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Abstract: In this paper, a hybrid optimization controller that combines a genetic algorithm (GA) and
ant colony optimization (ACO) called GA-ACO algorithm is proposed. It is applied to a photovoltaic
module array (PVMA) to carry out maximum power point tracking (MPPT). This way, under the
condition that the PVMA is partially shaded and that multiple peaks are produced in the power-
voltage (P-V) characteristic curve, the system can still operate at the global maximum power point
(GMPP). This solves the problem seen in general traditional MPPT controllers where the PVMA
works at the local maximum power point (LMPP). The improved MPPT controller that combines
GA and ACO uses the slope of the P-V characteristic curve at the PVMA work point to dynamically
adjust the iteration parameters of ACO. The simulation results prove that the improved GA-ACO
MPPT controller is able to quickly track GMPP when the output P-V characteristic curve of PVMA
shows the phenomenon of multiple peaks. Comparing the time required for tracking to MPP with
different MPPT approaches for the PVMA under five different shading levels, it was observed
that the improved GA-ACO algorithm requires 19.5~35.9% (average 29.2%) fewer iterations to
complete tracking than the mentioned GA-ACO algorithm. Compared with the ACO algorithm, it
requires 74.9~79.7% (average 78.2%) fewer iterations, and 75.0~92.5% (average 81.0%) fewer than
the conventional P&O method. Therefore, it is proved that by selecting properly adjusted values
of the Pheromone evaporation rate and the Gaussian standard deviation of the proposed GA-ACO
algorithm based on the slope scope of the P-V characteristic curves, a better response performance of
MPPT is obtained.

Keywords: genetic algorithm (GA); ant colony optimization (ACO); photovoltaic module array
(PVMA); maximum power point tracking (MPPT); global maximum power tracking (GMPP); local
maximum power point (LMPP); P-V characteristic curve

1. Introduction

In recent years, with the rise of environmental protection awareness and the exhaustion
of petroleum, natural gas, coal mines and other forms of energy, scientists have begun
searching for environmentally-friendly and sustainable alternative energy. For scientists,
solar power has become one of the ideal forms of alternative energy as it is not bound by
geographical conditions and is easily installed. In order to realize energy independence
and reduce carbon emissions to alleviate global warming, photovoltaic power generation
that does not rely on imports has become one of the renewable energies actively developed
by the world’s governments. The governments around the world have also set their
own capacity goals. In order to achieve these goals, an appropriate MPPT controller
has been designed to increase the power generation utilization of photovoltaic power
generation systems.

The conventional algorithms generally applied to track the maximum power of PV-
MAs include perturbation and observation (P&O) [1–3] and incremental conductance
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(INC) [4,5]. These two conventional approaches, while being able to effectively track the
MPPs when PVMAs operate under normal working conditions, when PVMAs are shaded,
these conventional approaches may only track the LMPPs rather than the GMPP. Thus,
the power generation efficiency of PVMAs is reduced. Therefore, the problem of tracking
the maximum power point when shading occurs in the photovoltaic module cannot be
solved [6].

To address the aforesaid issue, in recent years, some solutions for determining the
optimal values have been proposed which reduce the probability that local optimal solu-
tions are obtained during the solution process. For instance, an efficient hybrid starling
murmuration optimizer that combines dynamic opposition, a Taylor-based optimal neigh-
borhood strategy, and a crossover operator (DTCSMO) [7], an efficient enhanced modified
chameleon swarm algorithm termed MCSA [8] and an enhanced hierarchical guided slime
mould algorithm called HG-SMA [9] etc. have been developed. While these optimization
algorithms may effectively address the issue of optimal solutions, there is no practical
case for tracking the GMPP of PVMAs when multiple peak values appear in the P-V
characteristic curves.

In order to solve the GMPP tracking problem under the condition that the PVMA
module is partially shaded, many practical smart maximum power tracking controllers have
been proposed and applied to solve the problem [10–17]. This is because the smart maximum
power tracking controller can search the GMPP generated in the nonlinear multi-peak P-V
characteristic curve under the condition that the PVMA module is partially shaded. The
more commonly used smart methods include particle swarm optimization (PSO) [11–13], ant
colony optimization (ACO) [14–16], genetic algorithms (GA) [17–20], and cuckoo search
algorithms (CSA) [21,22], etc. The literature indicates that the smart algorithm-based
MPPT controllers have a better steady-state response and tracking response compared
with traditional methods. Additionally, when the photovoltaic module is partially shaded,
the GMPP can be accurately and quickly tracked, unlike traditional method-based MPPT
controllers that can only track the LMPP. However, these smart maximum power tracking
controllers adopt fixed parameter values in the iterative formulas adopted, so there is
still room for improvement in terms of the speed of dynamic tracking responses and the
performance of steady-state tracking.

The improved artificial bee colony (I-ABC algorithm) [23] combining the artificial
bee colony algorithm and the perturb and observe (P&O) method has the advantage that
the GMPP is searched via the bee colony algorithm, and the correct direction for the
next tracking is determined by the P&O method. While this approach reduces the issue
of tendency where local optimal solutions are obtained during the solution process and
addresses the issue that the P&O method is unable to track the MPPs if the PVMAs are
abnormal, the computation is more complex, and the tracking responses are not fast enough.
Additionally, the conventional cuckoo search (CS) can be improved by adjusting the step
factors of CS depending on the slopes and iterations of the PVMAs’ P-V characteristic
curves [24]. While the GMPPs may be tracked faster and more precisely when partial
modules are shaded in a PVMA and multiple peak values are generated for the P-V
characteristic curve, the improved CS is only applicable in the simulation phase. Practical
testing results for PVMAs under different connection configurations and shading ratios
may enable the improved CS to track the GMPP in less time and improve the power
generation efficiency of the photovoltaic power generation system.

Although Chao and Rizal [25] proposed a MPPT controller with a new GA and ACO
hybrid algorithm, the proposed MPPT controller also demonstrates the characteristics of
GA and ACO algorithms. In particular, the GA has excellent features when searching for
the best solution and enabling the system to slowly converge. When used independently,
more computation time is needed, possibly because there are more populations, resulting in
the disadvantage of a longer tracking time [19]. On the other hand, ACO features the ability
to quickly search the subspace and converge to the best non-global solution in advance.
Hence, the incorporation of GA can complement the ACO algorithm, thereby enhancing the
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speed of maximum power tracking and enabling the PVMA to output the global maximum
power. Based on the above reasons, an improved GA-ACO MPPT controller is proposed
in this paper. The same circuit structure and tracking steps as [25] were also employed.
The optimization of the GA-ACO parameters differs depending on the P-V characteristic
curves generated under different shading conditions of PVMAs, and thus, no principle
can be found for the parameter optimization. Therefore, it is learnt in tests that when the
tracking approaches the MPP and as the slope of the P-V characteristic curve declines, the
Pheromone evaporation rate ρ and the Gaussian standard deviation x increase; and the ρ
and x parameters are required to be greater as MPP is approached. In contrast, the farther
the MPP is, the more ρ and x must decrease as the slope of the P-V characteristic curve
increases. Therefore, the optimal adjusted value of the Pheromone evaporation rate, ∆ρ,
and the optimal adjusted value of Gaussian standard deviation, ∆x, may be obtained via
multiple simulations based on the slope values of P-V characteristic curves of PVMAs.
Through the location of the work point, the slope of the P-V characteristic curve was
calculated to automatically adjust the Pheromone evaporation rate ρ and the Gaussian
standard deviation x in the iterative formula. The global maximum power tracking time
was reduced to obtain better steady-state responses.

2. The Shading Characteristics of a PVMA

The output power of a photovoltaic module changes with the environment, weather
and temperature. In the PVMA, any shaded module will affect the total output power,
because each part of the module in the PVMA is connected in series [26]. Therefore, even if
a photovoltaic module is shaded in series, the output current of the entire PVMA is also
affected. Using MATLAB software and under the standard test conditions (STC) (solar
irradiance: 1000 W/m2, air mass (AM): 1.5 and temperature: 25 ◦C), the I-V and P-V
characteristic curves of the photovoltaic module array were simulated. Figure 1 illustrates
the P-V and I-V characteristic curves of a four photovoltaic module array with one module
under 50% shade [26]. Because the photovoltaic module array consists of four photovoltaic
modules in series, one of which is shaded by 50%, with the rest unshaded, two peaks
appear in the P-V characteristic curve of the PV module array, and there is a considerable
decrease in the maximum power output, as shown in the P-V characteristic curve. A
similar pattern is observed in other situations. For any shading occurring on a photovoltaic
module array, there will be more than one maximum power point (MPP) observed in the
power-voltage (P-V) characteristic curve of the photovoltaic module array. However, only
the local maximum power point (LMPP) can be tracked by the traditional maximum power
point tracker, but not the global maximum power point (GMPP). Therefore, in this paper,
an intelligent maximum power point tracker based on an improved GA-ACO algorithm is
presented to overcome this problem.
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3. The Proposed Improved MPPT Methods

In order to improve the tracking performance of the MPPT controller in a PVMA, an
improved GA-ACO MPPT controller is proposed in this paper. The principle involves
automatically adjusting the Pheromone evaporation rate ρ and Gaussian standard deviation
x of the traditional GA-ACO MPPT controller, thereby shortening the tracking time. The
MATLAB software was used to simulate maximum power tracking of the GA-ACO MPPT
controller under different shading ratios in order to verify the excellent performance of the
tracking methods proposed.

3.1. Genetic Algorithm

The theoretical basis of genetic algorithms originates from “On the Origin of Species”
written by Charles Darwin in 1859. A genetic algorithm is a search-type algorithm based
on natural selection and genetic mechanisms in the field of biology. It simulates natural
selection among organisms in nature, as well as the phenomena of breeding, crossover,
and mutation. Moreover, in each iteration, several candidate populations (solutions) are
retained and superior individuals are selected from the candidate populations. Through
genetic factors (crossover and mutation), a new generation of candidate populations is
produced until the best individuals are found. A genetic algorithm features multi-point
search in order to prevent becoming caught in the local best solution. However, if the
population quantity is too large, considerable time may be required for calculation, leading
to low search efficiency. Thus, when the need to search bulk data arises, a genetic algorithm
may take a long time to compute before a search is completed [19].

3.2. Ant Colony Optimization

Ant colony optimization (ACO) is a type of algorithm for searching the best path.
It can also mimic ant behaviors [14]. In nature, ants leave behind pheromones secreted
along their foraging trails in order to mark their trails. When ants behind reach the location
previous ants have reached, they choose trails with higher pheromone values and leave
more pheromones to strengthen the likelihood of ants behind taking the trials. Therefore,
as long as the trials with the highest pheromone values exist, the trails have a higher chance
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of attracting ants to move toward foraging. The ACO algorithm has many advantages,
including robustness, the ability to search for a better solution, and good feedback, etc.
However, the ACO algorithm may cause the search to slow down in the initial phase due
to inadequate information obtained.

3.3. Traditional GA-ACO MPPT Controller

First, the traditional GA-ACO algorithm is applied in the PVMA to explain the MPPT
steps. The traditional GA-ACO MPPT controller implementation steps are described
below [25].

Step 1. First initialize the GA and ACO parameters. The GA parameter settings include:
number of iterations (Itmax), the number of solution (k), the number of populations
(nPop), crossover percentage (pc), factor for crossover (γ), mutation percentage (pm),
mutation rate (mu), tournament size (ts), etc. The ACO parameter settings include:
number of ants (Ant), Pheromone evaporation rate (ρ), etc. The populations are
subsequently initialized. Each population has k solutions. In order to initialize the
populations, the solution of each initial population randomly selects the output
voltage of PVMA and substitutes it into the iterative formula.

Step 2. For all the populations, calculate the fitness of each population through the fitness function.
Step 3. In nPop, randomly select several populations (i.e., The tournament size (ts) value).

After comparing the randomly selected populations, the best population is selected
as the father, and the mother is chosen through the same approach. The parents
go through crossover to create offspring. The quantity of offspring produced is
determined by the crossover percentage (pc) value. Through the same crossover
method, population mutation occurs. The number of mutated populations is
determined by the mutation percentage (pm) value. The cost function should
be calculated for all the offspring and mutated populations produced. The new
populations produced replace inferior populations and the next generation is added.
Better populations are retained and selected as the ACO initial conditions.

Step 4. In order to initialize ACO, the fitness of all the solutions in the retained populations
should be calculated. It can be observed from Step 1 that all the solutions retained
are output voltages (Vpv) of the PVMA. The fitness of these solutions refers to the
output power (Ppv) corresponding to each voltage (Vpv). Then, all the solutions of
better populations retained from the GA undergo pheromone initialization. The
initialization steps are as follows:

Step 4.1.Calculate the distance ∆Vn (n = 1, . . . , k) between each voltage value (Vn)
and the best solution (Vbest) in the population retained from the GA. In
particular, Vbest refers to the voltage solution of the maximum power value
in a population.

∆Vn = ‖Vn −Vbest‖ (1)

Step 4.2.In order to calculate the pheromone value (τn) of each solution, the Gaus-
sian normal distribution in Equation (2) should be used to obtain ϕn and
each solution is computed. Through the Gaussian normal distribution,
the normal distribution distance of all the solutions can be calculated.
The shortest distance represents the best solution, the Gaussian value ap-
proximates zero and the farthest distance is the worst solution, with the
Gaussian value approximating 1.

ϕn =
1

x
√

2π
exp

(
− (∆Vn)

2

2x2

)
(2)

Here, x is the Gaussian standard deviation (usually set as x = 0.5).
Step 4.3.Use Equation (3) to calculate the pheromone value (τn) of all the solutions.
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τn = (1− ρ)· ϕn

∑K
i=1 ϕi

(3)

In particular, the ant path is determined by the pheromone value (τn) calculated
from each solution in the previously retained population of the GA. The higher the
pheromone value of a solution, the more likely it is to attract ants to move toward
foraging. The pheromone evaporation rate (ρ) balances the Pheromone value of
each solution in a population. Ants not are not only attracted to the solution with
the highest pheromone value, but there is also a chance that they are attracted by
Pheromone values generated from other computed solutions. However, the trail
that attracts the highest number of ants is regarded as the maximum power point,
and this solution is selected as the ACO tracking result.

Step 5. Repeat Step 3 and Step 4 until the number of iterations has reached the preset
maximum iterations (Itmax) at which point the iterations end.

3.4. Improved GA-ACO MPPT Controller

The improved GA-ACO algorithm proposed in this paper implements adjustments, mainly
targeting the Pheromone evaporation rate (ρ) in the ACO algorithm and the Gaussian standard
deviation (x) and based on the slope in the P-V characteristic curve. Equations (2) and (3) show
that when the two parameters of ρ and x are adjusted, the Pheromone value (τn) can be
changed. When the Pheromone value increases, the rate of ant colony convergence to the
maximum power point can be accelerated, which in turn, enhances the tracking response
performance of the algorithm at the maximum power point. Thus, based on the slope (m)
of the P-V characteristic curve in the PVMA in this paper, the Pheromone evaporation rate
(ρ) and Gaussian standard deviation (x) are adjusted. In particular, slope (m) is defined in
Equation (4):

m =
P(it) − P(it−1)

V(it) −V(it−1)
(4)

where it represents the current number of iterations, it− 1 represents the previous number
of iterations, and P(it) − P(it−1) represents the difference in the output power of the PVMA
in the two iterations.

In this paper, based on the changes in the slope of the P-V characteristic curve, the
changed Pheromone evaporation rate (ρ) and the Gaussian standard deviation (x) are as
shown in Equations (5) and (6):

ρ =
∣∣√m

∣∣× ρ + ∆ρ (5)

x = |0.5m| × x + ∆x (6)

where ∆ρ is the adjustment value of ρ under different m, adjusted as shown in Table 1; and
∆x is the adjustment value of x under different m, adjusted as shown in Table 2.

Table 1. The adjustment value ∆ρ of ρ under different slopes of the P-V characteristic curve.

m =
P(it)−P(it−1)
V(it)−V(it−1)

∆ρ

m > 2 −0.2
2 ≥ m ≥ 1.5 −0.15
1.5 ≥ m ≥ 1 −0.09
1 ≥ m ≥ 0.5 +0.07
0.5 ≥ m ≥ 0 +0.17

m = 0 0
0 ≤ m ≤ −0.5 +0.17
−0.5 ≤ m ≤ −1 +0.07
−1 ≤ m ≤ −1.5 −0.09
−1.5 ≤ m ≤ −2 −0.15

m < −2 −0.2
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Table 2. The adjustment value ∆x of x under different slopes of the P-V characteristic curve.

m =
P(it)−P(it−1)
V(it)−V(it−1)

∆x

m > 2 −0.285
2 ≥ m ≥ 1.5 −0.14
1.5 ≥ m ≥ 1 −0.02
1 ≥ m ≥ 0.5 +0.1
0.5 ≥ m ≥ 0 +0.2

m = 0 0
0 ≤ m ≤ −0.5 +0.2
−0.5 ≤ m ≤ −1 +0.1
−1 ≤ m ≤ −1.5 −0.02
−1.5 ≤ m ≤ −2 −0.14

m < −2 −0.285

Since the optimized value of the GA-ACO parameter differs due to the P-V character-
istic curve generated under different shading conditions, the optimal rules for parameter
adjustment cannot be identified. However, we learned from the test that the slope of the P-V
characteristic curve reduced when the tracking reached within proximity of the maximum
power point. Therefore, the Pheromone evaporation rate ρ and Gaussian standard devia-
tion x should increase; the closer it gets to the MPP, the greater the increase in parameter
values ρ and x that are required. Conversely, the further it is away from the MPP, the slope
of P-V characteristic curve becomes greater, where ρ and x should reduce. Based on this,
∆ρ and ∆x can apply the slope of the P-V characteristic curve for the PVMA accordingly
to derive more optimized experience values for the ∆ρ and ∆x adjustments (as shown in
Tables 1 and 2) through multiple simulations.

3.5. The Maximum Power Tracking Processes and Architecture of the Proposed Improved GA-ACO

Figure 2 shows the flowchart of the maximum power tracking controller based on
the improved GA-ACO proposed in this paper. The iterations in the last block of the
flowchart in Figure 2 are indeed the set maximum iterations Itmax. Figure 3 shows the
system structural diagram of the proposed maximum power controller. It mainly consists
of the PVMA, boost DC-DC converter, improved GA-ACO maximum power tracking
controller and voltage and current detectors. Table 3 shows the component specifications
of a boost DC-DC converter.

Table 3. The specifications of the main components of a boost DC-DC converter.

Items Specifications

Energy storage inductance (Lm) 250 uH, 10 A
Filter capacitor (Cin) 390 uF, 450 V
Filter capacitor (Cout) 330 uF, 450 V

Fast diode (D) IQBD60E60A1 withstand voltage VRRM = 600 V, withstand current IFAV = 60 A
Power semiconductor (S) MOSFET IRFP460 withstand voltage VDSS = 500 V, withstand current ID = 20 A
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4. Simulation Results

First, the MATLAB software was adopted to carry out maximum power tracking
simulation by applying the improved GA-ACO algorithm to the photovoltaic module array
(PVMA). The simulation results obtained from traditional GA-ACO, ACO and P&O MPPT
controllers were compared for performance. The electrical parameter specifications of the
photovoltaic module in this paper are shown in Table 4. As shown in Table 4, four photo-
voltaic modules were configured as four-series/one-parallel arrays and a two-series/two-
parallel array. Under the same temperature condition, maximum power tracking simulation
under five different shading conditions was carried out. It can be observed in Table 5 that
under the five different shading conditions, the P-V characteristic curves obtained from the
simulation showed different numbers of peaks. Then, through simulation, the proposed
improved GA-ACO MPPT method under five different shading conditions was verified to
be superior to the other traditional methods.

Table 4. The electric parameter specifications of the photovoltaic module adopted.

Parameters Specifications

Rated maximum output power (Pmp) 40.75 W
Current at maximum output power point (Imp) 1.74 A
Voltage at maximum output power point (Vmp) 23.42 V

Short-circuit current (Isc) 2 A
Open-circuit voltage (Voc) 36 V

Table 5. The test cases of five shading ratios under different parallel series configurations.

Case Series-Parallel Configuration and Shading Ratio The Number of Peaks in the P-V Curve

1 0% shading + 0% shading + 0% shading + 0% shading Single-peak
2 0% shading + 35% shading + 35% shading + 35% shading Double-peak
3 0% shading + 25% shading + 40% shading + 40% shading Triple-peak
4 0% shading + 25% shading + 35% shading + 50% shading Quadruple-peak
5 (0% shading + 35% shading) // (35% shading + 35% shading) Double-peak

Note: 0% shading means no shading; “+” means “series”; “//” means “parallel”.
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The parameter setting values of the improved GA-ACO, traditional GA-ACO, ACO
and P&O MPPT methods adopted for the simulations in this paper are shown in Table 6.

Table 6. The parameter setting values of the improved GA-ACO, traditional GA-ACO, ACO, and
P&O MPPT methods adopted for the simulation.

Parameter Name Value

Maximum number of iterations (Itmax) 50
Number of solutions (k) 3

Number of populations (nPop) 5
Crossover percentage (pc) 0.7

Factor for crossover (γ) 0.4
Mutation percentage (pm) 0.4

Mutation rate (mu) 0.3
Tournament size (ts) 3

Ant count (Ant) 5
Pheromone evaporation rate (ρ) 0.37
Gaussian standard deviation (x) 0.5

Duty cycle disturbance (∆d) 0.02

4.1. Case 1: 0% Shading + 0% Shading + 0% Shading + 0% Shading

Figure 4 shows the four modules in series adopted to simulate the P-V and I-V
characteristic curves of the photovoltaic module array under the condition of no shading
through the MATLAB software. Since the photovoltaic module is in series, the voltages
and powers are added. Therefore, it can be observed from Figure 4 that the voltage of the
maximum power point and the maximum power point value are four times those of a
single photovoltaic module. The simulation results in Figure 5 show that the improved
GA-ACO managed to track the GMPP through just one iteration. On the other hand, the
traditional GA-ACO, ACO, and P&O methods required 3, 10 and 16 iterations to track the
GMPP. In addition, the P&O method continued to oscillate near the maximum power point.

4.2. Case 2: 0% Shading + 35% Shading + 35% Shading + 35% Shading

Figure 6 shows the simulation results when four photovoltaic modules in series
are adopted and the shading ratio of the three photovoltaic modules is 35%. When one
photovoltaic module is completely unshaded, the P-V and I-V characteristic curves are
simulated through MATLAB software. It can be observed in Figure 6 that double-peak
values appeared with a GMPP of 121.6 W and a GMPP voltage of 104.2 V. It can be observed
from the simulation results in Figure 7 that the improved GA-ACO managed to track
the GMPP with just one iteration. On the other hand, the traditional GA-ACO and ACO
methods required 3 and 17 iterations to track the GMPP. As for the P&O method, the GMPP
could not even be tracked.
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4.3. Case 3: 0% Shading + 25% Shading + 40% Shading + 40% Shading

When four photovoltaic modules in series are adopted, the shading ratios of the three
photovoltaic modules are 40%, 40% and 25%, respectively. When one photovoltaic module
is completely unshaded, the P-V and I-V characteristic curves simulated through MATLAB
software are shown in Figure 8. It can be observed from Figure 8 that three-peak values
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appeared in the P-V characteristic curve, with the GMPP of 117.8 W and the GMPP voltage
of 106.1 V. The simulation results in Figure 9 show that the improved GA-ACO method
managed to track the GMPP after just two iterations. On the other hand, the traditional
GA-ACO and ACO methods required 4 and 27 iterations to track the GMPP. As for the
P&O method, the GMPP still failed to be tracked.
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4.4. Case 4: 0% Shading + 20% Shading + 35% Shading + 50% Shading

The shading ratios of the three modules set in this case are 20%, 35% and 50%, respec-
tively. One module is without shading. Figure 10 shows the Case 4 simulation results of
the P-V and I-V characteristic curves. It can be observed from the simulation results that
four peaks appeared in the P-V characteristic curve, while the GMPP occurred at 105.8 W.
Figure 11 shows the simulation results of the improved GA-ACO, traditional GA-ACO,
ACO and P&O MPPT methods. It can be observed from Figure 11 that even though four
peaks appeared in the P-V characteristic curve, the improved GA-ACO method managed
to track the GMPP with just three iterations. On the other hand, the traditional GA-ACO
and ACO methods required 7 and 34 iterations to track the GMPP. As for the P&O method,
the GMPP still failed to be tracked with a limited set of iterations.
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4.5. Case 5: (0% Shading + 35% Shading) // (35% Shading + 35% Shading)

Figure 12 shows Case 5 P-V and I-V characteristic curves obtained from the simulation.
The module array is configured as a two-series/two-parallel array. One of the modules is
under the condition of 0% shading, while the rest of the modules are under the condition
of 35% shading. Since the photovoltaic module is connected as a two-series/two-parallel
array, only two peaks are produced in the P-V characteristic curve. The power values of
two of the peaks are 69.29 W and 121.75 W, respectively. Figure 13 shows that the improved
GA-ACO method managed to track the GMPP with just one iteration. On the other hand,
the traditional GA-ACO and ACO methods required 3 and 13 iterations, respectively, to
track the GMPP. On the other hand, the P&O method still failed to successfully track the
GMPP. It can be observed from the simulation results in Figure 13 that even though the
PVMA in Case 5 was changed, it was also confirmed that the tracking speed using the
improved GA-ACO method proposed in this paper was not affected by changes in the
connection method.
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The simulation results of the five cases above show that the improved GA-ACO
method is superior to the traditional GA-ACO, ACO and P&O methods in terms of per-
formance. In addition, under each case, the improved GA-ACO algorithm managed to
track the GMPP with fewer iterations. On the other hand, the traditional GA-ACO and
ACO algorithms required more iterations to track the GMPP. As for Cases 1, 2, 3 and
5, although the P&O method managed to track GMPP, it oscillated to and fro near the
maximum power point, while in Case 4, it was unable to track GMPP with a limited set
of iterations. In addition, based on the five cases selected, maximum power tracking was
conducted 50 times using the improved GA-ACO, traditional GA-ACO, ACO and P&O
MPPT methods. The numbers of iterations of GMPP tracked each time were added up
and averaged, as shown in Table 7. Table 7 shows that although the three algorithms of
the improved GA-ACO, traditional GA-ACO and ACO can track the GMPP among the
five cases, the improved GA-ACO method required on average fewer iterations compared
with those of the traditional GA-ACO and ACO algorithms. This demonstrates that the
proposed improved GA-ACO MPPT method has better tracking performance. In particular,
the higher the number of peaks in the P-V characteristic curve, the greater the differences
in the tracking performance.

Table 7. The comparison of the five cases tracking the average number of iterations of GMPP using
different algorithms.

Case
ACO MPPT [15] P&O MPPT [3] GA-ACO MPPT [25] Proposed GA-ACO MPPT

Iter GMPP Total Time Iter GMPP Total Time Iter GMPP Total Time Iter GMPP Total Time

1 15.64 3.1 ms 17.85 3.0 ms 4.85 1.2 ms 3.24 0.8 ms
2 18.16 3.6 ms 18.25 3.1 ms 6.74 1.7 ms 4.56 1.2 ms
3 30.96 6.2 ms 32.35 5.5 ms 8.42 2.1 ms 6.78 1.8 ms

4 36.87 7.4 ms Stuck in
LMPP – 11.68 2.9 ms 7.49 1.9 ms

5 25.38 5.1 ms 23.15 3.9 ms 7.14 1.8 ms 5.36 1.4 ms

Note: Iter GMPP signifies the average number of iterations to obtain GMPP, Total Time signifies the average total
time to reach MPP, and LMPP signifies the local maximum power point.

In fact, the more complex the algorithm is, the slower the calculation will be. We
can conclude from the calculation time comparison that the proposed improved GA-ACO
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MPPT has the slowest calculation time. Even though the proposed improved GA-ACO
MPPT is the slowest to calculate an iteration, this algorithm is the fastest to reach the GMPP
because it requires fewer iterations. The iterations of the proposed improved GA-ACO are
the least compared with the other three algorithms. The detailed comparison is shown in
Table 7 which demonstrates that the proposed GA-ACO MPPT is an improvement on the
conventional MPPT algorithm.

In addition, the proposed hybrid method was compared with different hybrid MPPT
controllers including the improved artificial bee colony (I-ABC) algorithm [23] and the
improved cuckoo search (I-CS) algorithm [24]. The comparison between the proposed
hybrid MPPT and existing hybrid MPPTs [23,24] is shown in the Table 8. The partial
shading conditions that were tested in [23,24] were one peak, two peaks, three peaks, and
four peaks of P-V curve peaks, yet they used different PV specifications and different exact
irradiances. Their results are compared with the proposed hybrid MPPT in Table 8. The
proposed method is better than the I-ABC and I-CS MPPT methods [23,24] in all cases.

Table 8. The hybrid MPPT comparison.

Case
Number of Iterations

I-ABC MPPT [23] I-CA MPPT [24] Proposed GA-ACO MPPT

1 4.56 4.21 3.24
2 6.45 5.68 4.56
3 7.39 7.21 6.78
4 10.18 8.32 7.49
5 10.57 7.98 5.36

Based on the PVMA in Table 7, the performance was compared in terms of the time response
when using different MPPT methods under five different shades for tracking the maximum
power point. The results show that the method proposed in this paper indeed provided a better
tracking speed response. Therefore, it was verified that the ∆ρ and ∆x adjustment values selected
from the slope range for the P-V characteristic curve in Tables 1 and 2 led to performance of
the MPPT response.

For each of the test cases, although the shading conditions for the selected simulation
were set at fixed values, they could be seen as the change in equivalent shading ratio since
all the shading conditions of the different test cases differed from each other. Furthermore,
it can be observed from the simulation results that the proposed MPPT method could
obtain better tracking performance under all the changes in shading conditions. Therefore,
the five different test conditions listed in Table 5 could be treated as the tests of changing
between different shading conditions.

Since the slow change of actual irradiance seemed unable to reveal the superior
performance of the MPPT methods proposed, irradiance levels with greater step changes
were adopted in this paper for conducting the test and verifying the tracking response
of the proposed methods. Under the condition of slow changes in irradiance, the MPPT
methods proposed could also produce the same superior tracking performance, only not
significant enough.

In this paper, the PVMA went through MPPT tests under five different shading condi-
tions. From Figures 4, 6, 8, 10 and 12, it can be observed that under such different shading
conditions, the P-V characteristic curves show different local peak values, and the curve
types differ accordingly. Moreover, from the simulation results in Figures 5, 7, 9, 11 and 13,
it can also be observed that with the proposed MPPT method, at any point in time during
the tracking process, the power value tracked produces a minimum difference between all
the compared MPPT methods and the global maximum power point (GMPP). Therefore, it
can be determined that the integral of squared error (ISE), integral of time-squared error
(ITSE), integral of absolute error (IAE) and integral of time-absolute error (ITAE), which are
calculated according to references [27–29], would be minimum throughout the simulation.
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In this paper, the maximum power tracking test was conducted on the PVMA under
five different shading conditions, where each shading condition was equivalent to certain
changes in temperature and irradiance parameters. Therefore, the test was the same as the
robustness test that considers the MPPT of parametric uncertainties [30,31]. As indicated by
the test results in Table 7, all the MPPT methods herein produced better tracking response
performances compared with other methods, which demonstrates that the MPPT methods
proposed did indeed show robustness.

5. Discussion

The proposed improved GA-ACO algorithm combining the ant colony optimization
(ACO) and the genetic algorithm (GA) referred to in reference [25] determine the initial
value of the iterative parameters of the ant colony algorithm. To shorten the number of
iterations needed to obtain the optimal value, it is necessary to address the issue that
the conventional ACO tends to track the local maximum power point (LMPP) when
the optimal value is applied to search the global maximum power point (GMPP) if the
photovoltaic module arrays (PVMAs) are abnormal. However, the optimization of the
GA-ACO parameters differs depending on the P-V characteristic curves generated from
different shading conditions. Thus, no principle is to be found for parameter optimization.
Provided that it is learned in tests that when the tracking approaches the MPP and as the
slope of the P-V characteristic curve declines, the Pheromone evaporation rate ρ and the
Gaussian standard deviation x increase, and the ρ and x parameters are required to be
greater when approaching the MPP. In contrast, the farther the MPP is, the ρ and x must
be decreased as the slope of the P-V characteristic curve increases. Therefore, the optimal
adjusted value of the Pheromone evaporation rate, ∆ρ, and the optimal adjusted value
of Gaussian standard deviation, ∆x, may be obtained via multiple simulations based on
the slope values of the P-V characteristic curves of PVMAs, as indicated in Tables 1 and 2.
Comparing the responses of the time tracking to MPP with different MPPT approaches for
the PVMA in Table 7, Section 4, under five different shading levels for their performances,
it is observed that the improved GA-ACO algorithm proposed in this paper indeed has
better tracking speed response. When five different peak values are found in the P-V
characteristic curve in Table 7, the proposed improved GA-ACO algorithm has 19.5~35.9%
(average 29.2%) fewer iterations when tracking than the GA-ACO algorithm mentioned
in [25]. Compared with the ACO algorithm [15], it has 74.9~79.7% (average 78.2%) fewer,
and 75.0~92.5% (average 81.0%) fewer than the conventional P&O method [3].

6. Conclusions

In this paper, an improved GA-ACO algorithm was proposed for application to
photovoltaic module arrays to carry out MPPT. The simulation results have validated that
its trackability is significantly superior to those of traditional GA-ACO, ACO and P&O
MPPT controllers. The MPPT method proposed combines the superior characteristics
of GA and ACO. In addition, based on the slope of the P-V characteristic curve in the
location of the photovoltaic module array work point, the Pheromone evaporation rate
ρ and the Gaussian standard deviation x in the ACO iterative formula are automatically
adjusted. The ACO algorithm can then more speedily search the subspace and output
the local best solution. The simulation results prove that the improved GA-ACO MPPT
controller is superior to traditional GA-ACO, ACO and P&O MPPT controllers in terms
of tracking response performance under different connection configurations and shading
ratios. The proposed improved GA-ACO MPPT controller even managed to track the
global maximum power point during the first iteration. On the other hand, the traditional
GA-ACO and ACO MPTT controllers required more iterations to track the GMPP. As for
the P&O method, other than in Case 1 (0% shading ratio) when it managed to successfully
track the GMPP and generate oscillation near its maximum power point, in the rest of the
cases, it was unable to track the GMPP with a limited set of iterations. Therefore, since
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the improved GA-ACO MPPT required fewer iterations to accurately track the GMPP, the
power generation utilization rate of the photovoltaic module array was enhanced.
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Nomenclature

Acronyms
MPPT maximum power point tracking
AM air mass
MPP maximum power point
P-V power-voltage
I-V current-voltage
GA genetic algorithm
ACO ant colony optimization
P&O perturbation and observation
INC incremental conductance
LMPP local maximum power point
GMPP global maximum power point
PVMA photovoltaic
STC standard test condition
ISE integral of square error
ITSE integral of time-square error
IAE integral of absolute error
ITAE integral of time- absolute error
Symbols
Itmax number of iterations
k number of solutions
nPop number of populations
pc crossover percentage
pm mutation percentage
m slope of the P-V characteristic curve in the PVMA
mu mutation
γ factor for crossover
ts tournament size
Ant number of ants
dx length of a jump
ρ pheromone evaporation rate
∆ρ adjustment value of ρ

Vpv output voltage of PVMA
Ppv output power of PVMA corresponding to each voltage Vpv
∆Vn distances between each voltage Vn and the best solution (n = 1 . . . k)
Vn solution from the archive (n = 1 . . . k)
Vbest best solution in the population retained from GA
Φn Gaussian normal distribution value
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x Gaussian standard deviation
τn Pheromone value
∆x adjustment of value of x
∆d duty cycle disturbance
Lm energy storage inductor
Cin input filter capacitor
Cout output filter capacitor
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