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Abstract: Depression is a serious mood disorder that is under-recognized and under-treated. Recent
advances in mobile/wearable technology and ML (machine learning) have provided opportunities
to detect the depressed moods of participants in their daily lives with their consent. To support
high-accuracy, ubiquitous detection of depressed mood, we propose HADD, which provides new
capabilities. First, HADD supports multimodal data analysis in order to enhance the accuracy of
ubiquitous depressed mood detection by analyzing not only objective sensor data, but also subjective
EMA (ecological momentary assessment) data collected by using mobile devices. In addition, HADD
improves upon the accuracy of state-of-the-art ML algorithms for depressed mood detection via
effective feature selection, data augmentation, and two-stage outlier detection. In our evaluation,
HADD significantly enhanced the accuracy of a comprehensive set of ML models for depressed
mood detection.

Keywords: depressed mood detection; multimodal data analysis; ecological momentary assessment;
passive sensing; machine learning

1. Introduction

Depression is a serious mental health problem. According to the World Health Organi-
zation (WHO) [1], approximately 5% of adults in the world suffer from depression, and it
is a leading cause of disability. In the U.S., over 21 million adults experience one or more
major depressive episode each year [2], and the estimated annual economic burden of
major depressive disorder is over USD 210 billion [3].

Providing timely recognition and treatment is vital for the mitigation of the development
and escalation of depression [4,5]; however, depression is under-recognized and under-
treated [6]. Many depressed people do not seek professional mental health services for
several reasons, such as stigma, cost, and accessibility [7,8]. Typically, they seek mental
health services after their symptoms have become severe [5]. The COVID-19 pandemic has
aggravated the problem because of the increased isolation and loneliness and the decreased
access to mental health services [9].

Mental health providers (MHPs) use a standard set of screening instruments for de-
pression, such as PHQ-9 (Patient Health Questionnaire-9) [10] and BDI-II (Beck Depression
Inventory-II) [11], whose effectiveness has been clinically proven. However, mobile ques-
tionnaires that use mobile/wearable devices in a non-clinical setting often suffer from
low compliance and sparse responses [12]. In addition, the sensor data available in mo-
bile/wearable devices are not leveraged to detect depressed mood. Thus, questionnaires
alone may not be the most effective approach to high-accuracy ubiquitous detection of
depressed mood in daily life.

The advances in ML and mobile/wearable technology, such as smartphones, smart-
watches, and wristbands, have enabled the ubiquitous detection of depressed mood via
passive sensing in daily life. An increasing body of research estimates the presence of
depressed mood by analyzing objective sensor data that are passively collected using smart
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devices, such as patterns of sleep, activity, location data, vital signs, facial expressions,
vocal prosody, phone usage, and social activity [13–23]. With user consent, devices can
collect these data automatically without requiring users to manually enter the data. Thus,
passive sensing is less obtrusive and burdensome to users, enabling ubiquitous sensing
and analysis of users’ depressive status. However, it is challenging to detect depressed
mood with high accuracy by only analyzing passive sensing data, without associating
them with subjective features, such as screening questionnaires or EMA results, which
directly represent individual users’ mood/symptoms. In addition, some sensors, such as
an α-amylase sensor that is correlated with depression [20], are not usually available in
commodity mobile/wearable devices, such as smartphones or smartwatches. Other sensors
in such devices, such as an ECG (electrocardiogram) or EEG (electroencephalogram) [19,24],
may not be as accurate as medical equipment.

Based on these observations, in this paper, we propose a new multimodal data analysis
methodology called HADD in order to support high-accuracy, ubiquitous detection of
depressed mood by leveraging ML and mobile/wearable data. HADD analyzes mobile
EMA data and passive sensing data to generate synergy and enhance the accuracy of
depressed mood detection; passive sensing supports unobtrusive, continuous sensing
during daily life, and the EMA can capture the mood of a user more directly in a potentially
more engaging manner than that of standard questionnaires, such as the PHQ-9. For
example, when prompted by the device, the user can simply select an image that best
expresses their current mood from a set of provided images or answer a short multiple-
choice question about mood. In addition, different images and questions can be provided a
few times per day to better engage users and analyze their moods over time.

Furthermore, HADD proposes effective approaches to the support of high-accuracy
detection of depressed mood, even when the available dataset is small and imbalanced.
This is important because one of the main challenges for digital mHealth (mobile health)
is the small data problem, where datasets could be too small to train ML models [25].
A summary of our key contributions is as follows:

• HADD is new in that it supports multimodal analysis of mobile data consisting of
subjective EMA data and objective sensor data to enhance the accuracy of the detection
of depressed mood. Despite the potential synergy that can be created by analyzing
multimodal data, research on detecting depressed mood by analyzing EMA and
passive sensing data is in an early stage, and related work is relatively scarce [26–30].

• To support high accuracy in depressed mood detection even when the given/available
dataset is small and imbalanced, HADD enhances state-of-the-art ML models as
follows: (1) HADD supports effective data augmentation equipped with a self-
validity check; (2) it selects key features from a comprehensive set of multimodal
mobile/wearable data to support high-accuracy detection of depressed mood with
minimal model complexity; (3) HADD supports a new two-stage detection method
that detects depressed mood in two stages in order to detect anomalies (depressed
mood) with a high accuracy even when the available dataset is small and imbalanced.
In the first stage, a state-of-the-art supervised ML model is used to detect/classify
depressed mood in users on a daily basis. In the second stage, we analyze the sta-
tistical distribution of the daily detection results collected for an extended period of
time, such as a month, to detect outliers—users with a depressed mood. By doing
this, HADD aims to avoid misclassifying transient mood changes in healthy users as
indicating a depressed mood and to further enhance the accuracy of depressed mood
detection. Notably, our proposed techniques are not tied to a specific ML model, but
are generally applicable to enhance the accuracy of ML models for depressed mood
detection.

• HADD is a new general machine learning framework for depressed mood detection
and is not tied to a specific machine learning model, unlike the examples in the related
work discussed in Section 2. It can support a wide variety of machine learning models
and, therefore, enables a mental healthcare provider (MHP) to choose a model that
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is most appropriate for their job. In this paper, we use 12 machine learning models
and compare their performance by evaluating each model in HADD, one by one. An
MHP can choose any of the models based on, for example, the detection accuracy
or explainability. Furthermore, HADD is extensible: An MHP or a data scientist can
easily add new models if necessary.

• In this paper, we thoroughly evaluate the performance of HADD by using the Stu-
dentLife dataset [12]. It is a relatively small dataset that consists of many subjective
and objective features that were collected using smartphones. HADD enhances the
accuracy of depressed mood detection by 17% on average in comparison with the
accuracy of 12 state-of-the-art ML models that all used subjective/objective features
without feature selection and did not exploit the data augmentation or two-stage
outlier detection supported by HADD.

The rest of this paper is organized as follows. Related work is discussed in Section 2.
In Section 3, our approaches to boosted detection/classification of depressed mood are
described. In Section 4, the detection performance of HADD is evaluated in comparison
with the state-of-the-art baselines. Finally, we conclude the paper and discuss future work
in Section 5.

2. Related Work

Previous studies have investigated potential correlations between depression and mul-
timodal data, such as subjective EMA/questionnaire and objective sensor data. Beyond
merely analyzing their statistical correlations, researchers have also applied various ML
algorithms in order to detect depressed mood. In particular, we review digital health
techniques that aim to analyze correlations between depression and mobile data or de-
tect depressed mood by using mobile data. In Table 1, we summarize the depressed
mood detection techniques that are closely related to HADD, and we discuss them in the
following.

Table 1. Recent works on ML-based detection of depressed mood that are most closely related to
HADD.

Work Dataset Performance Sensing EMA Questionnaire

[31] iYouVU accuracy: 0.76 # ! #
[32] iYouVU [31] RMSE: 0.53 # ! #

[33] OSPP [34] accuracy: 0.96 # # !

[35] proprietary AUC: 0.886 # ! !

[17] proprietary accuracy: 0.857 ! # #

[19] proprietary accuracy: 0.7698 ! # #

[22] proprietary accuracy: 0.825,
F1-score: 0.855 ! # #

[36] proprietary accuracy: 0.601 ! # #

[37] proprietary recall: 0.89,
F1-score: 0.86 ! # #

[38] StudentLife [12]
recall: 0.815,

precision: 0.691,
AUC: 0.809

! # #

[39] Depresjon [40] accuracy: 0.893,
AUC: 0.893 ! # #

[41] proprietary RMSE: 4.88 ! # #

[26] NESDA [42], MOOVD [20] AUC: 0.993 for the development set [42]
and 0.892 for the validation set [20] ! ! #

[27] proprietary accuracy: 0.91,
AUC: 0.96 ! ! #

[28] proprietary recall: 0.96 ! ! #

[29] iYouVU [31] MSE: 0.41 ! ! #

[30] proprietary RMSE: 4.5 ! ! #

HADD (this paper) StudentLife [12]
accuracy: 0.98,
precision: 0.92,

recall: 1, F1-score: 0.95
! ! #
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2.1. EMA/Questionnaires

In [43–47], the authors developed apps for collecting EMA data and studied the as-
sociations between symptom features and severity scales. Recent research, such as that
of [31–33,35], which are shown in Table 1, took a step further to not only analyze cor-
relations between EMA features and depression, but also to detect depressed mood by
applying ML algorithms.

2.2. Passive Sensing

In [13–23], unobtrusive passive sensing was undertaken by using smart devices to ana-
lyze patterns of sleep, activity, location data, vital signs, facial expressions, vocal prosody,
phone usage, social activity, etc. More specifically, in [13,14,18,20,48–50], correlations be-
tween sensor data that were collected using mobile devices and depressed mood were
analyzed. Via passive sensing and ML, the authors of [17,19,22,36–39] (shown in Table 1)
detected the presence of depressed mood via classification, whereas the authors of [41]
estimated the severity of depressive symptoms via regression.

2.3. EMA and Passive Sensing

In [5,51], statistical correlations between depression and EMA + sensor data were ana-
lyzed. In [52], an effective technique was proposed to capture both passive sensing and
EMA data. Predicting depression by analyzing both mobile EMA and passive sensing
data with ML models is a new research direction with relatively little work, such as that
of [26–30], which is summarized in Table 1. Among them, the authors of [26–28] detected
depressed mood via classification in a way similar to that of HADD. On the other hand,
the authors of [29,30] predicted the severity of depressive symptoms via regression. Thus,
HADD is most closely related to the work of [26–28] and is complementary to the work
of [29,30], since they also performed classification to detect depressed mood. The perfor-
mance of HADD in terms of depressed mood detection (Section 4) is considerably higher
than that reported in [26–28], as summarized in Table 1. HADD achieves a higher perfor-
mance by supporting an effective multimodal data analysis that leverages effective feature
selection, data augmentation, and two-stage outlier detection. (It is nearly impossible for
us to reproduce the results of [26–28] in Section 4, since their source code/datasets are not
publicly available.) Moreover, the datasets used in [26] were collected in clinical settings,
which is impractical for the ubiquitous detection of depressed mood, and they were much
more balanced than the StudentLife dataset [12] used in this paper (discussed in more
detail in Section 4). Similarly, the dataset used in [27] is much more balanced than [12].

In summary, an increasing amount of work has recently been done to detect depressed
mood by using various types of mobile data and ML; however, related work on multimodal
data analysis for depressed mood detection in daily life is relatively scarce. HADD is new
in that it supports multimodal (subjective and objective) data analysis, effective feature
selection, data augmentation, and two-stage prediction to significantly enhance the accuracy
of depressed mood detection, even when the available dataset is small and imbalanced.
Furthermore, HADD considers a much more comprehensive set of ML models (i.e., 12 ML
models) than most works on depressed mood detection did (including the ones discussed
in this section).

3. HADD

In this section, an overview of HADD is given, followed by a detailed description of the
approaches used by HADD to detect depressed mood with high accuracy.

3.1. An Overview of the Method

Figure 1 depicts the high-level structure of HADD, which consists of the following
components.

• Data preparation: In this paper, we divided the input data into 24 h slices to enable
daily detection of depressed mood, as illustrated in Figure 1. In this paper, we consid-
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ered that a user had a depressed mood if their PHQ-9 score was at least 10 (moderately
depressed [10]); however, our approach can be used with different depression screen-
ing instruments, such as BDI-II. A more detailed discussion of the data preprocessing
is given in Section 4.

• Feature selection: As shown in Figure 1, we selected a subset of the features that
were closely correlated with depression to support high accuracy with minimal model
complexity and computational overhead.

• Data augmentation: To support high accuracy even when the available dataset is small,
we augmented the training set, if necessary, to enhance the accuracy by mitigating the
imbalance between the samples in depressed and non-depressed moods, as depicted
in Figure 1.

• Two-stage detection of depressed mood: To further enhance the prediction perfor-
mance, we also propose a new method for the two-stage detection of depressed mood.
In the first stage, HADD runs a trained ML model against each participant’s daily data
to estimate their depressed mood over an extended period of time, such as several
weeks or months. In the second phase, HADD analyzes the statistical distribution to
detect outliers, i.e., users with depressed mood, as illustrated in Figure 1.

Train 

Predict 

Split Slice .json 
.cvs 

Feedback  

... 

1st stage 

2nd  stage 

Detect outlier 

Augment 
Training 

Testing 

... 

... ... 

Feature 
 

selection 

Feedback  

Figure 1. An overview of HADD.

A more detailed discussion of HADD, which aims to detect depressed mood with high
accuracy through a multimodal data analysis, follows.

3.2. Feature Selection

The goal of feature selection is to extract a smaller yet more effective or useful set
of features [53]. By reducing the dimensionality, it is possible to reduce the complexity
of ML models, enhance their interpretability, and possibly improve their accuracy by
removing hardly correlated features that could be noisy or even misleading. Moreover,
it is worth noting that feature selection can reduce the risk of overfitting by using fewer
features while decreasing the overhead of collecting/analyzing data. For example, feature
selection can pick a compact and effective set of features, e.g., mood, activity, and sleep
patterns, which are collected using smartphones and smartwatches. In this paper, we
select important subjective and objective features for effective screening of depressive
symptoms. First, we calculate the Pearson correlation coefficient for each feature, which is a
measure of the linear correlation between a feature and the target variable (e.g., depressed
or non-depressed mood):

r = ∑n
i=1(νi − ν̂)(ξi − ξ̂)√

∑n
i=1(νi − ν̂)2

√
∑n

i=1(ξi − ξ̂)2
(1)
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where n is the sample size, (νi, ξi) is a pair of an individual feature and the corresponding
label, and ν̂ and ξ̂ are the sample means of ν and ξ, respectively. Equation (1) returns the
correlation coefficient, r, which ranges between −1 and 1, which indicate strong negative
and positive correlations, respectively. For the r value, we also calculate the p-value, which
represents the confidence of r [54]. In this paper, we use the significance level α = 0.05.

In addition, we use an efficient heuristic search to extract key features, since feature
selection is an NP-hard problem [53]. If there are m features in total, we first select m′ ≤ m
features with the highest r values, subject to the condition that their p values do not
exceed α.

From the m′ features, we select m′′ ≤ m′ features using the wrapper method. In
particular, we apply the Plus-L-Minus-R (PLMR) search method, which adds L features
and eliminates R features in each round, instead of using the exhaustive wrapper method,
which evaluates every subset of the m′ features with the O(2m′) complexity. By doing
this, we select effective EMA and passive sensing features for high-accuracy detection of
depressive mood.

3.3. Augmenting Training Data

A key challenge for mHealth is the small amount of data [25], as discussed before.
In addition, depression datasets are typically imbalanced, since a small fraction of the
population (e.g., 5% of the world population [1]) is depressed, and depressed symptoms
are generally under-recognized [6]. Due to the insufficient information about depressed
samples and the lower probability of them being presented to ML models, it is hard to
learn patterns of depressed samples.

To increase the accuracy of depressed mood detection and reduce the possibility of
overfitting, HADD performs data augmentation. Notably, we only augment the training
set; we do not augment the test set. To properly evaluate the performance in depressed
mood detection, in this paper, we use an unmodified test set that is unseen during the
model training.

Sampling/data augmentation strategies can be categorized as oversampling [55,56] and
undersampling [57] methods, which increase the minority class samples and reduce the
majority class samples, respectively. In this paper, since both positively and negatively
labeled samples are precious, we apply the oversampling strategy to increase the minority
(depressed) samples in the training set while avoiding the loss of majority samples.

For data augmentation, we perform random oversampling with replacement; we randomly
select a depressed user in the training set and duplicate their samples—daily data slices
in this paper—and add them to the training set, if the addition of the duplicates does not
largely distort the statistical distribution (discussed shortly). In this paper, the number of
times that data augmentation is performed is called the data augmentation factor.

To simultaneously mitigate data imbalance and avoid excessive oversampling, we
carefully perform oversampling step by step as follows:

1. Initialize the augmentation factor ω = 1.
2. Perform data augmentation using ω.
3. Compute the statistical distribution and check the validity.
4. If the validity check is successful, save the augmented dataset and increment ω by 1.

Go to Step 2.
5. Otherwise, abort the augmentation and revert to the dataset generated in the previous

iteration. Revert to the original dataset if the validity check fails when ω = 1. Stop
data augmentation and exit.

To analyze the validity of each augmentation, let us define a random variable x as the
ratio of the days on which certain participants are classified as being in a depressed mood
to the total number of days for a depressed mood study. In addition, µ and σ represent the
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mean and the standard deviation of x, respectively. Given these, we estimate the depressed
mood density as follows:

f (x) =
1

σ
√

2π
e−

1
2 (

x−µ
σ )2

(2)

Generally, the distribution of the probability density of depressed mood is likely to
be skewed with a long right tail (as illustrated in Section 4) because, globally, about 95%
of adults do not have a depressed mood disorder. However, the remaining 5% of the
population is in a depressed mood with widely varying severity [1]. Using Equation (2),
we compute and plot the density distribution to visually check if the heavy-tailed curve
becomes bell-shaped after the augmentation due to excessive oversampling. In such a case,
the specific augmentation is aborted and oversampling terminates, as described in Step 5.

3.4. Two-Stage Detection of Depressed Mood
3.4.1. Stage 1

In Stage 1, a trained ML model classifies each user as feeling depressed or not every day
by analyzing passive sensing and EMA data. If it estimates that the client i is in a depressed
mood for ni,d days out of ni days for which the user participated in the study, the observed
likelihood of this client being in a depressed mood is:

xi =
ni,d

ni
(3)

Let nmin denote the minimum number of the days (e.g., 30 days) for which a user needs
to participate in the study. In this paper, we require ni ≥ nmin for reliable detection of
depressed mood instead of transitory mood changes. If ni < nmin, we do not compute
Equation (3) for the user i until sufficient samples are collected for them.

In this paper, we consider 12 popular supervised models for Stage 1, which are summa-
rized as follows.

• Logistic Regression (LR) is one of the most popular classification algorithms. It uses
the sigmoid function as the cost function:

hθ(ν) =
1

1 + e−θTν
(4)

where ν is the set of the features and θ represents the model parameters. In the
training phase, it minimizes the cost function and learns θ by using the gradient
descent method. It then uses the trained model to classify new data unseen during the
training.

• A Support Vector Machine (SVM) finds a hyperplane that has the maximum margin
against the support vectors in order to divide training samples into the classes. The
SVM supports effective classification if data are linearly separable. Otherwise, its
performance may not be significantly different from that provided by LR.

• k-Nearest Neighbors (kNN) computes the distance from a new test data to the stored
training data. The k-nearest data then determine the class of the new data via voting.

• A Decision Tree (DT) mimics the human decision process by constructing a tree in
which each non-leaf node splits based on a feature. Thus, it is human-interpretable if
it is short. A deeper tree tends to be harder to interpret and subject to overfitting.

• The Gradient-Boosting Decision Tree (GBDT), Ada Boost (AB), and Random Forest
(RF) trade the interpretability of DT for performance by leveraging ensemble learning.
In the GBDT and AB, each DT model learns from the error of the previous model. In
contrast, the RF applies the bagging method. The DT models in an RF use randomly
selected features and learn in parallel. The trained models in the RF classify new data
via the majority vote.
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• Gaussian Naive Bayes (GNB) is a variant of Naive Bayes that uses the Bayes theorem
under the naive assumption that features are independent. GNB assumes that the
density of each class is normally distributed.

• Linear Discriminant Analysis (LDA) is simple yet powerful. It uses a linear discrimi-
nant function based on the Bayesian and maximum likelihood rules to determine the
region (class) to which data belong under the assumption that all classes share the
same covariance matrix.

• Quadratic Discriminant Analysis (QDA) uses a quadratic discriminant function. In
addition, it does not make the assumption of a shared covariance matrix across classes,
unlike LDA. In general, it is more flexible than LDA, but is more susceptible to
overfitting than LDA is. For more details on LDA and QDA, interested readers are
referred to [58].

• A Deep Neural Network (DNN) is effective for ML due to its capability of nonlinear
approximation. In this paper, we designed a DNN that consisted of four fully con-
nected layers with 64, 32, 16, and 2 neurons to classify participants as depressed or
non-depressed.

• A Convolutional Neural Network (CNN) is powerful in many ML tasks, e.g., computer
vision. In this paper, we designed a CNN that consisted of a convolution layer
and three fully connected layers with 64, 32, 16, and 2 neurons, respectively. For
convolution, the kernel size was 2 and stride was 1. Following convolution, the CNN
performed max pooling.

3.4.2. Stage 2

This stage supports unsupervised, enhanced classification in order to further enhance the
detection performance by analyzing the output of the first stage. In general, the distribution
of the probability density of depressed mood could be skewed with a long right tail, since
about 5% of adults in the world suffer from depression and the severity varies widely
among different individuals [1]. Thus, we aim to detect outliers, i.e., users in a depressed
mood, with characteristics distinguishing them from non-depressed ones.

In this paper, we use the t-test to detect outliers (i.e., users in a depressed mood) because
it is a well-established statistical method that is effective for anomaly detection, even when
the sample size is small [59]. It also does not require separate training, unlike supervised
ML methods. Statistically, an anomaly occurs in the low-probability region of a stochastic
model. In our case, it occurs when a participant i holds an abnormally higher likelihood
of being in a depressed mood than others. Specifically, HADD performs a t-test to detect
users in a depressed mood among n total users by taking the following steps:

1. HADD builds the vector x = (x1, . . . , xn)T , where the random variable xi is defined
in Equation 3 and collected for each user in Stage 1.

2. It computes the mean, µ, and standard deviation, σ, of the vector x.
3. Finally, HADD classifies the client i as class 1 (being in a depressed mood) if the

following condition holds:

xi > µ + tγ,ξ
σ√
n

(5)

where tγ,ξ is looked up in the t-table using the confidence level γ and the degrees of
freedom ξ(= n− 1) [60].

4. Evaluation

In this section, we evaluate the performance of HADD in comparison with several
state-of-the-art baselines.

4.1. Data Preparation
4.1.1. Dataset

In this paper, we used the StudentLife dataset [12]. The dataset consists of mobile data
collected from 48 students who participated in a 10-week study at Dartmouth College by
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using smartphones. The dataset includes passive sensing data, EMA data, and survey
responses (self-reports to the PHQ-9 survey). In addition, other features, e.g., the grade-
point average and class deadlines, were collected to analyze their possible correlations with
the students’ mental health and behavioral trends.

We used the StudentLife dataset [12] because: (1) It is a popular feature-rich dataset
that was collected using smartphones; (2) the dataset is relatively small and imbalanced—it
has only eight students who had at least a moderately depressed mood. Thus, we could
evaluate whether HADD could support high accuracy even when the mobile/wearable
dataset was small and imbalanced while enhancing the accuracy in comparison with that
of ML models that were not extended by HADD.

4.1.2. Data Preprocessing

Before performing any evaluations, we preprocessed the dataset for effective detection.
We sliced the data on a daily basis, as discussed in Section 3.1. For data cleaning, we re-
moved highly sparse EMA/self-report features. For example, we deleted the feature called
“Dartmouth now empathic”, which only attained 28 responses from all 48 participants
during the entire 10-week period. Furthermore, we scaled the remaining features using the
min–max normalization method to analyze the features with different ranges of values on
a common ground.

In the StudentLife dataset [12], PHQ-9 screening was administered at the beginning
and end of the study. In this paper, a student was labeled as being in a depressed mood if
they had a PHQ-9 score ≥ 10 (moderately depressed [10]) both at the beginning and end of
the 10-week study. On the contrary, the students whose pre-PHQ-9 and post-PHQ-9 score
were <10 were labeled as non-depressed. If a student’s pre-PHQ-9 score was ≥10 but their
post-PHQ-9 score was <10 (or vice versa), the student was removed because it was highly
uncertain whether they were in a non-transitory depressed mood. In practice, such users
should be monitored for a longer period of time for reliable detection of depressed mood.

After all preprocessing, we obtained a dataset of 2405 records of 34 users with 78 features,
where seven participants were labeled as being in a depressed mood.

4.1.3. Data Augmentation

In this paper, we empirically chose the data augmentation factor, ω (defined in Section 3),
to mitigate the data imbalance. Specifically, we chose ω = 1 because it increased the peak
density at x = 0.12 in comparison with the peak of ω = 0, as well as that at x = 0.12,
without considerably shifting the entire curve to the right, as shown in Figure 2. In contrast,
for ω > 1, the peak became lower and moved to the right, as shown in Figure 2. As a result,
the entire density curves in the figure tend to become more bell-shaped for ω > 1.

0.0 0.2 0.4 0.6 0.8
x

0.0

0.5

1.0

1.5

2.0

De
ns

ity
:  

f(x
)

factor 0
factor 1
factor 2
factor 3
factor 4
factor 5

Figure 2. Density distribution computed using Equation (2).
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4.1.4. Selecting Objective and Subjective Features

As discussed in Section 3.2, we used the Pearson correlation coefficient (PCC) and
wrapper method to determine the key features that could cost-efficiently detect depression
with high accuracy and low overhead via dimensionality reduction. First, we selected the
24 features (features 1–24 in Table 2) with relatively large absolute r values and p ≤ 0.05.
As shown in Table 2, the r and p values of the features were generally small. Although there
were correlations between these features and depression, their correlations were rather
weak. Thus, we performed two-stage prediction to enhance the prediction performance.
Furthermore, we applied the PLMR method, as described in Section 3. Specifically, we set
L = 2 and R = 1. By doing this, we selected the 10 boldface features in Table 2, which
consisted of four passive sensing features and six EMA features, as described in the
following.

Table 2. Pearson correlation coefficients.

Item Feature r p-Value

1 Dark_duration 0.117010485 7.33954 ×10−12

2 Conversation_duration −0.10050095 4.12932 ×10−9

3 PAM_picture_idx 0.086854646 3.82635 ×10−7

4 Audio_inference −0.082883614 1.26971 ×10−6

5 Mood_happyornot 0.081726937 1.78281 ×10−6

6 Sleep_social 0.080808105 2.32707 ×10−6

7 Mood_sad 0.075941272 9.10363 ×10−6

8 Phonecharge_duration 0.070690366 3.63055 ×10−5

9 Phonelock_duration 0.063472895 0.000209513
10 Class_experience 0.055680536 0.001148481
11 Sleep_rate 0.050727791 0.003058695
12 Administration response_apathetic 0.049628777 0.003761137
13 Activity_inference −0.047794521 0.005265698
14 Boston Bombing_boston 0.047554704 0.005498195
15 Dimensions protestors_appreciative 0.045303212 0.008176002
16 Dimensions protestors_proud 0.044667622 0.009118687
17 Mood_tomorrow 0.04460978 0.009209115
18 Stress_level 0.044346094 0.00963156
19 Exercise_exercise −0.04327199 0.01153625
20 Dimensions protestors_empathic 0.042928071 0.01221311
21 Behavior_sympathetic 0.042189111 0.013787576
22 Dining Halls_dinner -0.03940632 0.021438194
23 Class_hours 0.036251256 0.034354408
24 Administration response_appreciative 0.036075483 0.035237284
25 Lab_duration 0.0310954 0.06955524
26 Exercise_schedule −0.029959267 0.080384652
... ... ... ...
76 Dartmouth now_saddened −0.001650002 0.92330252
77 Behavior_critical −0.00147211 0.931549995
78 Dartmouth now_frustrated 3.92106 ×10−5 0.99817455

Passive sensing features:

1. Dark duration indicates the length of the time period for which the screen remains
dark for more than one hour.

2. Audio inference continuously detected audio signals using the microphone (0: silence,
1: voice, 2: noise, 3: unknown).

3. Phone charge duration records the time spent charging the smartphone.
4. Activity was continuously analyzed using the accelerometer (0: stationary, 1: walking,

2: running, 3: unknown).

EMA features:

1. PAM_pictur_idx: A participant selected a picture that best represented their mood
from a grid of 16 pictures provided randomly from a library of 48 photos designed for
a photographic affect meter (PAM) [61].

2. mood_happy_or_not question: “Do you feel at all happy right now?” (1: yes, 2: no).
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3. sleep_social question: “How often did you have trouble staying awake yesterday
while in class, eating meals, or engaging in social activity?” (1: none, 2: once, 3: twice,
4: three or more times).

4. mood_sad question: “How sad do you feel?” (1: a little bit, 2: somewhat, 3: very
much, 4: extremely).

5. sleep_rate question: “How would rate your overall sleep last night?” (1: very good,
2: fairly good, 3: fairly bad, 4: very bad).

6. stress_level question: “Stress level?” (1: a little stressed, 2: definitely stressed,
3: stressed out, 4: feeling good, 5: feeling great).

In this paper, we randomly split 80% and 20% of the dataset into the training and test
sets, respectively. We trained the ML models and evaluated their detection performance
by using the data in the test set, which was unseen during the training. We used scikit-
learn [62] to evaluate the 10 ML models described in Section 3.4, while we used Keras [63]
for the DNN and CNN. To calculate the r and p values of the Pearson correlation coefficient,
we used scipy [64].

4.2. Tuning the Model Parameters

To enhance the accuracy of depressed mood detection and reduce possible overfitting,
we used feature selection and data augmentation, as described in Sections 3.2, 3.3, 4.1.3,
and 4.1.4. In addition, we tuned the model parameters carefully to further minimize the
depressed mood detection error and overfitting as follows:

• LR: We set L-BFGS (Limited-Memory Broyden–Fletcher–Goldfarb–Shanno) algo-
rithm [65] as the optimizer to tune the logistic regression parameters in a gradient-
descent manner with an L2 norm regularization penalty, which is known as ridge
regression, to reduce overfitting.

• SVM: We used the radial basis function (RBF) kernel to support the nonlinear classifi-
cation. To avoid possible overfitting, we set the generalization penalty parameter to
C = 1.0 and the kernel coefficient to γ = 1

N f×var(X)
, where N f is the number of features

and var(X) is the variance of the training data.
• kNN: In kNN, the number of neighbors k affects the performance. We used the

Euclidean distance to measure the error. We set k = 5 to minimize the error by trial
and error.

• DT: We used the Gini impurity as the classification criterion for splitting the nodes to
build the decision tree by using the training data.

• AB, GBDT, and RF: These ensemble models are designed to be more robust to noise
than a simple decision tree by aggregating multiple weak learners. We used a decision
tree classifier as the weak learner/base estimator for all three of these ensemble
algorithms. We set the numbers of trees to 50, 100, and 10 for AB, GBDT, and RF,
respectively. A more detailed description of the process for tuning AB, GBDT, and RF
follows.

– For AB, we set the learning rate to 1.0, and used the boosting algorithm of
SAMME.R. AB built the model by adding up the weights of each tree, which were
learned and updated via iterations.

– For GBDT, we set the learning rate to 0.1, the maximum depth of a tree to 3, and
the minimum sample leaf to 1. GBDT calculated the residual from the previous
tree and aggregated all of them as the whole model.

– To configure RF, we set the square root of the total number of the features as the
maximum number of features for each individual tree, and we set the minimum
sample leaf to 1. RF randomly selected subsets of features from the training set to
build the decision trees and make the final decision with the majority vote.

• GNB: The GNB model applied the Bayes theorem in order to calculate the conditional
probability of each label under every selected feature of the training data.
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• LDA and QDA: LDA and QDA both used the Bayes rule to fit the class-conditional
probability densities to the training data and build the decision boundary. LDA
assumed that there was a common covariance of both classes, while QDA considered
a separate covariance for each class.

• DNN and CNN: To train both the DNN and CNN, we randomly picked one-third
of the training set as a validation set and performed cross-validation to tune the
model parameters carefully, thus avoiding overfitting. We used the stochastic gradient
descent algorithm to tune the parameters by using the mean squared error (MSE) as
the loss function. We also used the Adam optimizer [66]. Specifically, the batch size
was 32. We had a total of 200 epochs with a learning rate of 0.001.

4.3. Evaluation Results

In this section, we evaluate the performance of HADD in comparison with that of several
state-of-the-art baselines. In particular, we assess if HADD can considerably enhance the
detection accuracy of ML models even when the available dataset, e.g., the StudentLife
dataset, is small and imbalanced. First, we evaluate the effectiveness of the multimodal
data analysis using passive sensing and EMA data in terms of the detection of a depressive
mood. After that, we evaluate the overall accuracy improvement achieved by HADD in
comparison with a comprehensive set of popular ML models without feature selection,
data augmentation, or two-stage detection.

4.3.1. Effectiveness of the Multimodal Approach in Detecting Depressed Mood

Most of the related work discussed in Section 2 is not open source. In addition, many of
these studies used proprietary datasets to which we do not have access. As a result, we
cannot reproduce them and directly compare them with HADD. Thus, in this subsection,
we compare the performance of the multimodal analysis method of HADD, which analyzes
the 10 key objective and subjective features selected in the previous subsection, with that of
the following baselines (B1–B3) that represent the state of the art:

1. B1 (all features): This baseline simply uses all 78 features in the StudentLife dataset
to predict depression.

2. B2 (sensing only): This baseline only uses the four selected passive sensing features,
similarly to [12,17,19,22,36,37].

3. B3 (EMA only): This baseline only uses the six selected EMA features, similarly to [31,35].

As shown in Table 3a, the mean accuracy of the baseline B1 is only 0.75; detecting
depressed mood using all 78 features is not a good design choice, since certain features
with weak correlations may even disrupt the identification of relevant patterns.

As shown in Table 3b, the baseline B2 provided the lowest accuracy. Thus, B2’s approach
of only using sensor data was the least effective.

As shown in Table 3c, the baseline B3 outperformed B1 and B2, and it had an average
accuracy of 0.8 because the EMA features directly reflected participants’ status, e.g., mood
and stress levels.

Passive sensing is essential for the recognition of depressed mood in daily life, and
it is less obtrusive and burdensome than questionnaires. From the results of B2 and B3,
however, we observed that the sensor data were weaker indicators of depression than
self-reports, e.g., the EMA or a questionnaire.

By selecting key subjective and objective features and analyzing them, HADD consider-
ably enhanced the detection performance; as shown in Table 3d, HADD’s mean accuracy
was higher than the average accuracies of B1–B3, which are shown in Table 3a–c, by 8–28%
(16.3% on average). It also outperformed B1–B3 in terms of the other performance metrics,
as summarized in the table.
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Table 3. Effectiveness of the multimodal approach of HADD based on feature selection. By analyzing
key sensor and EMA features, HADD enhanced the accuracy by 8–28% in comparison with the
state-of-the-art baselines.

Model
Non-Depression Depression

Accuracy
Precision Recall F1-Score Precision Recall F1-Score

(a) B1 (All Features): Average accuracy = 0.75

LR 1.00 0.83 0.91 0.50 1.00 0.67 0.86
SVM 0.00 0.00 0.00 0.14 1.00 0.25 0.14
kNN 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DT 1.00 0.83 0.91 0.50 1.00 0.67 0.86

GBDT 1.00 0.83 0.91 0.50 1.00 0.67 0.86
AB 1.00 0.83 0.91 0.50 1.00 0.67 0.86
RF 0.80 0.67 0.73 0.00 0.00 0.00 0.57

GNB 0.80 0.67 0.73 0.00 0.00 0.00 0.57
LDA 1.00 1.00 1.00 1.00 1.00 1.00 1.00
QDA 0.83 0.83 0.83 0.00 0.00 0.00 0.71
DNN 1.00 0.83 0.91 0.50 1.00 0.67 0.86
CNN 0.83 0.83 0.83 0.00 0.00 0.00 0.71
mean 0.86 0.76 0.81 0.39 0.67 0.47 0.75

(b) B2 (Sensing Only): Average accuracy = 0.60

LR 0.00 0.00 0.00 0.14 1.00 0.25 0.14
SVM 0.00 0.00 0.00 0.14 1.00 0.25 0.14
kNN 1.00 0.83 0.91 0.50 1.00 0.67 0.86
DT 1.00 0.67 0.80 0.33 1.00 0.50 0.71

GBDT 1.00 0.83 0.91 0.50 1.00 0.67 0.86
AB 1.00 0.83 0.91 0.50 1.00 0.67 0.86
RF 0.80 0.67 0.73 0.00 0.00 0.00 0.57

GNB 0.83 0.83 0.83 0.00 0.00 0.00 0.71
LDA 0.00 0.00 0.00 0.14 1.00 0.25 0.14
QDA 1.00 0.83 0.91 0.50 1.00 0.67 0.86
DNN 0.75 0.50 0.60 0.00 0.00 0.00 0.43
CNN 1.00 0.83 0.91 0.50 1.00 0.67 0.86
mean 0.70 0.57 0.63 0.27 0.75 0.38 0.60

(c) B3 (EMA Only): Average accuracy = 0.80

LR 0.00 0.00 0.00 0.14 1.00 0.25 0.14
SVM 1.00 1.00 1.00 1.00 1.00 1.00 1.00
kNN 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DT 1.00 0.83 0.91 0.50 1.00 0.67 0.86

GBDT 1.00 0.83 0.91 0.50 1.00 0.67 0.86
AB 1.00 1.00 1.00 1.00 1.00 1.00 1.00

GNB 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RF 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LDA 0.00 0.00 0.00 0.14 1.00 0.25 0.14
QDA 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DNN 1.00 0.83 0.91 0.50 1.00 0.67 0.86
CNN 0.83 0.83 0.83 0.00 0.00 0.00 0.71
mean 0.82 0.78 0.80 0.65 0.92 0.71 0.80

(d) HADD (EMA+Sensing): Average accuracy = 0.88

LR 0.00 0.00 0.00 0.14 1.00 0.25 0.14
SVM 1.00 1.00 1.00 1.00 1.00 1.00 1.00
kNN 1.00 0.83 0.91 0.50 1.00 0.67 0.86
DT 1.00 1.00 1.00 1.00 1.00 1.00 1.00

GBDT 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AB 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RF 1.00 1.00 1.00 1.00 1.00 1.00 1.00

GNB 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LDA 1.00 1.00 1.00 1.00 1.00 1.00 1.00
QDA 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DNN 1.00 1.00 1.00 1.00 1.00 1.00 1.00
CNN 0.80 0.67 0.73 0.00 0.00 0.00 0.57
mean 0.90 0.86 0.88 0.76 0.92 0.80 0.88

4.3.2. Overall Accuracy Improvement by HADD

In this section, HADD is fully optimized via feature selection, data augmentation, and
two-stage detection of depressed mood. Its overall performance is compared to that of
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vanilla state-of-the-art ML models that use all features and do not apply data augmentation
or two-stage outlier detection.

Figure 3 depicts the accuracy of HADD and vanilla ML models that use all features
without feature selection. They also do not apply our data augmentation or two-stage
detection methods. HADD improved the accuracy by up to 57% (GNB) and 17%, on
average, in comparison with the other models. (In Figure 3, the CNN is omitted because
we were not able to train it properly without the feature selection, data augmentation, and
two-stage detection supported by HADD due to the small size of the StudentLife dataset
and the data imbalance therein).

LR SVM kNN DT GBDT AB RF GNB LDA QDA DNN
0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

Vanilla
HADD

Figure 3. Accuracy of HADD and the vanilla state-of-the-art ML methods that do not exploit the
feature selection, data augmentation, or two-stage detection techniques supported by HADD. Instead,
they used all features, performed no data augmentation, and detected depressed mood in a single
stage by using trained ML models.

The average accuracy of the 12 ML models supported by HADD (Table 4) was higher
than that reported in recent work on depressed mood classification (Table 1) by 2–37%.
Among these related studies, that of Kumar et al. [33] showed the highest accuracy of
0.96 by using questionnaires consisting of 42 and 21 questions. This was mainly because
questionnaires are effective in screening depression, the authors’ (proprietary) dataset was
nearly complete and had few missing data, and they handpicked and optimized features
based on their correlations with depression. In the context of mHealth, however, frequent
(e.g., several times per day) administration of a survey with lengthy questionnaires in daily
life can be burdensome and intrusive to participants. In addition, manual feature selection
may not be as scalable as an automated wrapper method, such as the PLMR method used
in our approach, when there are many features in a dataset, such as the StudentLife dataset,
due to a potential combinatorial explosion.

In comparison with related work that used both EMA and sensor data for depressed
mood classification [26–28], as shown in Table 1, most of the 12 ML models extended by
HADD showed a higher accuracy, precision, recall, and F1-score than those from [26–28].
In addition, our AUC (area under the curve) was close to 1, except for kNN and CNN. kNN
showed a relatively low performance. It made classification decisions via a majority vote,
which could be swayed considerably by data imbalances. Therefore, it was suboptimal
for depressed mood classification, where the distribution was heavily tailed. The CNN
achieved a relatively low performance due to the small and imbalanced dataset, which was
potentially insufficient for training a sophisticated deep learning model, such as a CNN. Its
performance could be improved further if more data would become available to train the
model. A thorough investigation is reserved for future work.
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Table 4. After extending the 12 ML models by applying all of the proposed optimizations (multimodal
analysis, feature selection, data augmentation, and two-stage detection), HADD showed an average
accuracy of 0.98.

Model
Non-Depression Depression

Accuracy
Precision Recall F1-Score Precision Recall F1-Score

LR 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SVM 1.00 1.00 1.00 1.00 1.00 1.00 1.00
kNN 1.00 0.83 0.91 0.50 1.00 0.67 0.86
DT 1.00 1.00 1.00 1.00 1.00 1.00 1.00

GBDT 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AB 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RF 1.00 1.00 1.00 1.00 1.00 1.00 1.00

GNB 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LDA 1.00 1.00 1.00 1.00 1.00 1.00 1.00
QDA 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DNN 1.00 1.00 1.00 1.00 1.00 1.00 1.00
CNN 1.00 0.83 0.91 0.50 1.00 0.67 0.86
mean 1.00 0.97 0.99 0.92 1.00 0.95 0.98

5. Conclusions and Future Work

Depression is a serious mood disorder that is under-recognized and under-treated.
Recent advances in mobile/wearable technology and machine learning have provided
opportunities for detecting depressed moods in participants in their daily lives. For ubiqui-
tous detection of depressed mood with high accuracy, even when only a small/imbalanced
dataset is available, we propose a new framework called HADD. In particular, HADD
analyzes not only objective sensor data, but also subjective data, such as EMA (ecological
momentary assessment) data, in order to enhance the accuracy of ubiquitous depressed
mood detection. In addition, HADD enhances the accuracy of state-of-the-art machine
learning algorithms that are widely used for depressed mood detection via several op-
timizations: effective feature selection, data augmentation, and two-stage classification
for outlier detection. Notably, these methods are not tied to specific machine learning
methods, but are generally applicable to various models for depressed mood detection,
as demonstrated in this paper. In our evaluation, HADD enhanced the accuracy of the
12 baseline machine learning models by 17%, on average, via feature selection, data aug-
mentation, and two-stage detection. In the future, we will apply HADD to more datasets
and investigate more advanced approaches to detecting depressed moods. We will also
investigate if HADD is applicable to other mood disorders, such as anxiety.
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