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Abstract: This article presents a method for extracting high-level semantic information through
successful landmark detection using 2D RGB images. In particular, the focus is placed on the presence
of particular labels (open path, humans, staircase, doorways, obstacles) in the encountered scene,
which can be a fundamental source of information enhancing scene understanding and paving the
path towards the safe navigation of the mobile unit. Experiments are conducted using a manual
wheelchair to gather image instances from four indoor academic environments consisting of multiple
labels. Afterwards, the fine-tuning of a pretrained vision transformer (ViT) is conducted, and the
performance is evaluated through an ablation study versus well-established state-of-the-art deep ar-
chitectures for image classification such as ResNet. Results show that the fine-tuned ViT outperforms
all other deep convolutional architectures while achieving satisfactory levels of generalization.
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1. Introduction

Estimating traversable paths is of crucial importance for the safe and precise indoor
navigation of mobile units. An abundant number of applications in robotics consider the
concept of traversability estimation as the cornerstone of extracting semantic information
for motion planning. Deciding about the navigability of an area depends not only on the
terrain’s physical properties, such as slope, roughness, surface condition but also on the
mechanical characteristics of the mobile unit traversing it [1]. Since different environments
illustrate diverse amounts of uncertainty, it becomes apparent that the effort to collect and
interpret data from various sensor modalities can lead to further predicaments as a result
of the type and the volume of data acquired.

Determining traversable paths have an immediate application in building navigation
systems for smart and powered wheelchairs. This is due to the fact that wheelchair users
often face maneuvering difficulties [2] when accomplishing daily tasks due to the presence
of uneven and rough terrains [3], small corridors and doorways [4], and environments
that are described by various levels of stochasticity, e.g., due to the presence of humans.
Additionally, staircases have been traditionally problematic due to the geometric threats
they exhibit and also for the difficulties they pose to 3D laser scanners [5].

This work’s primary aim was to perform some preliminary experiments to extract
high-level semantic information regarding the scene’s traversability, based on the land-
marks’ relative position with respect to the vicinity of a manual wheelchair. The proposed
multilabel classification system, using RGB images as input, aimed to efficiently detect the
presence of particular labels (open path, humans, staircase, doorways, obstacles). This can
be a fundamental source of information enhancing scene understanding. Hence, the data
collection process takes into account all the characteristics associated with the object’s
appearance (geometrical features, volume, environment’s illumination, etc.) but also the
objects’ relative position with respect to the proximity of the wheelchair.
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Moreover, the suggested method can be an indispensable component along any sens-
ing or control modules that compose the navigation system of the mobile unit. Specifically,
we exploit the strengths of a wide-lens camera that can provide valuable insight about
whether an object is an obstacle or not, since it considers more angles of the surroundings
than the standard lens does. Leveraging the concept of transfer learning, a vision trans-
former (ViT) [6] is fine-tuned towards performing a multilabel classification on a small
dataset with a mere number of labels. An initial framework is proposed, which, through
the prism of multilabel image classification using wide-lens images, detects important
landmarks for safe wheelchair navigation. The focus of the approach is on the relative
position of a landmark encountered with regards to the proximity of the mobile unit. The
rest of the paper is structured as follows: In Section 2, the related work revolving around
the paper’s axes of interest is discussed, Section 3 gives an overview of the implemented
method, Sections 4 and 5 outline the experimental setup and the performed ablation study,
respectively, and ultimately, Sections 6 and 7 discuss the results and the conclusions derived.

2. Related Work

Mounting sensors on the right locations on a wheelchair’s body is of paramount
importance towards detecting obstacles and performing simultaneous localization and
mapping (SLAM) [2]. Vision sensors on wheelchairs have been utilized in a interconnected
fashion along with various modalities such as laser [7], ultrasound [8], and tactile sen-
sors [9]. Using wide-lens cameras on wheelchairs has been associated with endeavors in
navigation and assistance [10–12], as well as object detection and localization [13]. Ultra
wide-lens images, such as obtained from fisheye cameras, have been used in people de-
tection methods [14], robot traversability estimation [15], SLAM [16], pedestrian/vehicle
detection and tracking [17], and autonomous driving [18].

Unsupervised learning has shown great potential with transfer learning due to its
capacity to learn specific features that can be proven advantageous for the final tuning on
the downstream task [19,20].

Contrastive learning approaches portray the ability to create representations among
similar and dissimilar images in an unsupervised fashion. Thus, they present the ability
to facilitate the task of distinguishing between images and they have been employed in
research works incorporating determining traversable regions [21] and designing local
traversability models [22]. It has been shown that transfer learning approaches initially
require a dataset of considerable size for the initial training (Kitti [23], ImageNet [24], etc.)
before transferring features from a new domain to initialize an existing trained network
and thus enhance the levels of generalization performance on new unseen data [25]. Re-
search efforts in exploiting transfer learning involving wheelchairs have been exploring
tasks such as surface detection while using different wheelchair units [26] and sidewalk
classification [19].

Using pretrained transformers [27,28] acts as a vital tool in creating rich feature
representations that can be utilized for fine-tuning with respect to the pertinent down-
stream tasks. In the field of mobile robotics, ViTs have shown remarkable performance
in extracting semantic information for applications that include terrain classification [29],
navigation [30], recognition [31], bird’s eye view segmentation [32], and object detec-
tion [33]. Furthermore, vision transformers have shown remarkable results on image
classification [34–36] tasks over methods such as convolutional neural networks (CNNs),
as described by Raghu et al. [37]. An important property that a ViT displays is the fact that
it can preserve input spatial information at its higher layers. This is what makes a ViT a
more promising direction than ResNet, which is less spatially discriminative. Due to the
ability to retain spatial information, the ViT is considered as the backbone of the method in
conjunction with the fact that the relative position of landmarks in the dataset is the main
source of semantic information of the encountered scene.
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3. Method Description

Mobile units that operate according to the traditional sense–plan–control loop rely
on vision systems that can accurately understand the environment to detect traversable
paths and objects [38]. In this study, a methodology that detects meaningful landmarks and
subsequently affects the mobile unit’s decision-making is presented. Thus, this approach
enhances safe navigation by providing scene information that accounts for the scene’s
traversability by indicating the presence (or not) of hazardous objects.

The gist of the proposed method relies on the use of a ViT encoder that consists of
a sequence of self-attention and feed-forward layers. Specifically, we employed a ViT
pretrained on ImageNet-21k using the generative, self-supervised learning method of
masked autoencoders (MAE) [39], which exhibited major amounts of effectiveness in
generalization. The MAE process included the following steps:

• An input image was masked at random locations at a high masking ratio, roughly 75%;
• An encoder (ViT) was applied on the visible parts of the image;
• The decoder operated on both the encoded paths and the masked tokens;
• Missing pixels were constructed.

After the pretraining process was complete, the decoder was discarded and the encoder
was used for image classification tasks. Masked autoencoders exhibit the potential to learn
visual scene semantics in a holistic manner, and thus they can act as a powerful pretraining
method for this article’s multilabel classification task. They have also shown substantial
efficiency in transfer learning tasks such as object detection, instance segmentation, etc.
We also experimented with the ViT-base-patch16-224 base model, that was pretrained on
ImageNet-21k. This standard ViT was chosen since it could be supported by the available
computational resources and could provide a comparison against ViTMAE.

For the supervised fine-tuning, a projection head was used, consisting of two fully
connected layers. It was trained on both positive and negative data. The size of the output
feature vector of the ViT was 768x1, and it was subsequently passed to the projection head
that eventually classified the encountered scene with respect to the candidate classes (open
path, doorways, staircase, humans, obstacle) (Figure 1). This simple network structure
was used to prevent any overfitting occurrences given the fact that only a small quantity
of annotated data was used. The BCEWithLogitsLoss loss function was employed, which
combined a sigmoid layer and the BCELoss in one single class:

lc(x, y) = L = {l1, ...lN}T , ln = −wn[ynlogσ(xn) + (1− yn)(1− logσ(xn))] (1)

The reason for selecting this particular version of BCELoss was that the sequence of
the log-sum-exp trick offered room for improved numerical stability.

RGB Image Vision 
Transformer

Projection 
Head 

Humans

Staircase

Obstacle

Doorways

Open Path
Feature Extraction 

module
Classification 

module

Figure 1. Pipeline of the proposed method.



Technologies 2023, 11, 64 4 of 10

Since a multilabel classification task was considered, the decision threshold value
for each label needed to be carefully selected; by comparing against the probability value
for each class label, it helped decide whether the encountered scene included that label
or not. For the rest of the paper this threshold hyperparameter is denoted as τ. This
threshold directly determined how conservative the method was towards the prediction of
a certain label.

4. Experimental Setup
4.1. Hardware

Throughout the experimental process, a human operator navigated a standard wheelchair
in four different buildings around the University of Texas, Arlington (UTA) campus. Data
were recorded using a GoPro HERO10 camera, which recorded at 60 frames per second
and was mounted on the wheelchair seat (Figure 2). For each building, the wheelchair
was navigated in safe areas such as hallways and doorways, while encountering static
(chairs, bins, tables, lockers) or dynamic (humans) obstacles. Moreover, ascending and
descending staircases were targeted as additional areas of interest. Despite the fact that
the environment was consistently academic, there were some distinct differences among
the different buildings appearing in the dataset (Figure 3). Namely, by observing the four
different buildings comprising our dataset, the following points were witnessed:

• Set 1: Hallway, desks, bright ambiance lighting, moving humans, wider staircases;
• Set 2: Hallway, desks/chairs, brick walls, static/moving humans, brighter ambiance lighting;
• Set 3: Normal ambiance lighting, moving humans, chairs/tables, narrower staircases;
• Set 4: Darker ambiance colors, bookshelves, conference room, desks.

Figure 2. The configuration used for the experiments consists of a GoPro HERO10 camera mounted
on the seat of the manual wheelchair.
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Figure 3. Various characteristic multilabeled scenes from the environment.

4.2. Data Collection and Processing

Data were recorded for approximately 150 min and created a dataset of 2704 images.
The initial image size was 1920 × 1080 pixels before being resized to 224 × 224 pixels
to match the resolution of the pretrained dataset. All images were manually labeled.
The dataset included 2119 single-labeled images and 585 instances that comprised various
combinations of the labels (open-path, humans, staircase, doorway, obstacles). Among the
multilabeled images, 367 instances were described by two labels and 218 instances by three
labels. Sets 1, 2, 3, 4 included 678, 697, 659, 670 image instances, respectively.

4.3. Fine-Tuning

For the conducted experiments, Pytorch (https://pytorch.org/, accessed on 13 De-
cember 2022) was used as the backbone framework. Training was done on a machine
with two Titan RTX (24GB GDDR6 RAM, 4608 CUDA Cores) GPUs. Horizontal flips were
performed as a means to augment the dataset. Training took place for 50 epochs using the
BCE loss function, unless an early stopping callback terminated the trial upon observed
convergence. Furthermore, the training parameters used were: batch size = 16, learning
rate = 0.01, and weight decay = 5 × 10−4. For the fine-tuning part, all transformer’s deeper
layers were frozen, and the classifier was replaced with two fully connected layers; the
last one performed the classification. Layers were fine-tuned using stochastic gradient
descent (SGD).

5. Ablation Study

To evaluate the performance of the proposed fine-tuned method on the custom dataset,
an ablation study was conducted. A four-fold cross-validation was performed with three
buildings selected for training and the remaining one for testing. The rationale behind
folding on the buildings was to exploit the visual dissimilarity between semantically equiv-
alent classes between buildings. This comparison helped us evaluate the ability of the
proposed method to generalize beyond learning the visual representations of specific
landmarks. Utilizing the same architecture for the projection head, a deep residual net-
work (ResNet) [40] (ResNet50) that had been pretrained on ImageNet-21k was fine-tuned.
The classifier was replaced with the projection head for the classification.

Additionally, a GAN ensemble network was trained following the methodology described
by Hirose et al. in [15]. We used the GO Stanford (https://cvgl.stanford.edu/gonet/dataset,
accessed on 13 December 2022) dataset and pretrained it on approximately 75k unlabeled
fisheye images. Finally, a small convolutional network was trained, comprising four
convolutional and two fully connected layers each followed by a ReLU activation function,
except for the final layer. A Hamming loss was chosen as the performance metrics (as
suggested in [41] since it only penalized the individual labels, and we experimented with

https://pytorch.org/
https://cvgl.stanford.edu/gonet/dataset
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different values for τ. For both fine-tuned ViT and ResNet, the datasets that presented
the highest (Set 4) and minimum (Set 3) hamming loss after performing four-fold cross
validation were chosen. The results are shown in Figure 4.

Set 1

Set 2

Set 3

Set 4

0.2

 = [0.15, 0.17, 0.18, 0.15 ,0.80]

ViT_MAE
ViT_base
ResNet50
GAN
CNN

Set 1

Set 2

Set 3

Set 4

0.2

 = [0.18, 0.20, 0.19, 0.17 ,0.85]

Set 1

Set 2

Set 3

Set 4

0.2

0.4

 = [0.12, 0.14, 0.16, 0.12 ,0.75]
Set 1

Set 2

Set 3

Set 4

0.2

 = [0.15, 0.22, 0.25, 0.15 ,0.75]

Figure 4. Methods’ performance for various values of the threshold τ using the Hamming loss metric.
A larger Hamming loss implies a lower network performance.

6. Results

The focus of this paper’s approach was heavily dependent on landmarks’ detection as
this is crucial to ensure safe wheelchair navigation. The detection of staircases, humans,
and miscellaneous static obstacles was prioritized by assigning a lower value for τ. Since
humans’ motion is governed by uncertainty and it is crucial to act in a conservative manner,
given that predictions must align with the axis of safety, the best results, in terms of humans
detection, were achieved when τhumans = 0.15. Similarly, the best detection results for
staircases, static obstacles, doorways, and open paths were achieved when τstairs = 0.17,
τobstacles = 0.18, τdoorways = 0.15, and τopen = 0.80, respectively.

Figure 4 presents the results of the ablation study. The fine-tuned ViTMAE outper-
formed all other networks while displaying critical levels of consistency. This was in
agreement with the results from the literature [6,37] in which a ViT’s performance can
significantly outperform CNNs’ in image classification tasks. This argument was also sup-
ported by the fact that the MAE training includes the notion of learning visual semantics
holistically. With regards to the ViT-base-patch16-224 network, it did not demonstrate
a significant improvement compared to ResNet50. GAN’s performance was lower, due
to the difficulty in training the ensemble’s networks with an adequate number of data,
whereas the custom fully supervised CNN did not exhibit a major amount of efficiency for
practical tasks.
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The lowest values of the Hamming loss, implying high levels of performance, were
observed for Set 3. This was due to the fact that Set 3 displayed a considerable amount
of balance with respect to varying illumination and object features. Contrariwise, Set
4 presented the largest amount of hamming loss because it was the one with the most
uniquely distinct features in terms of visual information. Compared to the others sets, Set 4
was significantly more differentiated including the darkest illumination as well as areas
with a dense concentration of bulky objects. The best performance of ViTMAE was achieved
when using τ values = (0.15, 0.17, 0.18, 0.15, 0.80) for humans, staircases, static obstacles,
doorways, and open paths, respectively.

Figure 5 displays a comparison between the Hamming loss as computed by fine-tuning
the MAE and ResNet50 on Set 3 that exhibited the best performance. Specifically, the fine-
tuned ViTMAE convincingly outperformed a fine-tuned ResNet50, with the performance
margin, described by the Hamming loss, widening as the fraction of training data increased.
Additionally, it was noticed that even for a small quantity of training data available,
ViTMAE’s Hamming loss was smaller than that of ResNet50. This showed that ViTMAE
could be largely beneficial in scenarios where only a small number of training instances
is available. In Figure 6, the recall was examined as observed in Set 3 for the images that
included the “humans” label. ViTMAE consistently achieved a recall of around 86% for
training sets larger than 40%, while ResNet50 achieved lower performance. Hence, it can
be inferred that ViTMAE could sufficiently address the presence of humans in the scene.
Overall, the attribute of our dataset that construed an object as an obstacle given its relative
position seemed to be exploited at full extent with the use of a vision transformer pretrained
with MAE.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Fraction of training data used

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 h
am

m
in

g 
lo

ss

ViT_MAE
ResNet50

Figure 5. Graph of test Hamming loss against fraction of training data used for Set 3.

The confusion matrices depicted in Figure 7 provide an illustrative representation
of the ViTMAE’s best performance as noted on Set 3. Overall, the detection performance
achieved high levels of efficiency. In addition, the results were consistent along the various
labels irrespective of the notable differences among the sets, which were collected in
different buildings. This can be attributed to the presence of pretrained self-attention layers
along with the property that masked autoencoders portray, which is to learn visual scene
semantics in a comprehensive manner. The aforementioned arguments reinforced the
claim that ViTs provide generalizable solutions to the multilabel classification problem for
small datasets.
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Figure 6. Comparison between the two prevalent fine-tuning methods for the “humans” label when
testing on Set 3 for different quantities of training data.

Figure 7. Confusion matrices for each label as observed in ViTMAE’s best performance on Set 3.

7. Conclusions and Future Work

A method that extracted high-level semantic information regarding the scene’s nav-
igability through landmark detection was proposed. Experiments were conducted in
different indoor environments using a manually driven wheelchair and a wide-lens camera.
The results indicated that our multilabel classification method achieved a high perfor-
mance without the loss of generalization and enriched scene understanding. Therefore,
the proposed approach can act as a preceding step before designing the motion planning
(autonomous or not) of a manual wheelchair.

Furthermore, the results showed that fine-tuning a vision transformer could act as
a powerful tool for multilabel classification tasks in small datasets. We showed that fine-
tuning a vision transformer pretrained with MAE led to a stronger performance compared
to state-of-the-art deep architectures for image classification such as ResNet. Avenues
for further research and improvement involve the utilization and fusion of additional
modalities (depth, laser), which, along with RGB images, can lead to a deeper evaluation
and understanding of the semanticity of the predicted scene labels.
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