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Abstract: There is an increasing need to provide explainability for machine learning models. There
are different alternatives to provide explainability, for example, local and global methods. One of the
approaches is based on Shapley values. Privacy is another critical requirement when dealing with
sensitive data. Data-driven machine learning models may lead to disclosure. Data privacy provides
several methods for ensuring privacy. In this paper, we study how methods for explainability based
on Shapley values are affected by privacy methods. We show that some degree of protection still
permits to maintain the information of Shapley values for the four machine learning models studied.
Experiments seem to indicate that among the four models, Shapley values of linear models are the
most affected ones.

Keywords: data protection; masking; anonymization; explainability; machine learning; Shapley
values

1. Introduction

The importance of data privacy has increased in recent years. Data are being gathered
and stored in huge quantities and then extensively used for profiling and recommendations.
This is a threat for individual privacy. People’s concern has increased in parallel with
this increasing storage and use of data. Legislation has been adapted to take into account
new threats. European data protection regulation (GDPR) is one of the initiatives to
support individual rights. GDPR not only supports data protection and privacy but also
requirements on how decision making affecting people should be done. One of them is the
requirement that automated decisions should be explainable and that individuals affected
by these decisions can request explanations of these decisions.

Data privacy [1,2] provides tools for data anonymization. These tools typically perturb
a data set in a way that the modified data do not lead to disclosure. At the same time,
perturbation needs to be performed so that the data are still useful [3–5]. There are different
ways to understand disclosure; this has led to different definitions of privacy. Formal
definitions of privacy are known as privacy models. Then, a plethora of data protection
mechanisms exists providing solutions according to the different privacy models. These
methods can be compared in terms of their privacy guarantees but also with respect to the
quality of the resulting data. That is, given a data set and a privacy level, some methods
behave better than others for a particular data use. A very simple example is the following:
if our goal is to compute a mean of the data set, then microaggregation is better than noise
addition. This is so because microaggregation will not change the mean of the data, and
noise addition can. For a more complex data analysis, similar studies have been performed.
This usually corresponds to study how a data protection mechanism, a masking method or
anonymization technique is able to produce a machine learning model of good quality.

The need for explainability [6,7] adds a new element in the machine learning process.
A machine learning model needs to be good enough with respect to accuracy or prediction
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error, in terms of selected performance measures. Nevertheless, this is not enough. We
need to provide tools to understand the predictions. Several tools have been developed for
this purpose.

To interpret the prediction of machine learning models, there are different methods.
They are categorized into main categories. We can distinguish between model-specific and
model-agnostic and between global and local methods. For example, global methods focus
on the average behavior of the model. They are especially helpful when the user wants
to comprehend the general mechanism behind the data. In contrast, models’ individual
predictions are explained through local interpretation techniques. In this paper, we focus
on explaining individual prediction. For this, we use local models. There are different local
model-agnostic methods. They include the Individual Conditional Expectation (ICE), Local
Interpretable Model-agnostic Explanations (LIME), counterfactual explanation, Scoped
Rules (Anchors), and Shapley values (e.g., SHapley Additive exPlanations). In this work,
we use Shapley values [8,9]. Shapley values were introduced by Shapley in 1953 [10] in
game theory. We selected this approach because, in the context of explainability, we build a
game for a machine learning model that takes into account the interaction of all features.
Then, the Shapley value distributes these interactions among the features in a fair way. The
theoretical properties of Shapley values have been extensively studied [10–12]. So, in short,
they provide a summary of interactions between features. In addition, Shapley values have
been extensively used in the literature on explainability, and it is easy to compare Shapley
values corresponding to different models based on data described in the same features.

Explainability poses a threat to privacy. In short, the more we explain in a model
and the less opaque it is, the more information we give in the training data set. Similarly,
when data are protected, and models are learned from the data, are explanations still
valid? Are the explanations going to change? This is an open problem. Note that there are
researchers that state that, from a legal perspective, it is impossible to have both privacy
and explainability (see Grant and Wischik [13]). This paper tries to provide some initial
results about this research question from a technical perspective. In a previous paper [14],
some effects of two anonymization methods (microaggregation and noise addition) on
importance features were studied. TreeSHAP [9] was used, which is based on tree-based
machine learning models. In this paper, we further study this process with extensive
experimentation.

The objective of this paper is to better understand how masking methods affect
explanations when these explanations are based on Shapley values. We have conducted
extensive experiments with a variety of alternatives. For example, we used three different
data sets, four different machine learning algorithms, seven masking strategies, each with
a large number of parameters, and different analyses of the results based on the Shapley
values. Masking methods include well-established anonymization techniques but also a
recently introduced method based on non-negative matrix factorization. The paper does
not focus on disclosure risk or utility (from a more classical machine learning perspective).
These topics have been studied in several papers, as reported in the literature [1,2,15].

Our results show that

• Data protection, through masking, does permit explainability using Shapley values,
as they are not significantly affected under moderate protection;

• The use of different machine learning models causes different behaviors in Shapley
values. For example, we see that among the methods, linear models are the ones in
which Shapley values change the most.

The structure of this paper is as follows. In Section 2, we describe some masking
methods we use in this paper. In Section 3, we describe the methodology. In Section 4, we
describe the experiments and results. The paper concludes with a summary of our results
and some new research directions.
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2. Preliminaries

In this section, we review some masking methods for data protection and anonymiza-
tion and discuss Shapley values as a tool for explainability.

2.1. Masking Methods

Data privacy [1,2,15] provides several methods for data anonymization. They protect
a data set by means of modifying it so that sensitive information cannot be disclosed.
Masking methods are useful for data publishing, that is, when we need to share data with
third parties (e.g., researchers, software engineers, decision makers, etc.) and, particularly,
when the data usage is ill-defined or not defined at all. Privacy models for this type of
release are k-anonymity [16,17], privacy for re-identification [18,19], and local differential
privacy [20,21].

There are three main families of masking methods. Perturbative methods, non-
perturbative, and synthetic data generators. Perturbative methods modify the data intro-
ducing some kind of error. Noise addition, where a value is replaced by a noisy one, is an
example. Rank swapping is another example, in which values are swapped between indi-
viduals in order to protect them. In contrast, non-perturbative modifies the data, changing
the level of detail but without making it erroneous. For example, replacing a numerical
value by an interval, or a town by a county or sets of towns. The interval is more general
than the numerical value and, thus, less informative, but there is no error in the information
supplied (i.e., the interval). Synthetic data are about replacing the original data by artificial
data generated by a model. That is, a machine learning or statistical model is trained with
the data, and then the model is used to create artificial data.

In this paper, we used perturbative methods. These methods are preferred to non-
perturbative ones because the latter make data processing more complex (e.g., having
mixtures of numerical data and intervals, data at different levels of generalization, and sets
of values). Synthetic methods are increasingly being used, but we leave them for future
work. We discuss below the methods we used in this work.

We use X to denote the original file to be protected, ρp to denote a masking method
with parameter p, and X′ = ρp(X), the protected version of X using masking method ρ
with parameter p. The following methods are considered in our work.

Microaggregation. This method consists of building small clusters of the original data and
then replacing each original record by the cluster center. Protection is achieved by
means of controlling the minimum number of records in a cluster. This corresponds
to the parameter k. The larger the k, the larger the protection and the larger the
distortion. Microaggregation has been proven to provide a good trade-off between
privacy and utility. We used two methods of microaggregation: MDAV [22,23] and
Mondrian [24]. That is, two different ways of building the clusters.

Noise addition. This method replaces each numerical value x by x + ε, where ε follows
a given distribution. We use two types of distributions: a normal distribution with
mean zero and standard deviation

√
(variance ∗ k) and a Laplace distribution with

mean zero and standard deviation as above. Here, k is the parameter. The larger the
k, the larger the protection and the larger the distortion.

SVD. We apply a singular value decomposition to the file, and then rebuild the matrix but
only with some of the components. The number of components is a parameter of the
system. We use k to denote this parameter. The smaller the number of components,
the larger the distortion and larger the privacy.

PCA. This is similar to the previous method using principal components. We use k to
denote the number of components. Therefore, the smaller the k and the number of
components, the larger the protection and distortion.

NMF. This approach corresponds to non-negative matrix factorization [25]. The first
use of NMF in data privacy seems to be by Wang et al. [26]. Our approach follows
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Algorithm 1, and it is based on the implementation of one of the authors [27]. Again,
the smaller the number of components k, the larger the privacy. NMF needs the data
to be positive, thus, data are scaled into [0,1] before the application of NMF.

Algorithm 1: Algorithm for masking data using NMF. Here, X is the original
file with N records and |V| attributes. Protected files X′1, . . . , X′K are produced.

Input: X = [x1, . . . , xN ] ∈ R|V|×N ; K: maximum rank to consider

Output: A = {X′k|k ∈ 1, . . . , K}, a family of masked data sets

Step 1. For all ranks k ∈ 1, . . . , K
apply NMF(X, k) and find matrices Wk and Hk

Step 2. For all ranks k ∈ 1, . . . , K, do

Step 2.1. For each record j = 1, . . . , N
construct masked data vectors ak

j as follows:

ak
j :=

k

∑
l=1

Hk
ljW

k
l ∈ R|V|,

Step 2.2. Define the masked matrix X′k as:

X′k = [ak
j ]j=1,...,N .

We mentioned above three privacy models related to data sharing. We briefly review
these methods and discuss the relationship of the above methods with the privacy models.

Privacy for re-identification is about avoiding identity disclosure. That is, avoiding
intruders finding records in the published database. If intruders have information on
a particular person (e.g., a record x), then they will try to find x in the protected file
X′. As data are protected, x will not appear as such in X′. So, intruders will try to
guess which record x′ in X′ corresponds to x. For example, selecting the most similar
record x′ = arg maxx′∈X′ d(x′, x). All masking methods are defined to provide privacy for
re-identification. Different parameters provide different guarantees. i.e., the larger the
distortion, the stronger the guarantee.

Another privacy model is k-anonymity. The goal of this privacy model is to hide
a record (or individual) in a set of indistinguishable records (or individuals). A file X′

satisfies k-anonymity (for a given set of features) when, for each combination of values
of the features, we have at least k indistinguishable records. Microaggregation is one of
the tools to provide k-anonymity. When we force clusters to have at least k-records, and
we replace each record by the cluster centers, we will have that there will be for each
combination k indistinguishable records.

Differential privacy is a privacy model focusing on computations. Given a function f
and a database X, the goal is to produce a value f (X) that does not depend on particular
records in X. More formally, a function K f satisfies differential privacy when the result of
K f (X) is very similar to K f (X1), where X and X1 differ on a single record. The definition
presumes that the function K f is a randomized version of f , and then very similar is under-
stood in terms of the similarity between the distribution functions on the space of possible
outputs. Local differential privacy is a variation of differential privacy that is appropriate
for databases. In this case, individual records are protected independently, with each fea-
ture also protected independently. There are different mechanisms to provide differential
privacy. The use of Laplacian noise is usual for numerical data. Randomized response
(which is equivalent to PRAM) is usual for categorical data. Among the methods discussed
above, noise addition with a Laplace distribution is the one that can provide differential
privacy. The larger the noise, the larger the privacy guarantees in differential privacy.
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2.2. Shapley-Value-Based Explainability

The use of Shapley values as a tool for explainability was introduced by Lundberg and
Lee [8]. The motivation is to use game theory machinery [28] as the basis of explanation. A
game is a set function defined on a reference set.

In our context, explanations are values for the features expressing their relevance to
the outcome of instances (i.e., the columns or attributes of our records). Let us consider
some notation. Let x be a record in a data set X and a model ML built from our training
data set X. Then, ML(x) is the prediction of our model. We consider that X is defined in
terms of the features, attributes or variables V.

Then, the game is a set function on sets of features. That is, we consider a subset of
features A ⊂ V and define for x ∈ X a function µx(A). To compute the µx(A), we consider
the output of our model ML if we only knew the attributes in A; for the others, we just
have “don’t know”, or e.g., the mean value of the database. Then, µX(A) is the difference
between this output and the mean output.

Game theory provides a tool to determine the importance of each feature for a given
game. This is known as the Shapley value. In short, given a game µ on the reference
set V, its Shapley value is a function that assigns to each feature in V a value in [0,1]. In
addition, the addition of all Shapley values is equal to one. These properties hold when
the game is positive and normalized. This is not the case here. We may have negative
values because µx(A) is a difference that can be negative (the output of a prediction can
be smaller than the mean output), and, naturally, is not normalized. Nevertheless, the
Shapley values are still useful because they gives a magnitude of the importance of each
feature. We have features with positive Shapley values and features with negative Shapley
values. The former mean that the feature has a positive influence in the outcome of the
model, and the latter represent a negative influence. Then, larger values (in absolute terms)
represent larger influence in the outcome. In this way, we know the relevance of features
on computing the outcome of a model for a given instance x.

3. Methodology

We implemented the process described in more detail below. It mainly consists of
producing different alternative protected files. For a given protected file, we computed
a machine learning model, and then for the pair (protected data and machine learning
model), we used some records to compute its explanation in terms of the Shapley value.
Shapley values obtained through the masked file and through the original file are compared.
Different ways of comparison were used. In this way, we can analyze the effects of masking
on the Shapley values.

We detail now the methodology for an original data file X. We describe in Section 4
the three actual data sets used in our experiments. The process is described for a particular
machine learning algorithm. We use ML := A(X) to denote that ML is the machine
learning model trained from data X using algorithm A and use ML(x) to denote the
outcome of the model when applied to record x (and all features in x are used). We use
MLS(x) to denote the outcome of the model when applied to record x, and only the features
in S are used. The actual 4 machine learning algorithms used in our experiments are also
described in Section 4. A summary of the notation used in this section is given in Table 1.
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Table 1. Notation used.

Notation Explanation

X Data file
Xte Test data set
Xtr Training data set
ρp Masking method ρ with parameter p
A Machine learning algorithm

MLo Machine learning model from original data

MLρp

Machine learning model from masked data
using ρp

MLS Machine learning model that uses as input only
attributes in S

φML(x) Shapley value of a machine learning model ML
for an instance/ record x

φ̄ML,X
Mean Shapley value of a machine learning
model ML for all instances/ records x in X

The methodology is described below. We consider different masking methods ρ with
parameters pρ. We use the notation pρ because parameters depend on the method. When
clear, we just use p for the parameters for the sake of conciseness.

• Split the data set X in training Xtr and testing Xte.
• Define MLo := A(Xtr) as the machine learning model learned from the original data.
• For each x ∈ Xte, define its game µMLo ,x according to the existing literature. Formally,

for a set of features S, we define µMLo ,x(S) = MLS
o (x) − ML∅

o (x). Then, compute
the Shapley value φMLo (x) of this game. Use all records in Xte to compute the mean
Shapley value. We obtain a mean Shapley value for each masking method and
parameter. That is, φ̄MLo ,Xte .

• Produce Xρp = ρp(Xtr) for each pair masking method ρ and parameter pρ.
• Produce the corresponding machine learning model MLρp := A(Xρp).
• For each x ∈ Xte, compute the games and the corresponding Shapley values associated

to models MLρp . We denote them by µMLρp ,x and φMLρp
(x) for each x ∈ Xte. Use all

records in Xte to compute the mean Shapley value φ̄MLρp ,Xte .

• The following comparisons are considered:

– Compare the mean Shapley of the original and masked files using the Euclidean
distance. That is, ||φ̄MLo ,Xte − φ̄MLρp ,Xte ||.

– Compare the mean Shapley of the original and masked files using Spearman’s
rank correlation.

– Compare the Shapley values for each x using the Euclidean distance, and then
compute the average distance. Formally, this corresponds to:

∑x∈Xte ||φMLo (x)− φMLρp
(x)||

|Xte|

– Compare the Shapley values for each x using Spearman’s rank coefficient.

We considered four different comparisons, because we consider that they provide
different types of information. The use of mean Shapley values gives information on a
global level. Mean Shapley values permit us to know which are the most relevant features
in general terms. So, we can observe if these important features are changed because of
data protection. Nevertheless, important features in general terms do not need to coincide
with the relevant features for a particular example. When the machine learning models are
non-linear, this is not necessarily the case. That is why it is also relevant to see if masking
data causes changes at the local level. This can be observed with a direct comparison of the
Shapley values for x ∈ Xte and then averaging these comparisons.



Technologies 2022, 10, 125 7 of 13

We used the Euclidean distance to compare the Shapley values but also the Spearman
rank coefficient. The Shapley values are numerical values, but from the point of view of rel-
evant attributes, the relative order is what matters. We used the Spearman rank coefficient
because it only takes into account the relative position and not the values themselves.

4. Experiments and Analysis

In this section, we detail the experiments we have conducted and discuss the results.

4.1. Implementation

Our experiments were conducted in Python. We have our own implementation of
the masking methods. We used the sklearn package for machine learning. That is, to
find machine learning models from training data. We have our own implementation for
computing games and for computing the Shapley value of these games. The Spearman
rank correlation coefficient is from the scipy package. Code is available here: [29].

4.2. Parameters

We considered the following parameters for the masking methods described above. In
practice, parameter selection depends on the privacy requirements and data utility require-
ments. For microaggregation, a value of k around 5 is used. Noise addition requires values
that depend on the available data and their sensitivity (when implementing differential
privacy). PCA and SVD parameters close to the number of features may imply low levels
of privacy.

• Microaggregation. As explained above, we considered two different microaggregation
algorithms: MDAV and Mondrian. The difference in the algorithms is in how clusters
are built. For both algorithms, the cluster centers are defined in terms of the means
of the associated records. The following values of the parameter k were used: k =
{2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20}.

• Noise addition. We considered Normal and Laplacian distribution. The following
values of k were used: k = {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.4, 1.5}.

• SVD. We considered the singular value decomposition and the reconstruction of
the matrix using different number of values. In our experiments, we considered
k = {2, 3, 4, 5, 6, 7, 8}.

• PCA. As in the case of SVD, we considered k = {2, 3, 4, 5, 6, 7, 8}.
• NMF. The selection of the parameter that approximates well the matrix is a difficult

problem [30]. We considered here a different number of components in the factoriza-
tion. We used k = {2, 3, 4, 5, 6, 7, 8}.

4.3. Data Sets and Machine Learning Algorithms

We applied our method to the following data sets. They were selected because they
are well-known in the literature and used before in both machine learning as well as data
privacy [31] research. Only numerical data were considered. Data are available in the
UCI repository [32] and in the sklearn Python library. We leave non-numerical data for
future work.

• Tarragona. This data set contains 834 records described in terms of 13 attributes. We
used the first 12 attributes as the independent ones and the 13th attribute (last column
in the file) as the dependent one.

• Diabetes. This data set contains 442 records with information on 10 attributes. An
additional numerical attribute is also included in the data set, for prediction.

• Iris. This data set contains 150 records described in terms of 4 attributes and a class
(which corresponds to a fifth attribute). We used the 4 attributes as the independent
variables, used the class as a numerical value, and used one as a numerical dependent.
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4.4. Machine Learning Algorithms

We considered different machine learning algorithms, supplied by sklearn. In partic-
ular, we considered the methods (used in all cases with default parameters)

• linear_model.LinearRegression (linear regression);
• sklearn.linear_model.SGDRegressor (linear model implemented with stochastic

gradient descent);
• sklearn.kernel_ridge.KernelRidge (linear least squares with l2-norm regulariza-

tion, with the kernel trick);
• sklearn.svm.SVR (Epsilon-Support Vector Regression).

These algorithms were applied using dependent and independent attributes, as de-
scribed in the previous section. The standard versions of these algorithms were used.

4.5. Results

An analysis of the results leads to the following conclusions.
The first observation is that both the mean distance between Shapley values and the

distance between Shapley values can be very large. Note that when the game is defined
for a particular machine learning algorithm, the game is unbounded and depends on the
values of the prediction. That is, the value of the game for a set may be very large if the
prediction is large. Because of this, the Shapley values can be large and, thus, the distance
between two Shapley values can also be large. This makes comparisons cumbersome. This
is illustrated in Figure 1, which shows (left) the distances for the Tarragona data set and
(right) the distances for the Diabetes data set. It is not so easy to compare the scales of the
two figures. Moreover, considering 11 or 12 independent inputs (left and middle figures)
changes the scale. In contrast, the rank correlation is always in the [−1,1] interval, which
makes comparisons easier. This is illustrated in Figure 2.

These figures also show that larger distances do not mean larger rank correlation.
That is, the the distances between Shapley values do not mean that the order of these
values are changed so much. Observe that, for the set Diabetes, in Figure 1, Mondrian give
larger distances than MDAV (i.e., curves lo_dm and lo_md have larger values than curves
ld_dm and ld_md). That is, MDAV seems to behave better with larger amounts of noise. In
contrast, in Figure 2, it is MDAV which shows a worse performance, as Mondrian has a
rank correlation near to 1 for larger parameters. The set Tarragona seems to have a more
erratic behavior on the distances and rank correlations with respect to the parameters but
is more consistent if we compare Figures 1 and 2. It can also be seen that when considering
more input attributes, the curves seem to have a better shape. Compare left and middle
curves in these figures, where the distances are smaller and correlations are larger.
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Figure 1. Distance of mean Shapley values (_dm) and mean distance of Shapley values (_md) for
MDAV and Mondrian (letters d and o) using linear regression as the machine learning algorithm.
Experiments with the Tarragona file were performed considered only the first 11 inputs (left), all
12 independent inputs (middle), and the Diabetes file (right).
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Figure 2. Rank correlation of mean Shapley values (_Rm) and mean correlation of Shapley values
(_mR) for MDAV and Mondrian (letters d and o) using linear regression as the machine learning
algorithm. Experiments with the Tarragona file were performed considered only the first 11 inputs
(left), all 12 independent inputs (middle), and the Diabetes file (right).

Now, we show that we obtain similar changes on the rank correlation independently
of the machine learning method used. Figure 3 includes the results for MDAV (left) and
Mondrian (right). We compare the mean rank correlation of all Shapley values computed
using the four different machine learning algorithms considered in the paper. We can see
that the results are quite similar, except for the case of linear regression and MDAV. The
scale of the figure was set to [0.75,1] to better visualize the results.
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Figure 3. Rank correlation of mean Shapley values (_Rm) for MDAV (left) and Mondrian (right)
(letters d and o) using linear regression (letter l), SGD Regressor (letter g), Kernel Ridge (letter k), and
SVM (letter s). That is, ld_mR reads for linear regression as the machine learning method for data
protected using MDAV and the curve corresponding to mean rank correlation. Computations for the
Diabetes file.

This similar behavior appears also with other masking methods. In Figure 4, we have
the case of noise addition, with both types of noise (Gaussian noise and Laplacian noise).
It is interesting to underline that the linear model is the one that has a larger effect on the
rank correlation, and as it can be seen in the figure for microaggregation, it also happens in
MDAV. In fact, the same behavior is also reproduced for protection with SVD, PCA, and
NMF. Figure 5 includes the curves for PCA and NMF. The one for SVD is not included, but
the resulting figure is almost the same as the one for PCA. It is relevant to underline that the
parameters of SVD, PCA, and NMF are a kind of reversal to the ones of microaggregation
and noise. That is, the smaller the parameter k, the larger the protection. That is why the
curves in Figure 5 are increasing instead of decreasing.
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Figure 4. Rank correlation of mean Shapley values (_Rm) for noise addition for Gaussian noise (left)
and Laplacian noise (right) considering the four types of machine learning models: linear regression
(letter l), SGD Regressor (letter g), Kernel Ridge (letter k), and SVM (letter s). Computations for the
Diabetes file.
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Figure 5. Rank correlation of mean Shapley values (_Rm) for data protected using PCA (left) and
NMF (right) considering the four types of machine learning models: linear regression (letter l), SGD
Regressor (letter g), Kernel Ridge (letter k), and SVM (letter s). Computations for the Diabetes file.

The figures discussed so far correspond to the Tarragona and Diabetes files. The results
for the Iris data set are consistent with the findings of these two files, although the curves
have additional noise. We consider that this is due to the fact that the data file is smaller,
and the effects of the same amount of masking on the machine learning models are larger.
This affects the rank correlation of the Shapley value of the variables. Compare Figure 6
with the results of masking with Mondrian and PCA for the Iris data set and Figure 3 (left,
Mondrian for Diabetes) and Figure 5 (right, PCA for Diabetes).
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Figure 6. Rank correlation of mean Shapley values (_Rm) for Microaggregation (Mondrian) and PCA.
The four types of machine learning models considered are linear regression (letter l), SGD Regressor
(letter g), Kernel Ridge (letter k), and SVM (letter s). Computations for the diabetes file.
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5. Conclusions

There is an increasing need for explainability in the context of machine learning
models and automated decisions. Nevertheless, machine learning models and automated
decisions need to be compliant with privacy requirements. At present, there is no clear
understanding of how explainability and privacy are incompatible, or if some levels of
explainability are possible when privacy guarantees are ensured. There are claims [13] that
having both is impossible. This work studied this problem in a particular scenario.

More particularly, we studied the effect of machine learning algorithms on explainabil-
ity, when the latter are implemented in terms of the Shapley value. That is, we studied how
masking affects Shapley values. Different analyses were performed: one based on differ-
ences in the Shapley values and another based on rank correlation of these Shapley values.

These results seem to indicate that protection does not prevent explainability when this
is implemented using Shapley values. That is, that under some assumptions, explainability
and privacy are not incompatible. We saw that the results based on rank correlation have
a sounder behavior (they change more smoothly with respect to protection) and have
a similar behavior for different machine learning models than the results based on the
difference of the values (difference computed in terms of the norm). In this case, the fact
that rank correlation is better than the norm means that what seems to be relevant is the
order of the variables with respect to the Shapley values and not the values themselves.

The analysis has also shown that among the four machine learning models, the linear
model is the one that has the worst performance with respect to the Shapley value. That is,
the relevance of the features changes the most. This seems to be a constant independent of
the masking method applied to the data.

It is important to note that tools for explainability [6,7] are to be used by humans when
decisions are being automated. Then, the study of explainability is incomplete without
the user perspective. This also applies here. We considered and compared the results of
the Shapley values, but we did not perform any user study on what users can consider
relevant in this setting. In our analysis, we considered all Shapley values; future work may
consider the most significant Shapley values. Note that in our context, the most significant
seem to be the larger ones in absolute value, as the game can take negative values.

In this study, we focused on numerical data files of a relatively small size. The
computational requirements of the analysis become challenging for larger files. The results
seem to indicate that the larger the file, the more robust the results of Shapley. We plan to
study if this is the case. In addition, we plan to further analyze local effects. We considered
Shapley because it is good as a way to evaluate local explainability. For large data sets, it is
difficult to analyze and compare these local results. We need to study these local effects in
large data sets along with other criteria.

In this paper, we studied the effects of masking into explainability when the latter is
expressed in terms of Shapley values. We showed that explainability is not incompatible
with privacy for this limited scenario. We plan to extend this work considering other tools
related to explainability as, for example, logic-based explanations.
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