gray-scale
transformation was applied to highlight the blight damage of the objects in the background
to properly present the damage by the fungus.

As shown in Figure 6a, an adequate inspection is more difficult when objects are near
the plant.
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(b)
Figure 6. Detection of leaf blight: (a) original image at a height of 2 m; (b) grayscale image showing
leaf blight damage.



Technologies 2023, 11, 67 8 of 11

Figure 6b further separates the white area generated by the fungus from the rest of the
image in darker grays.

The damage is not clearly distinguished at a height greater than 5 m.

3.3. Humidity Detection

When using the gray-scale images towards the jet200 colormap, it was possible to
distinguish dry from wet soil, which allowed for detecting areas with excessive humidity
and/or waterlogging. The row HZI in Figure 4 shows the performance of the jet plane in
detecting wet areas. The humidity was visible at different heights. The dry soil appeared
reddish, while the humid area was shown in light colors close to blue. This mapping is
affected by the plant’s shade due to humidity.

3.4. Detection of Weed

Figure 4 shows that the EII parameter indicates poor results for the decision rule of
nearby neighbors, as lighting variations in each set of images affect the algorithm’s ability
to detect weeds in most of the data. For the early weeks, it presented many errors, but in
the last week, it obtained hits in detection Figure 5c, with image Figure 6b showing the
error obtained in the algorithm. Figure 5a is the original image.

Figure 7 shows the area with weeds detected within the crop using the CIELAB
transformation, the rule of close neighborhoods, and dilation. The original image at 20 m
high is shown in Figure 7a, as well as the overgrown area detected in Figure 7b. The
detection error is visualized by subtracting the two images in Figure 7c (overlapping them).

The final production of the crop was 25.00 tons
ha . In comparison, the agri-food and

fisheries information service (SIAP) [27] reports a general production in Zacatecas of
40.166 tons

ha in 2019 throughout the agricultural year, in which higher irrigation is presented
as temporary in July . This is due to weather conditions and environmental damage. 8 of 11 
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Figure 7. Weed detection: (a) original image, (b) subtract from the original minus the detected area,
(c) weed positions.

4. Discussion

In [28], a threshold must be applied to each plant color, whether healthy or diseased, for
example, between the healthy crop and the blight damage that causes different coloration
in the plant.

The segmentation using Equation (1) allowed the plant area to be extracted without
using a segmentation threshold.

Using the algebraic transformation of Equation (1) has the advantage of segmenting
the entire plant area with gray colors.

This study [29] required median filters and Otsu thresholding to detect disease spots,
with blight as the cause of discoloration in the crop.

The use of gray scales in the identification of diseased areas results in a low computa-
tional cost and, thus, shorter processing time, compared to the processing applied by them,
as an alternative to the plant-to-plant detection of diseased areas. To detect humid areas,
laboratory analysis of soil samples or the use of instruments that indirectly help to measure
humidity or/and temperature is commonly required. However, it is only feasible to place a
few sensors since it becomes costly. The proposed method is a non-destructive alternative
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that estimates the wet area in the entire crop. This allows farmers to focus on areas with
prolonged humidity as a possible risk factor for fungal damage or diseases caused by blight.
Farmers can take appropriate measures to prevent fungal damage by identifying these
areas. The weed detection technique presented the need to manually define the size of the
weed, making it a deficiency in non-uniform areas of weed development. However, as seen
in Figure 6, it has good detection at 20 m high, regardless of the lighting in the photograph.

The blight appeared because the temperatures remained stable, averaging 10 to 25 ◦C.
This stable temperature range facilitated its development, resulting in the deterioration of the
plant’s growth. As a result of the presence of blight, the growth of the plant is deteriorated.

5. Conclusions

Identifying diseased areas using grayscale images is an effective and low-cost ap-
proach to the detection of plant disease. Moreover, the results demonstrated a simplified
representation of the plant tissue, which can help to reduce the computational cost of
image-processing techniques. This method also provides a non-destructive alternative
for estimating wet areas in the crop, allowing farmers to focus on areas with prolonged
humidity and prevent fungal damage or diseases by blight. However, the weed-detection
technique presented some limitations in non-uniform areas of weed development. The
blight appeared due to stable temperatures that facilitated its development, resulting in the
deterioration of the plant’s growth. Overall, this study highlights the potential of digital
image-processing techniques in improving crop management and identifying areas for tar-
geted intervention, ultimately contributing to more sustainable and productive agricultural
practices.

Monitoring the onion crop allowed us to identify parameters that affect its devel-
opment, such as weeds, water leaks, excess humidity, vegetation deficit, and a crucial
parameter known as blight.

Blight developed due to the lack of constant irrigation in adequate amounts, resulting
in approximately 16 mm of precipitation received in the tenth weekend. During this period,
the presence of a fungus due to the cloudy climate and low sunlight significantly affected
the last weeks of crop development.

In addition, the irrigation deficit resulted in a lower yield than in the state of Zacatecas,
where only 50% of medium-sized onions were produced. Approximately 20% of the
production was lost due to the blight and on-site irrigation conditions.

To control the blight problem in this variety, it is recommended to irrigate the crops
adequately and not to expose them to water stress. However, over-watering should also be
avoided since excessive humidity in the soil and high temperatures create ideal conditions
for fungi and weed development.
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