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Abstract: Cognitive Fatigue (CF) is the decline in cognitive abilities due to prolonged exposure to
mentally demanding tasks. In this paper, we used gait cycle analysis, a biometric method related to
human locomotion to identify cognitive fatigue in individuals. The proposed system in this paper
takes two asynchronous videos of the gait of individuals to classify if they are cognitively fatigued or
not. We leverage the pose estimation library OpenPose, to extract the body keypoints from the frames
in the videos. To capture the spatial and temporal information of the gait cycle, a CNN-based model
is used in the system to extract the embedded features which are then used to classify the cognitive
fatigue level of individuals. To train and test the model, a gait dataset is built from 21 participants by
collecting walking data before and after inducing cognitive fatigue using clinically used games. The
proposed model can classify cognitive fatigue from the gait data of an individual with an accuracy
of 81%.

Keywords: cognitive fatigue detection; gait cycle analysis; gait behavior; OpenPose; skeletal join
coordinates; convolutional neural network

1. Introduction

Cognitive Fatigue (CF) is a unique kind of exhaustion that is brought on by prolonged
cognitive activity that strains people’s mental faculties. [1]. Sustained cognitive fatigue
leads to poor performance at work, causes workplace accidents, reduced test scores in
students, etc. [3]. CF is one of the main reasons of day to day accidents too. For example,
driving while cognitively fatigued is one of the main reasons for road accidents and a
staggering 41% of the population has reported driving while in a fatigued state at some
point in their life [4]. Another example is, 68% of all aviation accidents were due to human
error enabled by some form of cognitive fatigue [5]. Another study found that surgical
residents were cognitively fatigued due to lack of sleep 48% of their awake time, which
had an impact on their performance [6]. Hence it is important to identify cognitive fatigue
in a person to avert disasters that may arise as a result of a decrease in cognitive ability. In
this paper, we propose a method to assess cognitive fatigue from gait data captured using
multiple RGB cameras.

Gait is a person’s pattern of walking. The Gait cycle or stride is the sequence of
steps from when one foot contacts the ground to that same foot contacting the ground
again. Figure 1 shows a gait cycle of an individual. The gait sequence consists of multiple
such gait cycles. Various issues cause disturbance in the gait cycle of an individual such
as physical fatigue, cognitive fatigue, heightened emotion, and diseases such as multiple
sclerosis, stroke, etc. [7–9]. Existing methods of CF detection relies on electroencephalogram
(EEG), Functional Magnetic Resonance Imaging (fMRI) data, or eye-motion [10–12]. These
approaches often require specialized sensors such as an EEG headset, a specialized machine
to capture fMRI images, or a close view of the facial features. These systems may not
be suitable for day-to-day use as they are not robust and uncomfortable to wear. On the
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other hand, gait analysis can be done from a great distance and without the cooperation or
intrusion to the subject using images or videos captured using simple RGB cameras.

Figure 1. The steps of a human gait cycle [13].

In this paper, we discuss the methodologies and experimental setup of collecting gait
data of individuals before and after inducing cognitive fatigue using clinically proven
games. We use our proposed setup to collect data from 21 individuals which is then used
to train and validate the result of the proposed deep learning-based model to identify
cognitive fatigue.
Contributions of this paper are:

• Computer vision-based system that uses gait sequence analysis to identify an individ-
uals cognitive fatigue state.

• A dataset of gait sequences of individuals in non-cognitively fatigued and cognitively
fatigued states.

• A 1D-CNN model based solution to classify cognitive fatigue in individuals.

The rest of the paper is organized as follows: Section 2 discusses related work. Section 3
introduces the data collection setup, collection methodologies, and annotations used on
the collected data. Section 4 discusses the proposed solution. Section 5 discusses result
analysis followed by conclusions in Section 6.

2. Related Work

There is various literature to identify or measure both physical and cognitive fatigue.
As there is no defined scale to measure fatigue, each study aims at detecting a specific type
of fatigue usually defined by the authors. The manifestation of physical fatigue is visible
in the human body. One common example is the elevated heart rate which can be used
to measure physical fatigue [14]. The elevated heart rate is also an indicator of cognitive
stress [15]. Inertial Measurement Unit (IMU) and electroencephalogram (EEG) are used
in this study to measure fatigue and alert the workers to reduce workplace injury and
accidents [16]. This study [17] uses IMU sensors to detect fatigue induced by running. The
aforementioned approaches depend on sensors that need to be attached to the subject’s
body to measure physical or cognitive fatigue. Although wearable heart rate monitor
sensors and IMU sensors are not expensive, non-intrusive and contact-free techniques are
preferable in real-world use case scenarios.

The physical and emotional state of an individual can be inferred from gait analysis.
This study conducted by the authors aims to identify the identity and emotion of an
individual from gait analysis [18]. A similar study also aims to identify the emotion of
an individual from their gait pattern [19]. Manifestation of physical and cognitive fatigue
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has been observed to change the gait pattern of individuals. There have been studies
supporting an increase in step width during walking in older and younger adults, head
stability, and postural control impairment when balancing on one foot due to physical
fatigue has been published [8,20–22]. Similar studies have also reported disturbance of gait
pattern of older adults due to cognitive fatigue [23].

Pose estimation models such as OpenPose, HRNet, MediaPipe, etc. have opened
up new directions for activity recognition research such as gait analysis [24,25]. These
models extract the skeletal joint or body keypoints of the human body which are used as
features by deep learning models as inputs to achieve high performance and accuracy in
classification tasks. In this study, the authors leverage an RNN and CNN-based multi-
modal model to classify abnormal gait using body keypoint sequence and average foot
pressure data [26]. In another similar study, the authors use extracted body keypoints to
identify the emotion of individuals using a model that leverages group convolution [27].
The authors proposed an Attention Enhanced Temporal Graph Convolutional Network
(AT-GCN) in this study for identity and emotion recognition [18]. The aforementioned
multi-learning model can effectively capture discriminative spatiotemporal gait features
and provides higher accuracy. Graph Convolutional Network (GCN) model was used in
this study for gait recognition [28]. GCN considers both the spatial and temporal aspects
of gait and achieves state-of-the-art accuracy in the CASIA-B public gait dataset. In a
recent study, the authors classified physically fatigued and non-fatigued gait cycles via a
multi-task RNN [7]. In the aforementioned study, the proposed model has one primary
branch that does the task of fatigue classification while the auxilary branch identifies the
first supporting foot in the gait cycles.

CNNs have been widely used in gait recognition. In this study, the authors use a deep
convolutional neural network to classify gait which they test on the CASIA-B dataset [29].
The proposed CNN network works on a small dataset and does not require augmentation
of the data. The input used for the network is the Gait Energy Image (GEI) representation
proposed by this study [30]. In this paper, the authors use a wearable inertial measurement
unit (IMU) to obtain data related to gait patterns and use an LSTM-CNN fusion model
to classify abnormal gait patterns from obtained data [31]. On the other hand, encoding
a 3D skeleton sequence into an image-like representation allows convolutional neural
networks that can achieve high performance in image recognition to be employed [32].
Inspired by these works, we adopted a 1D-CNN model-based solution to apply to body
keypoints extracted from the RGB image sequences of gait data to classify cognitive fatigue
of individuals.

3. Experimental Setup, Dataset Collection and Annotation
3.1. Experimental Setup

In this section, we discuss the experimental setup and the data collection procedure.
Figure 2 illustrates the steps taken during the data collection procedure. For each partici-
pant, the procedure of the data collection steps is as follows:

• Fill out an initial survey with the participants’ data and initial Cognitive
Fatigue (CF) level.

• Collect walking (gait) data.
• Play multiple rounds of the 2-Back game. Fill out a survey mentioning CF level.
• Play multiple rounds of a VR game and fill out a survey mentioning CF level.
• Collect walking (gait) data and survey with CF level.
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Figure 2. Flow of the data collection steps.

Figure 3 shows an overview of the experimental setup used for the data collection
(it is denoted as the Gait block in Figure 2). A 3.5 m long marked region is used for the gait
data collection. The participant starts walking from the gray region marked as region A and
walks all the way to region B. Once the participant reaches region B, they take a 180-degree
turn and walk back to region A. The two cameras are used to capture the video of the gait
pattern of the user in the blue region. Camera 1 captures the side view of the participant
and Camera 2 captures the front view (while the participant walks toward region B) and
back view (while the participant takes a turn and walks back to region A) of the participants.
The videos are captured at 60 FPS along with the depth. Though the depth information is
not used in this study.

Figure 3. A figure showing the experimental setup.

Our goal was to investigate the change in gait pattern due to cognitive fatigue. Multiple
rounds of VR games and N-Back games were used to induce cognitive fatigue in the
participants. The N-back game is a sequential cognitive test that assesses a person’s ability
to store, change, and manipulate information in short-term memory. In an N-back game,
participants must decide whether each item displayed on the screen is the same as the
stimulus that was displayed N-steps earlier. N-Back game has been used by clinical
researchers to induce cognitive fatigue [33]. 2-back game, a variation of the N-back game
where the participant has to respond to stimuli displayed 2-steps earlier is used in our
study to induce cognitive fatigue in participants. The participants also played Beat Saber, a
popular VR game where the participant has to slice oncoming blocks in the direction shown
on the block to the beat of the music. Figure 4 shows a participant playing Beat Saber
during the data collection process. The VR games also induce visual and cognitive fatigue
in users [34]. As it is difficult to assess or measure CF objectively, we ask the participants for
their CF levels. The CF level in the survey is asked using the visual analog scale (VAS) [35].
The participants responded to the VAS questionnaires a total of four times. The CF level in
the VAS is ranged from 1 to 10 where 1 means the least cognitively fatigued and 10 means
most cognitively fatigued.
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Figure 4. A figure showing a participant playing Beat Saber, the VR game used in the data collection
step to induce cognitive fatigue.

For this study, our aim was to collect gait data of individuals before and after inducing
cognitive fatigue. We collected the data in two sessions from each participant on different
days and times of the day. If a participant attended a morning session for data collection,
the next session for that participant was held in the afternoon on another day. This was
done to reduce the bias in collected data as people feel different levels of fatigue throughout
the day. Some participants may feel fatigued during the morning but feel energetic during
the afternoon and vice versa.

3.2. Data Collection and Annotation

We collected and annotated a novel dataset from 21 subjects. Among the 21 partici-
pants of the study, 16 were male and 5 were female with an average age of 23.75 years. The
participants’ height ranged from 154.94 centimeters to 187.96 centimeters. Even though
there was a significant variance in the height of the participants, the participants had similar
body types. We did not consider the physical fitness of the participants, but excluded partic-
ipants with health conditions such as Arthritis, Spinal Cord Injury(SCI), muscle disorders,
etc. which are known to cause a disturbance in a person’s gait pattern. The variance in the
collected data ensures that the model does not learn the aforementioned features when
training using our dataset. The data were collected from the participants with informed
consent. Figure 2 shows the flow the of the data collection steps.

During the data collection phase, we obtained 4 different RGB videos for each session.
These videos contained the gait sequence of the participants from front and side views for
the initial and final trials in the session. The collected videos were trimmed to get rid of
parts of the beginning and end of the video clips where the participants were stationary.
Due to the angle of view of the cameras, there were unnecessary objects in the video frames.
The collected videos were cropped to get rid of these unnecessary objects and only keep
the participant in view. The videos were then run through OpenPose to obtain the body
key points of the participants in every frame [24]. For each video, we obtained roughly 350
to 400 frames depending on the duration of an individual’s trial. Due to lighting conditions
and the presence of objects in the background, OpenPose sometimes detected incorrect
body key points. As a result, we checked each frame individually for anomalies and the
anomalous frames were discarded.

After each session, we obtained the CF level of the participants through a VAS on a
scale of 1 to 10 where 1 was the least cognitively fatigued and 10 was the most cognitively
fatigued. Based on the participant’s feedback, we labeled the gait sequence as either
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cognitively fatigued or not fatigued. We labeled the gait sequence as cognitively fatigued if
the reported score of CF was 6 or higher. Otherwise, we labeled the gait sequence as not
cognitively fatigued. We augmented and used this labeled dataset to train our deep neural
network model.

4. Problem Formulation and Methods
4.1. Problem Statement

Gait analysis and classification are different from typical action recognition discussed
in Section 2 in a way that difference in variation of a single action (ex: walking) is identified
by the model. The cognitively fatigued and non-cognitively fatigued sample of the same
subject is extremely subtle and may not be visible in obtained videos. On the other hand,
the walking or gait patterns among different subjects have an extremely high variation.
This subtle intra-class variation and massive inter-class variation make gait classification
a difficult problem for classifiers as the massive inter-class difference overwhelms the
subtle inter-class variation [7]. The gait sequence can also be thought of as a temporal
sequence of body keypoints. Figure 5 shows a single stride of a participant plotted using
the extracted body keypoints using OpenPose. When a person walks, they repeat this stride
which makes gait a periodic phenomenon. The gait of a person contains both spatial and
temporal information. If we directly feed the extracted body keypoints through networks
like RNN or LSTM, they will discard the spatial information contained in the human
pose. As a result, the proposed model should be able to take the spatial information i.e.,
position of limbs, their relative distance to each other, etc.) from the body keypoints and the
temporal information (i.e., the difference between subsequent frames of body keypoints)
into consideration.

Figure 5. Visualization of a stride using the extracted body keypoints from a video using OpenPose.

4.2. Proposed Method

Convolutional neural networks provide state-of-the-art results without the need for
any domain-specific feature engineering. Our proposed solution uses 1D-CNN-based
models to extract the spatial and temporal features from the body keypoints of the gait
sequence of individuals captured from front and side view. These extracted features of
both views are then passed through a fully connected layer to classify the sequence. As the
two 1D-CNN blocks extract features from the input streams independently, our proposed
system works even if the key body point sequence of both views are not synchronized.
Figure 6 shows an overview of the proposed system.
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Figure 6. Overview of the proposed system.

As mentioned in Section 3.2, we obtain 4 gait sequences or 2 data samples from each
participant per session. Among these 2 samples, one sample (front and side view) represents
the non-cognitively fatigued instance and the other sample (front and side view) represents
the cognitively fatigued instance of a participant. We obtain a total of 70 samples from the
participants. As we collect samples with both labels from each participant, our dataset is
balanced. To prevent label leakage, it is ensured that the sample collected from a single
individual does not end up in both the training and testing set. For consistency, we take
the first 300 frames of each video to train our models where the extracted feature of each
frame has a shape 25X3. To train the models shown in Table 1 (except our proposed model),
we concatenate the frames of the front view and side view and flatten the extracted features
which gives us a tensor of shape 600X75. When training our proposed model, we pass the
frames obtained from each video through the two 1D-CNN blocks shown in Figure 6. Both
1D-CNN blocks have similar architectures. Figure 7 shows the network architecture of the
1D-CNN model used in block 1. The block 1 model takes an input of shape 300X75 which
represents the front view of the gait of a participant. The block 2 model takes an input of
the same size as block 1 which represents the side view of the participant’s gait in the same
session. The extracted features from the 1d-CNN models are then passed through two fully
connected layers to classify the participant’s cognitive fatigue state.

Table 1. Results comparison.

Method Overall Accuracy

Multi-Layer Perceptrons 54.81%
Long Short-Term Memory (LSTM) 58.24%
Recurrent Neural Network (RNN) 63.1%

1D-CNN 67.5%
Proposed Method 81.64%

We extract the body keypoints from each frame of the captured gait videos as the most
basic feature. We use OpenPose to extract the 25 body keypoints (e.g., ankle, knee, hands,
etc.) from an image[24]. OpenPose is a 2D pose estimator, which means each extracted
key point has the associated x and y coordinate of the joint and the confidence score of the
detected point. Extracted body keypoints are in image coordinates.
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Figure 7. Architecture of the 1D-CNN block used. The same architecture is used in both blocks 1 and
2 shown in Figure 6.

Our collected dataset from 21 participants is not large enough to train deep learning
models, which requires a massive amount of data for the training procedure. As a result,
we had to perform augmentation on the extracted body keypoints. As our extracted body
keypoints were in image coordinate, we applied popular image augmentation techniques
on the extracted body key point sequences. We performed mirroring along the vertical and
horizontal axis, cropped, and rotated the body keypoints using random values. When a
transformation for augmentation is performed on a sequence, it is applied to all the key
body point frames of the sequence to preserve the spatial and temporal relationship in the
augmented sequence.

5. Results

The experiments are performed in a system with an intel core i7-8750 quad-core CPU,
16GB of RAM, and NVIDIA GTX 1060 GPU with 2560 Cuda cores and 8GB of graphics
memory. The system was used to extract the body key points from the videos using
OpenPose [24]. As there is no official protocol for training and testing split, we took the
gait data collected from the first 15 participants for training the model and the remaining
6 participants’ gait data to test and evaluate the model. Similarly, the augmented data
from the first 15 participants were also used for training and the augmented data of the
remaining 6 participants were used for testing and validation. The models were trained for
5 such aforementioned splits of the dataset and the accuracy of each of the 5 iterations is
averaged and reported in this section.

Our proposed model was implemented using the tensor flow framework [36] for
200 epochs with the ADAM optimizer [37]. The learning rate and batch sizes were 0.001 and
8 respectively. These values were obtained empirically through extensive experimentation.
Both 1D-CNN modules in the models are trained using the same hyperparameters. Other
models used for comparison were first trained using the default hyper-parameter values as
our proposed model and later tuned to obtain better accuracy. Table 1 shows the prediction
accuracy for different models trained using our dataset.

As per our knowledge, this is the first of its kind study to classify cognitive fatigue
from gait sequence. As a result, we compared the accuracy of our proposed models with
deep neural networks such as 1D-CNN, RNN, and LSTM which are used to classify spatial
or temporal data. Even though both RNN and LSTM are good at extracting features from
temporal data, the gait sequence has both temporal and spatial components. Moreover, the
two video-streams that contain the gait videos of individuals are asynchronous. As a result,
LSTM and RNN performs poorly on our dataset. Our proposed model outperforms these
models with an average accuracy of 81.64%.
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6. Conclusions and Future Work

In this paper, we presented a setup to collect gait data before and after inducing
cognitive fatigue using clinically proven N-Back game and VR game. We also present a
novel 1D-CNN-based model to classify cognitive fatigue from whole body human gait
sequence from the collected data using our proposed setup. The experimental results show
that our model performed well despite having a small dataset. This study also paves
the ground for cognitive fatigue detection from gait captured using an RGB camera. In
the future, our aim is to come up with new architecture to improve the accuracy of the
prediction model and define an objective measure of cognitive fatigue instead of using a
subjective measure such as the VAS.
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