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Abstract: In brain–computer interfaces (BCIs), it is crucial to process brain signals to improve the ac-
curacy of the classification of motor movements. Machine learning (ML) algorithms such as artificial
neural networks (ANNs), linear discriminant analysis (LDA), decision tree (D.T.), K-nearest neighbor
(KNN), naive Bayes (N.B.), and support vector machine (SVM) have made significant progress in
classification issues. This paper aims to present a signal processing analysis of electroencephalo-
graphic (EEG) signals among different feature extraction techniques to train selected classification
algorithms to classify signals related to motor movements. The motor movements considered are
related to the left hand, right hand, both fists, feet, and relaxation, making this a multiclass problem.
In this study, nine ML algorithms were trained with a dataset created by the feature extraction of EEG
signals.The EEG signals of 30 Physionet subjects were used to create a dataset related to movement.
We used electrodes C3, C1, CZ, C2, and C4 according to the standard 10-10 placement. Then, we
extracted the epochs of the EEG signals and applied tone, amplitude levels, and statistical techniques
to obtain the set of features. LabVIEW™2015 version custom applications were used for reading the
EEG signals; for channel selection, noise filtering, band selection, and feature extraction operations;
and for creating the dataset. MATLAB 2021a was used for training, testing, and evaluating the
performance metrics of the ML algorithms. In this study, the model of Medium-ANN achieved the
best performance, with an AUC average of 0.9998, Cohen’s Kappa coefficient of 0.9552, a Matthews
correlation coefficient of 0.9819, and a loss of 0.0147. These findings suggest the applicability of
our approach to different scenarios, such as implementing robotic prostheses, where the use of
superficial features is an acceptable option when resources are limited, as in embedded systems or
edge computing devices.

Keywords: EEG; BCI; feature extraction; artificial intelligence; machine learning; deep learning;
artificial neural network; mental commands; signal classification; pattern recognition

1. Introduction

The central nervous system is composed of the spinal cord and the brain; the hu-
man brain resides in the skull and is considered an essential part of the central nervous
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system [1]. The human brain is composed of 100 billion neurons on average [2], the joint ac-
tion of which is responsible for thoughts, actions, and emotional states. The brain is divided
into the right and left hemispheres, where the right hemisphere is in charge of regulating
the muscular activity of the left side of the human body, while the left hemisphere regulates
the activities of the right side [3]. In order to measure and record the brain’s activities, dif-
ferent neuroimaging techniques are used, including magnetoencephalography (MEG) [4],
electrocorticography (ECoG) [5], intracortical neuronal recording, functional magnetic
resonance (fMRI) [6], near-infrared spectroscopy (NIRS) [7], and electroencephalography
(EEG), the latter being the neurophysiological technique [8] most widely accepted by the
scientific community and the private sector in the development of research in fields such as
neuroscience, robotics, home automation, the Internet of Things, education, etc. [9].

Electroencephalography (EEG) is a non-invasive procedure for measuring the elec-
trical activity generated within the brain as a result of different mental processes [10].
The electrical signals are acquired through electrodes placed on the scalp’s surface; thus,
waves with different amplitudes and frequencies that refer to a person’s mental state are
obtained [11]. The frequency ranges span from 0 Hz to 100 Hz. Based on these ranges,
the signals are classified as follows: delta, which ranges from 0 Hz to 4 Hz; theta, which
contains signals from 4 Hz to 7 Hz; alpha, where the information range is between 8 Hz and
12 Hz; beta, where the range is between 12 Hz and 30 Hz; and gamma, with a range that
covers from 30 Hz to 100 Hz [12,13]. Different ranges of signals are essential for identifying
different clinical problems, such as schizophrenia [14], Alzheimer’s, insomnia, epileptic
disorders, brain tumors, and different injuries and infections related to the central nervous
system. Furthermore, classification of motor impairment in neural disorders by means
of EEG signals processing has been a successful method for identifying central nervous
system roots of motor disabilities [15]. Compared with other methods, this neuroimaging
technique offers advantages such as portability, temporal resolution, safety, cost, small time
constants, simple equipment, and effectiveness [16].

The EEG neuroimaging method is the preferred method for developing brain–computer
interfaces (BCIs), both in the academic community and the private sector. Historically, BCI
has been clinically applied for understanding motor impairment, both in verbal commu-
nication [17] and limb movement [18], as well as cognitive impairment [19], and offers a
great advantage over electromyography pattern recognition [20] due to the lack of neu-
romuscular signals under amputation conditions. BCIs are direct communication and
control channels between users’ brains and computers where muscle activity is not in-
volved [21,22]. They are currently considered a powerful communication technology as
they do not involve muscular routes to complete tasks such as communication, commands,
and actions. The basis of these systems is the computer, whose central role is the analysis
of EEG signals [23,24]. BCIs are classified as exogenous and endogenous. Exogenous BCIs
require external conditions or stimuli so that the brain can generate a particular response
based on the stimulus. Endogenous BCIs do not require external stimulation; however,
they require some training on the user’s part so that they can regulate brain rhythms [24].
Despite the differences mentioned, most BCI models contain the following elements: sig-
nal acquisition, information preprocessing, feature extraction, and classification [16,25].
The acquisition of signals is carried out by employing electrodes placed on the scalp’s
surface [26], through which analog signals are obtained and then digitized by means of
analog–digital converters. The next step is the preprocessing of the signals, whereby the
following are removed: noise induced by the electrical line; the background noise of the
brain; various artifacts that the EEG signals present as a result of some muscular activity
such as eye movement, facial muscle activity, etc. [27]. Feature extraction is one of the
crucial steps due to its impact on the performance of classification algorithms [28]. Some
of the obtained features are in the domains of time and frequency [28], i.e., mean, median,
variance, maximum, and minimum, among others [29,30]. The feature extraction process
produces a vector containing the most relevant features of the EEG signals, used as input
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for classification algorithms. The next step is classification, which is carried out by different
algorithms, including LDA, SVM [31], KNN [32], D.T. [33], N.B., and ANN [34].

Currently, there are different fields of science, engineering, and research that eval-
uate and make use of BCIs to develop applications that present solutions to complex
problems [35,36]. These have been possible due to advances in high-density electronics,
data acquisition systems that allow high-quality EEG signals to be acquired, intelligent
systems that use machine and deep learning algorithms, and neural networks that allow
pattern recognition and signal classification to be performed with high precision. In [25],
the authors explain that BCIs can be used in the following six application scenarios: replace,
restore, augment, enhance, supplement, and research tools. The authors of [37] commented
that current and future BCI application areas are device control, user status monitoring,
assessment, training and education, gaming and entertainment, cognitive enhancement,
safety, and security. Intelligent systems commonly incorporate machine learning (ML)
approaches [38–40]. ML refers to a system able to learn from training data from certain
activities so that the analytical model generation process is automated, and associated tasks
can be completed or supplemented [41,42]. Deep learning (DL) is a paradigm within ML
based on the use of artificial neural networks (ANNs) [41]. Commonly, ML algorithms
focus on classifying EEG signals related to the motor and imaginary movements of hands
and feet to carry out control actions, as presented in [43–46]. DL is useful in areas with vast
and high-dimensional data; therefore, deep neural networks outperform ML algorithms
for most text, images, video, voice, and audio processing techniques [47]. Nevertheless,
for low-dimensional data input, especially with insufficient training data, ML algorithms
may still achieve superior results [48], which are even more interpretable than deep neural
network results [49]. The authors of [50] used power, mean, and energy as features to
classify EEG signals related to the right and left hands through artificial neural networks
(ANNs) and support vector machine (SVM). In [51], the authors used SVM to control the
direction of a wheelchair by extracting the mean, energy, maximum value, minimum value,
and dominant frequency characteristics of the EEG signals. In [52], the authors used the fast
Fourier transform and principal component analysis as characteristics of the EEG signals to
feed the SVM classifier to control a robotic arm. The authors of [53] reported the use of EEG
signals to control an exoskeleton and the use of SVM, LDA, and NN for their respective
classification. Studies such as the one presented in [54] have used pretrained neural net-
work models to classify EEG signals through time–frequency characteristics. Recent studies
have focused on the proper selection of EEG signal characteristics and its effect on the
accuracy of ML and DL algorithms, as presented in [30]. ML and DL techniques are widely
accepted and help to develop specific tasks within different applications [55–61]. Moreover,
they are increasingly used to obtain EEG data for pattern analysis, classification of group
membership, and BCIs [29,62–67]. However, there are still open research problems, such as
the real-time processing of EEG signal classification and the optimization of ML algorithms
for implementation on embedded systems or edge computing devices. Hence, research
on and development of reliable, efficient, and robust systems for EEG signal classification,
among others, should be pursued [16,68]. The complexity of human movements for the
manipulation of tools is very high and diverse; for an adult human brain that has auto-
mated different movements, it does not represent a major effort, however, for ML it requires
the management of precise information inputs that allow programming and execution of
free movement. Previous studies offer multiple classes of motor imagery limb movements
based on EEG spectral and time domain descriptors [69]; in this sense, there continues to
be a need in machine learning to increase the reliability and accuracy of EEG signals used
for programming human-like movements.

For the reasons stated above, the aim of this paper is to evaluate nine ML algorithms
for the classification of EEG signals. The purpose is to find which ML model presents the
best performance metrics for the identification of movement patterns in EEG signals for
the control of a mechatronic system, in this case, a robotic hand prosthesis. The selected
dataset consists of more than 1500 EEG recordings of 1–2 min in length from 109 subjects
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and is publicly available in [70]. In this study, we randomly selected 30 subjects to train,
validate, and test the proposed method. The ultimate aim is to facilitate the development of
robotic limb prosthetics, which is possible because ML algorithms can recognize patterns
in EEG signals with complex dynamics. The hypothesis is that ML algorithms perform
better in tasks of signal classification than standard methods. The novelty of this study
is to provide a methodology for the classification of EEG signals by training several ML
algorithms and employing processing, analysis, and feature extraction techniques in the
time domain of various lapses of EEG signals related to motor tasks, which can be translated
into commands for the control of mechanisms or mechatronic systems such as wheelchairs,
robotic prostheses, and mobile robots.

The rest of this paper is organized as follows: Section 2 presents the materials used
for the development of the proposed method; additionally, the description of the dataset
used for this paper is presented. Section 3 presents the performance metrics obtained from
the proposed ML models and the discussion of the main findings obtained in this study.
Section 5 presents the proposed usage scenario in a real-world application. Conclusions
and future work are described in Section 6.

2. Materials and Methods
2.1. Hardware and Software

The hardware used for the implementation of the proposed method had the follow-
ing specifications: Microsoft Windows 10 Pro operating system, system model OptiPlex
3070, system type ×64-based PC, Processor Intel Core i5-9500 at 3.00 GHz, six Cores, six
logical processors, memory (RAM) of 16.0 GB DDR4 2666 MHz (2 × 8 GB), and NVIDIA
GeForce GT 1030 GDDR5 2 GB PCI-Express ×16. The software used for reading the EEG
signals, electrode selection, signal segmentation, preprocessing, analysis, feature extraction,
and preparation of the dataset was LabVIEW 2015. Furthermore, the following libraries,
which are part of the development environment of LabVIEW, were used: Biomedical Toolkit
and Signal Express. The MATLAB 2021a version was used for training and testing the
different ML algorithms, which are part of the Statistics, Machine Learning and Deep
Learning Toolbox.

2.2. Machine Learning Algorithm Training

In this paper, we selected nine ML algorithms to evaluate their performance in the
classification of EEG signals related to the motor movements of right hand, left hand, both
fists, feet, and relaxation. The nine selected algorithms are naive Bayes (N.B.), k-nearest
neighbors (KNN), decision tree (D.T.), support vector machine (SVM), linear discriminant
analysis (LDA), Narrow-ANN, Medium-ANN, Wide-ANN, and Bilayered-ANN. These
ML algorithms are part of the statistical and machine learning toolbox of MATLAB, which
has various tools that can be used for both the pre- and post-processing of data.

Figure 1 shows the block diagram to train, test, and evaluate the selected ML algo-
rithms. First, the dataset is loaded; the chosen dataset is constituted of more than 1500 EEG
recordings from 109 subjects that become between 1 and 2 minutes long and can be found
in [70]. In this study, 30 people were randomly chosen to train, test, and validate the
proposed method. Subsequently, the data are normalized between 0 and 1 to obtain better
results. Next, we randomly split the dataset into 80% for training and 20% for testing. Then,
the ML model is trained. The next step is to obtain the performance metrics of the ML
models (for example, using the confusion matrix), i.e., the performance metrics to evaluate
the ML algorithms, such as the area under the curve (AUC) and accuracy, among others.

Load
Dataset

Train M-L
Algorithm

Normalize
Dataset

Split Dataset
80-20

Test M-L
Model

Evaluate
M-L Model

Figure 1. Block diagram for training, testing, and evaluating the ML algorithms.
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A typical system for EEG signal classification is conceptually divided into signal
acquisition, preprocessing, feature extraction, and classification [23,71]. The EEG signals
are acquired by electrodes located on the scalp’s surface that transfer information on the
electrical neuronal activity to the data acquisition system. In preprocessing, line noise and
muscle artifacts are removed from EEG signals. Feature extraction uses several digital
signal processing techniques to obtain feature vectors. These vectors are used to train the
ML or DL algorithms to classify the EEG signals. The result of the algorithms is a specific
class, as illustrated in Figure 2. The following subsections describe the procedure in detail.

Raw EEG Signals
Dataset EEG Motor 
Movement/Imagery 

(Physionet)

Feature Vector 
Feature extraction using

tone, amplitude statistical 
measurement in diferent 

bands of frequency

Classification
Classification using LDA,

KNN, Desicion Tress, 
Naive Bayes and SVM 

algorithms

Output
Identification of Motor 
Movements as left fist, 
rigth fist, fist, feet and

relaxing

Figure 2. Proposed method for classifying EEG signals.

2.3. Input Data

The dataset used for EEG signal classification was developed by Schalk and colleagues
at Nervous System Disorders Laboratory and is publicly available on Physionet [70].
The data consist of more than 1500 EEG recordings of 1–2 min in length from 109 subjects.
Patients performed 14 tasks (experiments) while 64 electrodes acquired and recorded
the EEG signals through the BCI2000 system [72]. The data are in EDF+ format [73],
and they contain 64 EEG signals, each displayed at a rate of 160 samples per second,
and an annotation channel, which refers to the actions performed during the task. Table 1
shows the protocol of the Schalk agreement experiment. The diagram of the position of the
electrodes used to record the data is the standard 10-10 placement. The dataset consists of
109 folders, and each folder contains 28 files, where 14 of these have the *.edf extension,
and the other 14 have the *.edf.event extension. The files that contain the EEG signals are
those that contain the *.edf extension. The *.edf.event files refer to the events during the
development of the different tasks. Although the original set of recorded data consists of
continuous multichannel data, and the number of users that comprise it is extensive, we
only used the EEG signals of 30 randomly selected subjects, and the tasks that are related
to the real movements that take place in tasks 3, 5, 7, 9, 11, and 13. In tasks 3, 7, and 11, real
movements related to the right and left fists and relaxation are carried out, while in tasks 5,
9, and 13, real movements of both fists and both feet are carried out. Table 1 summarizes
the dataset used in the proposed approach.
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Table 1. Tasks presented in the dataset to train the ML algorithms for EEG signal classification.

Task Real Movement Imaginary Movement To T1 T2 Duration

1 Open Eyes - Relaxing - - 1 min

2 Close Eyes - Relaxing - - 1 min

3 Fist - Relaxing Left Right 2 min

4 - Fist Relaxing Left Right 2 min

5 Fist/Feet - Relaxing Fist Feet 2 min

6 - Fist/Feet Relaxing Fist Feet 2 min

7 Fist - Relaxing Left Right 2 min

8 - Fist Relaxing Left Right 2 min

9 Fist/Feet - Relaxing Fist Feet 2 min

10 - Fist/Feet Relaxing Fist Feet 2 min

11 Fist - Relaxing Left Right 2 min

12 - Fist Relaxing Left Right 2 min

13 Fist/Feet - Relaxing Fist Feet 2 min

14 - Fist/Feet Relaxing Fist Feet 2 min

2.4. Proposed Method for EEG Signal Processing

Figure 3 depicts the proposed method for EEG signal processing, described in detail
in the following subsections.

Figure 3. Proposed method for EEG signal classification.

2.5. EEG Signal Acquisition and Channel Selection

The LabVIEW software 2015 version was employed as the development platform,
while the Biomedical Toolkit was used to import the EEG signals, due to the signals
being in EDF format. The selected electrodes are shown in Figure 4b. These electrodes
present neuronal activity correlated to the execution of the left- and right-hand movements
(contained in electrodes C3, C4, and CZ [74,75]) and the neuronal activity related to the
movement of both feet (contained in electrodes C1 and C2 [76]); because the different
EEG channels tend to represent redundant information, as mentioned in [77], electrodes
C3, C1, CZ, C2, and C4 were selected in our study. The selected electrodes were located
around the center of the skull, within the motor cortex area; their characteristic is that
these electrodes are the least affected by different artifacts [78], which allows the reliable
extraction of features to be obtained.
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Biomedical 

Íf � Search � Customize 

► ► 

Biomedical F ... ► 
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Biosignal Me... Medical lma ... Read Biosignal 

            (a)             (b)

Figure 4. Selected electrodes for EEG signal classification. (a) Biomedical toolkit and (b) electrodes selected.

2.6. Preprocessing

The EEG signals used, with a sampled frequency of 160 Hz, are available online [70].
Bandpass filters were required to select only the frequencies of interest and eliminate line
noise and some other interferences. For this study, we processed the EEG signals through
an IIR bandpass filter, with third-order Butterworth topology from 0.1 to 50 Hz. After this,
a 50 Hz notch filter was applied to the signals to eliminate noise from the signal power line.
Figure 5 shows the original readings of the electrodes used before and after applying the
different filters related to the signal preprocessing operations.

Figure 5. EEG signals acquired from electrodes C3, C1, CZ, C2, and C4. (a) Original EEG signal and
(b) filtered EEG signal.

2.7. EEG Band Separation

Within EEG signal analysis, it is common to separate a signal into different fre-
quency bands, including Delta (1–4 Hz), Theta (4–8 Hz), Alpha (8–12 Hz), Beta (12–30 Hz),
and Gamma (30–50 Hz). As shown in Table 2, third-order bandpass Butterworth IIR filters
with different cut-off frequencies were used to carry out this separation.
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Table 2. Cut-off frequencies of bandpass filters for band extraction of EEG signals.

Band of EEG Signal Low Cut-Off Frequency High Cut-Off Frequency

Delta 0.1 Hz 3.99 Hz

Theta 4.0 Hz 7.99 Hz

Alpha 8.0 Hz 11.99 Hz

Beta 12.0 Hz 29.99 Hz

Gamma 30.0 Hz 49.99 Hz

2.8. Feature Extraction

The features of the EEG rhythm can be obtained by using several digital signal pro-
cessing techniques. These features were used for training the nine ML algorithms. These
analysis techniques included measurements of tone, amplitude, and level, as well as statis-
tical analyses. Table 3 shows the type of measurements and features obtained when these
techniques were applied to the EGG signal epochs.

Table 3. Features of the EEG signal used to train the ML algorithms.

Features of the Channels for the Different Electrode Positions
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Signal Analysis

• Tone measurements. The tone measurements carried out in the EEG signal epochs
were the following: amplitude, frequency, and phase.

• Level measurements. The level measurements implemented in the EEG signal epochs
were the following: peak-to-peak, negative peak, and positive peak.

• Statistical features. The statistical measurements applied to the different signal epochs
were the following:

– Median [30,79]:

Median =

{
(N+1)

2 , when N is odd
N
2 + (N+1)

2 , when N is ever
(1)
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– Mode is the number that occurs most frequently in the set;
– Mean [80]:

x̃ =
1
N

N

∑
i=1

xi (2)

– Root mean square (RMS) [80]:

RMS =

√√√√ 1
N

N

∑
i=1

x2
i (3)

– Standard deviation [80]:

S =

√√√√ 1
N

N

∑
i=1

(xi − x̃)2 (4)

– Summation:
N

∑
i=1

xi (5)

– Variance [80]:

S2 =
1
N

N

∑
i=1

(xi − x̃)2 (6)

where x̃ is the mean;
– Kurtosis [80]:

Kurtosis =
N

∑
i=1

(xi − x̃)4

(N − 1)s4 (7)

– Skewness [80]:

Skewness =
N

∑
i=1

(xi − x̃)3

(N − 1)s3 (8)

2.9. Dataset Preparation

The data vectors consist of 15 features, 3 features for each electrode; the electrodes
correspond to positions C3, C1, CZ, C2, and C4, which are related to motor movements,
and these belong to one of the five classes of “relaxation”, “Right hand”, “Left hand”,
and “Fist and Feet”. The dataset has 2792 samples, where 558 samples correspond to the
“Relaxation” class, 567 to the right hand, 555 to the left hand, 561 to both fists, and 547
to the feet. On average, there are 557 samples per class, which preserves the balance
among the classes. Figure A1 in Appendix A shows a fragment of the dataset created by
processing EEG signals when different users performed different motor tasks. Figure A2
in Appendix B depicts the graphic user interface (GUI) of the software (App) developed
for the feature extraction process. The proposed App allows features to be extracted in
different frequency bands, where each frequency band corresponds to a different class.
Table 3 shows the features obtained for training the different ML algorithms. Each line
represents a vector of features consisting of five electrodes. Three different measurements
were made for each electrode, which resulted in a vector with 15 different characteristics
used for the training and testing of the ML and DL models. It can be observed that the
feature vector is labeled with its respective class. For each of the five classes, 15 different
features were obtained in five different frequency bands to improve the classification
accuracy of the ML algorithms [81,82]. The proposed dataset can be downloaded at the link
from Supplementary Materials.
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3. Results

To evaluate the performance of the ML algorithms, we used the following scoring
metrics: Accuracy, Error, Recall, Speci f icity, Precision, and F1-Score. The performance
evaluation of the proposed ML models was initiated by calculating Sensitivity, Speci f icity,
Precision, and Accuracy [83,84]. Sensitivity, also known as Recall [84], measures the pro-
portion of positives that are correctly identified as such; it can be calculated by (9). Sim-
ilarly, Speci f icity measures the proportion of negatives that are correctly identified as
such [84]; it can be calculated by (10). Precision is the proportion of true positives among the
positive predictions [84]; it can be calculated by (11). Accuracy can be calculated using (12):

Recall =
TruePositives

FalseNegative + TruePositives
, (9)

Speci f icity =
TrueNegatives

FalsePositives + TrueNegatives
, (10)

Precision =
TruePositives

TruePositives + FalsePositives
, (11)

Accuracy =
TruePositives + TrueNegatives

TruePositives + FalsePositives + TrueNegatives + FalseNegatives
. (12)

F1-Score is a method for combining Precision and Recall into a single measure that
includes both [85]. Neither Accuracy nor Recall can analyze the complete situation on their
own. We might have outstanding Precision but poor Recall, or vice versa, poor Precision
but good Recall. With F1-Score, one can represent both concerns with a single score [86].
Once Accuracy and Recall for a binary or multiclass classification task have been computed,
the two scores may be combined to calculate the F1-Score metric; it can be calculated by (13):

F1 − Score =
2 ∗ Precision ∗ Recall

Precision + Recall
. (13)

Equations (9)–(13) are valid for binary classification and multiclass issues; however,
when used for multiclass problems, they must be calculated for each class and then aver-
aged to obtain each metric per model.

Table 4 shows the average scores obtained in each performance metrics by the nine ML
algorithms selected in this study. The first parameter analyzed was accuracy, where the LDA
model presented an accuracy score of 0.9229; D.T. obtained 0.9803; KNN obtained 0.8996;
N.B. obtained 0.9373; SVM obtained 0.9803; Narrow-ANN, Medium-ANN, and Bilayered-
ANN obtained 0.9857; finally, Wide-ANN obtained 0.9821. The Narrow-ANN, Medium-
ANN, and Bilayered-ANN models obtained the best accuracy score (0.9857). Regarding
the error metric, we can see that the LDA, D.T., N.B., SVM, Narrow-ANN, Medium-ANN,
Wide-ANN, and Bilayered-ANN algorithms achieved a score less than 0.1, while the KNN
model obtained an Error greater than 0.1; therefore, the models with the lowest error
were Narrow-ANN, Medium-ANN, and Bilayered-ANN (0.0143). Considering the recall
parameter, we observed that the Narrow-ANN algorithm presented the highest score
of 0.9863, while the KNN algorithm obtained the lowest score of 0.9037. Regarding the
specificity metric, all the algorithms achieved a score greater than 0.9; the ML models with
the best results were the Narrow-ANN, Medium-ANN, and Bilayered-ANN models, all
scoring 0.9964. Regarding the precision metric, the Bilayered-ANN algorithm is the one that
presented the best result, with 0.9859, while the KNN algorithm presented the lowest score,
with 0.9099. Regarding the F1-score parameter, the LDA, D.T., N.B., SVM, Narrow-ANN,
Medium-ANN, Wide-ANN, and Bilayered-ANN algorithms achieved scores greater than
0.91, while the KNN model obtained a score below 0.91. The algorithm that presented the
best F1-score result was Narrow-ANN, with 0.9859.
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Table 4. The average score parameters of the EEG classification algorithms.

Average Scoring Parameters

ML Algorithm Accuracy Error Recall Specificity Precision F1-Score

LDA 0.9229 0.0771 0.9219 0.9807 0.9332 0.9228

D.T. 0.9803 0.0197 0.9777 0.9951 0.9792 0.9783

KNN 0.8996 0.1004 0.9037 0.9747 0.9099 0.9047

N.B. 0.9373 0.0627 0.9384 0.9844 0.9382 0.9378

SVM 0.9803 0.0197 0.9789 0.9950 0.9827 0.9803

Narrow-ANN 0.9857 0.0143 0.9863 0.9964 0.9857 0.9859

Medium-ANN 0.9857 0.0143 0.9854 0.9964 0.9856 0.9855

Wide-ANN 0.9821 0.0179 0.9834 0.9955 0.9824 0.9828

Bilayered-ANN 0.9857 0.0143 0.9854 0.9964 0.9859 0.9856

Table 5 presents the performance metrics achieved by each ML algorithm. The metrics
used to evaluate the performance of the ML algorithms were the area under the average
curve (AUC average), Cohen’s Kappa coefficient [87], Matthews correlation coefficient [88],
and model loss. Concerning the AUC average metric, all algorithms achieved a score greater
than 0.90, where the top three ML models were the SVM, Medium-ANN, and Bilayered-
ANN models, which obtained the highest scores (AUC scores). Regarding Cohen’s Kappa
coefficient, a score above 0.8 indicates exemplary commitment, while zero or less indicates
poor commitment. The LDA and KNN algorithms obtained Cohen’s Kappa coefficients less
than 0.80 but greater than zero, while the D.T., N.B., SVM, Narrow-ANN, Medium-ANN,
Wide-ANN, and Bilayered-ANN algorithms achieved Cohen’s Kappa coefficients of 0.9384,
0.8040, 0.9384, 0.9552, 0.9552, 0.9440, and 0.9552, respectively, where the Narrow-ANN,
Medium-ANN, and Bilayered-ANN algorithms achieved the highest scores. In addition,
we used the Matthews correlation coefficient, which has been widely used as a performance
metric for ML algorithms since 2000. The best scores obtained were presented by the D.T,
N.B., SVM, Narrow-ANN, Medium-ANN, Wide-ANN, and Bilayered-ANN models (0.9736,
0.9225, 0.9757, 0.9824, 0.9819, 0.9783, and 0.9820, respectively), with Narrow-ANN obtaining
the best score, while the KNN algorithm achieved the lowest score of 0.8810. The ML model
with the lowest loss was Narrow-ANN, with 0.0136, followed by the Medium-ANN and
Bilayered-ANN models, both with 0.0147, while the ML algorithm with the highest loss
was KNN.

Table 5. Performance metrics of the nine ML algorithms trained for EEG signal classification.

Performance Metrics

ML Algorithm AUC Average Cohen’s Kappa
Coefficient

Matthews Correlation
Coefficient Loss

LDA 0.9889 0.7592 0.9072 0.0787

D.T. 0.9873 0.9384 0.9736 0.0229

KNN 0.9392 0.6864 0.8810 0.0961

N.B. 0.9935 0.8040 0.9225 0.0616

SVM 0.9988 0.9384 0.9757 0.0217

Narrow-ANN 0.9982 0.9552 0.9824 0.0136

Medium-ANN 0.9998 0.9552 0.9819 0.0147

Wide-ANN 0.9984 0.9440 0.9783 0.0165

Bilayered-ANN 0.9988 0.9552 0.9820 0.0147
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Figure 6 shows the ROC curves of the top four ML algorithms trained for the classifi-
cation of EEG signals related to the state of relaxation, right hand, left hand, both hands,
and both feet. These algorithms are LDA, SVM, D.T., and N.B. The algorithm that presented
the best performance metrics was SVM, with an AUC average of 0.9988. The ROC curves
showed a compromise between sensitivity and specificity. The SVM algorithm was the
closest to the upper-left corner of the ROC space, while the D.T. model was closer to the
45-degree diagonal. Classifiers that obtain curves closer to the upper-left corner indicate
better performance, while classifiers with ROC curves closer to the 45-degree diagonal of
the ROC space are less accurate.
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Figure 6. The receiver operating characteristic (ROC) curves of the top four ML algorithms trained
for EEG signals classification, related to the movements of hands and feet: (a) ROC curves of the LDA
algorithm, (b) ROC curves of the SVM algorithm, (c) ROC curves of the D.T. algorithm, and (d) ROC
curves of the N.B. algorithm.

Figure 7 shows the ROC curves of the top four DL algorithms (neural networks)
trained for the classification of EEG signals. These algorithms are Narrow-ANN, Medium-
ANN, Wide-ANN, and Bilayered-ANN. The algorithm that presented the best performance
metrics was Medium-ANN, with an AUC average of 0.9998; it was the closest to the
upper-left corner of the ROC space.

In machine learning, the presumably best model is chosen from a collection of model
candidates obtained by evaluating various model types, hyperparameters, or feature
subsets, among others. In this paper, it is proposed to use ConfusionVis, a model-agnostic
technique for evaluating and comparing multiclass classifiers based on their confusion
matrices [56]. Figure 8 depicts the ConfusionVis achieved for the nine ML models chosen for
EEG signal classification. Figure 8a shows the average accuracy score per ML model, where
it can be observed that Narrow-ANN had the best accuracy score. Figure 8b illustrates the
confusion matrix similarity results, where it can be seen that the D.T., SVM, Narrow-ANN,
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and Medium-ANN models obtained the best similarity. Figure 8c depicts the error by class
scores, where it can be observed that Medium-NN and Narrow-ANN achieved the lowest
error score in most classes of movements classified from the EEG signals. Figure 8d shows
the error by model scores, where it can also be seen that Medium-ANN obtained the lowest
error score, followed by Bilayered-NN, Narrow-ANN, and decision tree (D.T.).
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Figure 7. The receiver operating characteristic (ROC) curves of the four ANN algorithms trained
for EEG signals classification, related to the movements of hands and feet: (a) ROC curves of the
Narrow-ANN algorithm, (b) ROC curves of the Medium-ANN algorithm, (c) ROC curves of the
Wide-ANN algorithm, and (d) ROC curves of the Bilayered-ANN algorithm.
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Figure 8. ConfusionVis [56]: Comparative evaluation of the multiclass classifiers based on confusion
matrices. (a) Averaged accuracy per model, (b) confusion matrix similarity, (c) error by class, and
(d) error by model.
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Figure 9 shows the training time of the nine ML algorithms tested, with N.B., LDA,
and KNN having the shortest training time. However, the results shown in Tables 4 and 5
show that these algorithms had the lowest performance metrics, with the exception of
D.T. In contrast, the SVM, Narrow-ANN, Medium-ANN, Wide-ANN, and Bilayered-ANN
algorithms had the most considerable training times of 0.13546, 0.37135, 0.16956, 0.36255,
and 0.45722 s, respectively, with the Bilayered-ANN algorithm having the longest train-
ing time. However, these algorithms had the best performance metrics, as shown in
Tables 4 and 5 and Figures 7 and 8. Therefore, the data science engineer or researcher must
perform a cost–benefit analysis regarding accuracy and processing time. In most circum-
stances, engineers favor accuracy over training time, because training is only performed a
few times and only the trained ML model is employed. For this reason, in this study, it is
more convenient to select the Narrow-ANN model.

Figure 9. Training time of the nine ML models.

4. Discussion

In this study, we observed that the different features used were helpful for the classifi-
cation of EEG signals, as proposed in our hypothesis. The presented features are based on
the time domain: amplitude, frequency, phase, peak–peak value, negative peak, positive
peak, median, mode, average, mean square error value, standard deviation, summation,
variance, kurtosis, and skewness. We consider that they are good features for classifying
EEG signals related to movements. Using these features, the ML model that achieved the
best performance was Medium-ANN, with average area under the curve of 0.9998, Cohen’s
Kappa coefficient of 0.9552, Matthew correlation coefficient of 0.9819, and loss of 0.0147.

We observed that the performance metrics obtained from the nine machine learning
algorithms were good. Using standard features in different frequency bands and related
to a particular class allowed machine learning and deep learning algorithms to obtain
excellent performance metrics, as shown in Tables 4 and 5 and Figures 6–8; this is because
the proposed frequency bands and features improved the separability of the data, making
the classification algorithms substantially better.

Regardless, the data science engineer/scientist is in charge of carrying out the cor-
responding analysis in terms of costs–benefits and precision concerning the information
processing time. In most cases, ML models with better precision are chosen, and training
time is usually sacrificed. Since the training of the ML algorithms is performed once, only
the trained model is used for the assigned task. The Medium-ANN algorithm was selected
for this reason and because its performance metrics were the best. Therefore, feature
extraction is worth mentioning among the processes that improve relevant information
acquisition and ensure better performance metrics when training EEG signal classification
algorithms, as shown in different studies. Our results are consistent with other spectrogram
methods implemented for identifying EEG patterns in persons with motor impairment
using similar brain sources that were analyzed in this study [15]. Many human behavior
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fields are still a challenge for BCIs; findings from this study may provide complementary
data for other studies reporting findings from central nervous system damage with resid-
uals of motor impairment of upper limb movement [18]. In addition to limb paralysis,
limb loss represents an obstacle to quality of life for which the results of this study offer
a comprehensive and reliable technique for extracting electrical brain sources for human
movement programming. As in other research [20], results of the present study provide
consistent and accurate information for future controlling inputs for the adaptation of pros-
thesis. As reported elsewhere [69], we conclude that it is necessary to increase movement
classes in EEG features extraction for providing mechatronic systems controlled by means
of BCI, suitable and reliable patterns corresponding for target movements.

5. Proposed Usage Scenario

The ML algorithms proposed in this research study could be implemented in high-
performance embedded systems or edge computing devices as verified in previous stud-
ies [59,89]. These act as the central control system, which is in charge of communicating
with the BCI to acquire EEG signals. Likewise, the control system is in charge of carrying
out the digital processing of the EEG signals, the extraction of features, the classification,
and the translation (decoding and execution) of the control commands. The mechatronic
control system would have a trained ML model which would allow a user with some motor
disability to perform some motor activities, such as opening and closing the right fist, left
fist, or both fists through the classification of EEG signals.

Figure 10 depicts a conceptual diagram of the prospective mechatronic control system.
We could consider this model the first step in developing intelligent prostheses that integrate
the system’s several components. The future characteristics to be developed are lower cost,
size, portability, low power consumption, and reliable communication with the BCI.

Figure 10. Suggested usage scenario for an application of mechatronic control system.

Limitations of the Study

One of the drawbacks of this research study is the need for a BCI; users should
have short hair, as the BCI must be comfortable and enjoyable to them. Furthermore,
the electrodes must be maintained in saline solution. Successful implementation also relies
on the BCI battery life. Finally, if the emotional state of the participants is altered, accurate
measurements cannot be acquired.

6. Conclusions

In this study, a methodology for classifying motor movements by processing the
EEG signals of 30 users is presented. The classification of the EEG signals was related
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to left hand, right hand, both fists, feet, and relaxation movements. As a result of EEG
signal processing, a customized dataset was created and used to train the ML algorithms.
The dataset was obtained by reading the EEG signal files in EDF+ format, extracting
the different segments of the EEG signals, filtering the signals, extracting the features,
and labeling their corresponding classes. The customized dataset was created to train
and evaluate the performance metrics of different ML algorithms in the classification of
EEG signals related to motor movements. The model of Medium-ANN achieved the best
performance metrics, with an AUC average of 0.9998, Cohen’s Kappa coefficient of 0.9552,
Matthews correlation coefficient of 0.9819, and loss of 0.0147. These findings enable the
approach to be applied to different scenarios, such as robotic prosthesis implementation,
where the utilization of physical qualities is an acceptable alternative when hardware
resources are restricted, or in embedded systems or edge computing devices, which have
the advantages of low cost, small size, portability, low power consumption, and reliable
communication with the BCI.

Furthermore, with the proposed method, we estimate that quantifiable information
about motor movement can be obtained through the feature extraction and performance
metrics of ML algorithms. We also believe that the proposed method could allow us to
generate different datasets that could be used for future studies, as the proposed software
was developed and customized to analyze EEG signals.
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Appendix A. Fragment of the Dataset Created for This Study

Figure A1. Fragment of the dataset created for this study.
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Appendix B. Front Panel of Software (App) Developed for EEG Signal Analysis

Figure A2. Front panel of software (App) developed for EEG signal analysis.
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