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Abstract: The discretization of continuous attributes in a dataset is an essential step before the Rough-
Set-Theory (RST)-based classification process is applied. There are many methods for discretization,
but not many of them have linked the RST instruments from the beginning of the discretization
process. The objective of this research is to propose a method to improve the accuracy and reliability
of the RST-based classifier model by involving RST instruments at the beginning of the discretization
process. In the proposed method, a k-means-based discretization method optimized with a genetic
algorithm (GA) was introduced. Four datasets taken from UCI were selected to test the performance
of the proposed method. The evaluation of the proposed discretization technique for RST-based
classification is performed by comparing it to other discretization methods, i.e., equal-frequency and
entropy-based. The performance comparison among these methods is measured by the number of
bins and rules generated and by its accuracy, precision, and recall. A Friedman test continued with
post hoc analysis is also applied to measure the significance of the difference in performance. The
experimental results indicate that, in general, the performance of the proposed discretization method
is significantly better than the other compared methods.

Keywords: rough set theory; genetic algorithm; discretization; classification; data pre-processing

1. Introduction

Classification is one of the processes commonly completed by researchers in machine
learning (ML). In general, the purpose of classification is to assign an object to one of the
categories that has been predefined. Currently, there are various algorithms for classifi-
cation, such as Decision Tree, Artificial Neural Network, Random Forest, Fuzzy Logic,
and many more, including Rough Set Theory (RST). To obtain the best result, selecting the
proper algorithm is crucial by considering not only the accuracy but also the cost of training,
cost of testing, and cost of the implementation. Another important factor is whether the
classification model needs to be built as a white or black box model. If a white box model is
expected, a method such as Decision Tree, Fuzzy Logic, or RST can be applied because this
method can produce transparent decision rules.

In a dataset that will be processed for classification, attributes that have continuous
values are often found. Hence, the data of the attributes cannot be directly processed by
a classifier that requires discrete data, such as RST. To be able to process the dataset, a
discretization process should be carried out first.

Currently, there are many state-of-the-art methods for discretization, as reported in
Refs. [1,2]. Based on this report, there are two main groups of discretization methods,
i.e., supervised and unsupervised. This work also conducted a survey, finding that the
popular methods for unsupervised discretization use an equal-width and equal-frequency
base. The disadvantage of this unsupervised method is that we cannot be sure whether the
discrete results are optimal since there is no feedback to measure the optimality of discrete
results at the time of the process. To generate optimal discretized values, a supervised
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method should be applied. One of the popular methods for supervised discretization is
entropy-based [1]. However, the next question is whether the entropy-based method will
be suitable or not for RST-based classifiers.

This paper aims to improve the classification performance using the RST method on
various datasets with continuous values obtained from UCI. The contribution of this study
is to propose data pre-processing methods related to discretization before carrying out the
classification process. The proposed method starts with applying k-means to discretize
continuous value attributes, then optimizes them by using a genetic algorithm (GA) that
involves one of the RST instruments, called the dependency coefficient, to maintain the
quality of the dataset as the original after the implementation of the discrete process.

By involving one of the RST elements in the discretization process, it is expected that
the discretization results will be suitable for the RST-based classifier. Thus, the novelty
of the proposed method compared to other discretization processes is that the method is
based on approximation quality with the expectation that it will give better results to be
used by the RST-based classifier because the approximation is controlled by one of the RST
elements from the beginning.

This paper is organized as follows: Section 2 explains the theoretical basis of the RST,
which begins with the concept of approximation in the framework of rough sets, and then
continues with an explanation of the basic notions and characteristics of the RST. Section 3
presents the need for discretization and its various techniques, especially those related to
the proposed method. Section 4 describes the basic concepts of the proposed method and
the algorithm in pseudo-code form. Section 5 presents the experimental framework, the
datasets used, and other popular discretization methods. Section 6 describes the analysis of
the experimental results, and this paper is concluded in Section 7.

2. Basic Notions

Before the detailed description of the method proposed in this article is discussed,
a basic picture of RST that was first proposed by Zdzislaw Pawlak in 1982 will be given.
This RST method is intended to classify and analyze imprecise, uncertain, or incomplete
information and knowledge [3,4]. The underlying concept of the RST is the size approx-
imation of the lower and upper sets. The approximation of the size of the lower subset
is determined by the group of objects that are becoming members of the desired subset.
Meanwhile, the size of the upper subset approximation is determined by the possible group
of objects to become a member of the desired subset. Any subset defined or bordered by an
upper–lower approximation is called a Rough Set [3]. Since it was proposed, RST has been
used as a valuable tool for solving various problems, such as for imprecise or uncertain
knowledge representation, knowledge analysis, quality measurement of the information
available on the data pattern, data dependency and uncertainty analysis, and information
reduction [5].

This RST approach also contributes to the artificial intelligence (AI) foundation, es-
pecially in machine learning, knowledge discovery, decision analysis, expert systems,
inductive reasoning, and pattern recognition [3].

The rough sets approach has many advantages. Some of the most prominent advan-
tages of applying RST are 6:

1. Efficient in finding hidden patterns in the dataset;
2. Able to identify difficult data relationships;
3. Able to reduce the amount of data to a minimum (data reduction);
4. Able to evaluate the level of significance of the data;
5. Able to produce a set of rules for transparent classification.

The following sub-sections will explain the basic and important philosophies associ-
ated with RST to be discussed based on Refs. [3,6–9].
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2.1. Equivalent Relations

Let U be a non-empty set, whereas p, q, and r are elements of U. If R is a symbol of a
relation so that pRq is a relation function between p and q, then R is said to be an equivalent
relation when it meets three properties as follows:

1. Reflexive: pRp for all p in U;
2. Symmetric: if pRq, then qRp;
3. Transitive: if pRq and qRr, then pRr.
4. If x in U, then Rx = {y ∈ U : yRx} is the equivalence class of x with respect to R.

2.2. Information System and Relationship Indiscernibility

Let T = (U, A, Q, ρ) be an Information System (IS), where U is a set of non-empty
objects called universe, A is a set of attributes, Q is the union among the attribute domains
in A, and ρ : U ×Q→ A is the description of the total function. For classification, the
set of attributes, A, is divided into condition attributes denoted by CON and a decision
attribute denoted by DEC. When the attributes of the information table have been divided
into condition and decision attributes, then the table is called a decision table. The element
of U can be called object, case, instance, or observation [10]. The attributes can be called
features, variables, or characteristic conditions. If an attribute a is given, then: a : U → Va
for a ∈ A. Va is called the set of values of a.

If a ∈ A, P ⊆ A, then an indiscernibility relation IND(P) can be defined as:
IND(P) = {(x, y) ∈ U ×U : for all a ∈ P, a(x) = a(y)}, or in the statement that the two
objects are said to be indiscernible when the two objects are indistinguishable since they
do not have sufficient differences in the set of attributes called P. The equivalence class of
indiscernibility relation IND(P) is denoted by [X]P.

2.3. Lower Approximation Subset

Let B ⊆ C, where C is a set of condition attributes, and X ⊆ U; then, the B-lower
approximation subset of X is the set of all elements of U that can be classified exactly as an
element of X, and it is shown in Equation (1):

B∗(X) = {x ∈ U : [X]B ⊆ X} (1)

2.4. Upper Approximation Subset

A B-upper approximation subset of X is the set of all elements of U that may be
classified as elements of X, and this is shown in Equation (2):

B∗(X) = {x ∈ U : [X]B ∩ X 6= ∅} (2)

2.5. Boundary Region Subset

This subset contains a group of elements as defined in Equation (3). This set contains
objects that, whether they belong to the X classification, cannot be determined exactly.

BNB(X) = B∗(X)− B∗(X) (3)

2.6. Rough Set

A set obtained by the lower and upper approximations is called a rough set. When a
rough set is found, then it must be B∗(X) 6= B∗(X). Figure 1 illustrates each set that meets
Equations (1)–(3).

2.7. Crisp Set

If B∗(X) = B∗(X), then the set is called a crisp set.
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Figure 1. The illustration of rough set. The universe (U) is the union of all blocks. If the set (X) is
represented by the red shape, then the lower approximation is the union of all green blocks, the upper
approximation is the union of all green and yellow blocks, and the boundary region is the union of
yellow blocks, while the union of all white blocks is called outside approximation.

2.8. Positive Region Subset

This is a set that has an object of the universal set U that can be classified or partitioned
into certain classes of U/D using the set of attributes C, as shown in Equation (4).

POSC(D) =
⋃

C∗(X), (4)

where U/D is the partitioning of U based on the attribute values of D and C∗(X) is the
notation of lower approximation of the set X with respect to C. The positive region of the
subset X belonging to the partition U/D is also called the lower approximation of the set
X. The positive region of a decision attribute with respect to a subset C approximately
represents the quality of C. The union of the positive and the boundary regions yields the
upper approximation [7].

2.9. Dependency Coefficient

Let T = (U, A, C, D) be a decision table. The dependency coefficient between attribute
condition C and attribute decision D can be formulated as in Equation (5) as follows:

γ(C, D) = |POSC(D)|/|U| (5)

The value of the dependency coefficient is in the range from 0 to 1. This coefficient
represents a portion of the objects that can be correctly classified against the total. If γ = 1,
then D is completely related to C, if 0 < γ < 1, then D is said to have partial relation on C,
and if γ = 0, then D has no dependency to C. A decision table depends on the feature set
condition when all values on the decision feature D can be uniquely determined by the
condition attribute values.

2.10. Reduction of Attributes

As explained in Section 2.2., it is possible that two or more objects are indiscernible
because they do not have enough different attribute values. In this case, it is necessary to
make savings so that only one element of the equivalence class is required to represent the
whole class. To be able to make savings, some additional notions are needed.
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Let T = (U, A) be an information system, P ⊆ A, and let a ∈ P. It can be said that a is
dispensable in P if INDT(P) = INDT(P− a); otherwise, a is indispensable in P. A set P is
called independent if all of its attributes are indispensable.

Any subset P′ of P is called a reduct of P if P′ is independent and INDT(P′) = INDT(P).
Therefore, reduct is the minimal set of attributes without changing the classification

results when using all attributes. In other words, the attributes not in reduct are considered
redundant and have no effect on classification.

2.11. Discernibility Matrix and Function

Reducts have several properties, one of which is the validity of the relation, as shown
in Equation (6). Let P be a subset of A. The core of P is the set off all indispensable attributes
of P [10].

Core(P) =
⋂

Red(P), (6)

where Red(P) is the set of all reducts of P.
In order to easily calculate reduct and core, discernibility matrix can be used [10], which

is defined as follows.
Let T = (U, A) be an information system with n objects. The discernibility matrix of T

is a symmetric n× n matrix with entries in cij, as given in Equation (7).

cij =
{

a ∈ A
∣∣a(xi) 6= a

(
xj
)}

for i, j = 1, . . . , n (7)

A discernibility function fT for an information system T is a Boolean function of m
Boolean variables a∗1 , . . . , a∗m (corresponding to the attribute a1, . . . , am), defined as follows:

fT(a∗1 , . . . , a∗m) = ∀
{
∃c∗ij
∣∣∣1 ≤ j ≤ i ≤ n, cij 6= ∅

}
, (8)

where cij =
{

a∗
∣∣a ∈ cij

}
.

3. Discretization

Discretization is one of the data preprocessing activity types performed in the prepa-
ration stage as well as data normalization, data cleaning, data integration, and so on. Often,
data preprocessing needs to be performed to improve the efficiency in subsequent pro-
cesses [11]. It is also needed to meet the requirements of the method or algorithm to be
executed. The rough-set-theory-based method is one of the methods that requires data in
the discrete form. Therefore, if the dataset to be processed is in continuous mode, then the
discretization process is required.

There are several well-known discretization techniques that can be categorized based
on how the discretization process is carried out. When it is carried out by referring to the
labels that have been provided in the dataset, then it is called supervised discretization,
while, if the label is not available, then it is categorized as unsupervised discretization [11].

Discretization by binning is one of the discretization techniques based on a specified
number of bins. If the dataset has a label, then the number of bins for discretization can be
determined for as many as the number of classes on the label, while, for a dataset with no
label, an unsupervised technique, such as clustering, should be applied.

3.1. k-Means

Cluster analysis or clustering is one of the most popular methods for discretization.
This technique can be used to discretize a numeric attribute, A, by dividing the values of
A into several clusters [11]. This experiment applies the k-means method to discretize the
numeric attributes of the dataset.

k-means is a centroid-based method. Assume A is one of the numeric attributes of a
dataset D. Partitioning can be performed on the A attribute into k clusters, C1, C2, . . . , Ck,
where Ci ⊂ A and Ci ∩ Cj = ∅ for (1 ≤ i, j ≤ k). In k-means, the centroid, ci, of a cluster
Ci is the center point that is defined as the mean of the points assigned to the cluster. The
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difference between a point, pn, and its centroid, ci, is measured using a distance function,
dist(pn, ci). The most popular formula to measure the distance is by using the Euclidean
distance formula, as shown by Equation (9).

dist(x, y) =

√
n

∑
i=1

(xi − yi)
2 (9)

Because k-means is one of the unsupervised techniques, then the value of k is not
known and it is usually defined through trial and error iteratively to find the optimum
value. To automate this trial-and-error process, an optimization technique should be
applied. There are many optimization techniques available, but this experiment employs
genetic algorithm (GA) technique to find the optimum value for k.

In this experiment, k is optimum if the value is as minimal as possible without losing
the quality of the information of the dataset. This experiment uses γ(C, D) function, as
shown in Equation (5).

3.2. Genetic Algorithm

Genetic algorithm (GA) is an algorithm inspired by biological phenomena, namely
the process of genetic evolution from the creation of a population that consists of some
individuals who later experience genetic evolution. There are three genetic processes that
occur, i.e., selection, crossover, and mutation, to obtain new individuals who are expected
to be stronger or fitter during the next cycle selection process [12]. Figure 2 shows GA’s
operational processes. Figure 3 illustrates the crossover process.

Figure 2. Genetic algorithm process flow.

Figure 3. Illustration of some crossover-type processes.



Technologies 2022, 10, 51 7 of 13

4. Proposed Method

The concept of the proposed method for the discretization in this experiment is the
integration of RST, k-means, and GA. An RST is used to measure the dependency coefficient,
which can be used to define the approximation quality. Therefore, the transformed dataset
after the discretization process will not decrease the quality of the information from the
original dataset. To measure the approximation quality, the formula of RST dependency
coefficient, γ(C, D), as shown in Equation (5), is applied.

Further, k-means is applied to cluster continuum data attributes. The result is the
number of bins or clusters of the attributes. The bins are then transformed into discrete
values. The GA function is used to minimize the number of bins or clusters of every
attribute, which, at the same time, must meet the constraint in which the value of γ(C, D)
is equal to 1 or any value that is targeted. Minimizing the number of bins is expected to
generate the most optimum number of RST rules, which make the classification process
become more efficient. The following algorithm of the proposed method is developed to
find the most optimal discretization scenario of an Information System.

As shown on the pseudo-code, the algorithm of the proposed method begins with
reading the training dataset to construct a table called T = (U, A, V, f ), where U is a set of
objects, A is a set of the attributes, V is a set of values of the attributes, and f is a function
of the relationship between the object and the attributes. This table is then transformed into
a decision table, called DT = (U, C, D, v, f ), where C is the condition attribute set and D is
the decision attribute set that satisfies C ∪ D = A.

After the dataset is loaded, the process continues with the setting of the GA pro-
cess, starting from the number of chromosomes, which is associated with the number of
attributes, and followed by the number of genes for each chromosome, which is associ-
ated with the number of centroids or bins of the respective attribute. After the setting of
the GA parameters is completed, it continues by executing the GA processes based on
Figures 2 and 3. The objective function of the GA is to minimize the number of bins for
each attribute with a certain value of γ(C, D) as the constraint.

The end of the GA iteration contains the process to convert the chromosome values
into the attribute bin values. When the maximum iteration is achieved, then the bin values
of each attribute are considered optimum and then are used to discretize the condition of
attribute values.

5. Experimental Setup

In this section, the test results of the proposed algorithm are compared with two
popular discretization algorithms, namely equal-frequency, which is processed using unsu-
pervised learning, and entropy-based, which uses supervised learning.

Four datasets downloaded from the UCI data repository with details of the properties
owned by each dataset shown in Table 1 are selected. Those datasets are:

1. iris;
2. ecoli;
3. wine;
4. banknote.

Table 1. Descriptions of the tested datasets in this research.

Properties
Datasets

iris ecoli wine banknote

# of examples 150 271 178 1370
# of classes 3 8 3 2
# of condition attributes 4 7 13 4
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The proposed algorithm was tested on four datasets and compared with two dis-
cretization methods, namely equal-frequency and entropy-based. Figure 4 shows the flow of
the research.

In the initial step, a k-fold mechanism with k = 5 is applied to each dataset so that
a ratio of 80:20 is obtained, where 80% of the data are used for the training and 20% for
testing. The k-fold approach is applied to ensure that every record in the dataset becomes
either a training or test dataset. With the application of k-fold, it is expected that the
results of testing the algorithm can be more reliable. Each fold of each dataset is then
discretized using three tested methods, namely: equal-frequency (EQFREQ), entropy-based
(ENTROPY), and the proposed method, which is based on genetic algorithm and rough set
theory (GARST).

Discretization with the EQFREQ and ENTROPY methods was concluded on the
Rosetta software ver. 1.4.41. Meanwhile, the proposed method was developed by using
Python 3.8 based on Algorithm 1.

Algorithm 1. Pseudo-code of proposed method.

Input: A dataset in the form of Table T = (U, A, V, f )
Output: Optimum numbers of bins for each condition attribute in the form of discretized
table DiscT = (U, C, D, Vc disc, f )
Create decision table DT = (U, C, D, V, f ) = convert_to_DT(T), where C ∪ D = A;
Introduce integer variable maxK = 10 or any integer value;
Introduce scalar and vector variables genBit, numChrom, popSize, max Generation, constraintGA,

Chromosome, Individu, Fitness, Parents, Offsprings, New Pop for the GA processes;
genBit← integer _to _bineary(maxK); numChrom← cardinality(C);
popSize← 30 or any integer value;
maxGeneration← 50 or any integer value;
for indv← 1 to popSize do

for chr← 1 to numChrom do
Chromosome[chr]← binary_random(genBit);

end
Individu[indv]← [Chromosome[numChrom]];
end
constraintGA← 0.8 or any real value between 0.0 and 1.0;
Introduce vector variables Bins, Discr_V, γCD for the RST processes;
for generation← 1 to maxGeneration do

for indv← 1 to popSize do
for chr← 1 to numChrom do

Bins[chr] = KMeans(C[chr], binary_to_integer(Individu[chr]);
End
for c← 1 to cardinality do

Discr_V[c]← discretize(V[c], Bins[c]);
γCD[indvc]← calc_γCD(Discr_V[c], V[dc]) by referring to Eq. 2.5;
if γCD[indvc] ≥ constraintGA then

Fitness[indv] ← sum_cardinality(Bins[1], . . . , Bins[numChrom])
else Fitness[indv] ← very_big _vaule;

End
End
Parents ← select_the_most_ f it(Individu[1], . . . , Individu[popSize]) to create parents; the

Individu have smaller Fitness value will have chance to be selected as a parent;
Offsprings← crossover(Parents) to create Offsprings;
NewPop← mutate(Offsprings);
Run transform(NewPop) to create new list of Individu in the form of
[Individu[1], . . . , Individu[popSize]];
end
return DiscT = (U, C, D, V, disc, f )
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After the 5-fold datasets have been discretized, each fold is reduced and then rules
generation is performed using the Rosetta software. The reduct process is carried out using
the RST method based on a discernibility matrix, and rule generation using the application
of Boolean algebra to the built discernibility matrix, as described in Section 2. This process
is repeated five times for each dataset due to the application of 5-fold.

Figure 4. Flow of the research.

The final step of this experiment is to compare the performance of the three methods.
The measuring instruments used in the experiment and their explanations are listed in
Table 2.

Table 2. Metrics to measure the performance.

Measurement Unit Objective Remarks

# of bins An integer value that indicates the number of
bins resulting from discretization.

The smaller this value, the better the performance of
the discretization method because the dataset
resulting from the discretization becomes simpler.

# of rules An integer value that indicates the number of
rules generated by RST after the reduct process.

The smaller this number indicates the better
performance of the discretization method because
the smaller number of rules makes it easier to
understand and more transparent.

Accuracy
Provides a measure of how many samples were
correctly predicted by a classifier compared to
the total number of samples.

This metric is applied to measure the overall
performance.

Precision

Provides a measurement of how many samples
are correctly predicted for a particular class. This
is the TP ratio of a given class to the number of
samples predicted as this class, in other words,
the total number of TP and FP.

This metric is applied to measure the class-by-class
performance of a method.

Recall Provides a measurement of how many samples
are correctly predicted in a given class.

This metric also measures the class-by-class
performance of a model.

To ensure that there is a difference in performance between the three tested methods,
the statistical Friedman test method was applied to this experiment. The Friedman test is
a statistical measuring tool used to determine whether there is a statistically significant
difference in the average value of three or more groups [13]. If the p-value of the Friedman
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test is less than 0.05, then there is a significant difference. The post hoc test was used as a
continuation of the Friedman test to determine which group had a significant difference
compared to the other groups.

6. Results and Discussion

After the entire process is completed, the last step is to review the performance of each
discretization method. Table 3 shows the performance comparison of the discretization
methods of the equal-frequency (EQFREQ), entropy-based (ENTROPY), and genetic algorithm
and rough set theory (GARST) proposed in this paper.

Table 3. Number of bins and rules generated by each method.

iris ecoli wine banknote

# of bins # of rules # of bins # of rules # of bins # of rules # of bins # of rules

ENTROPY Fold-1 20 49 42 104 143 3952 501 2941
Fold-2 20 60 36 107 152 4874 296 341
Fold-3 21 83 32 137 155 6892 454 1364
Fold-4 21 87 45 116 164 8366 564 2760
Fold-5 21 102 43 118 167 9394 498 1423

Average 20.6 76.2 39.6 116.4 156.2 6695.6 462.6 1765.8
Max 21 102 45 137 167 9394 564 2941
Min 20 49 32 104 143 3952 296 341

StdDev 0.4899 19.1353 4.8415 11.5689 8.6116 2047.2293 90.3761 967.3199

EQFREQ Fold-1 20 186 27 401 65 50473 20 158
Fold-2 20 192 27 218 65 48770 20 149
Fold-3 20 220 27 214 65 49921 20 154
Fold-4 20 135 27 215 65 49929 20 157
Fold-5 20 186 27 211 65 51401 20 151

Average 20 183.8 27 251.8 65 50098.8 20 153.8
Max 20 220 27 401 65 51401 20 158
Min 20 135 27 211 65 48770 20 149

StdDev 0.0000 27.4547 0.0000 74.6335 0.0000 855.7926 0.0000 3.4293

GARST Fold-1 17 39 31 164 46 2527 17 55
Fold-2 11 54 29 277 23 2995 13 36
Fold-3 13 21 28 154 43 5212 13 73
Fold-4 16 25 29 136 45 10319 15 88
Fold-5 11 53 30 134 46 5734 13 65

Average 13.6 38.4 29.4 173 40.6 5357.4 14.2 63.4
Max 17 54 31 277 46 10319 17 88
Min 11 21 28 134 23 2527 13 36

StdDev 2.4980 13.7055 1.0198 53.1940 8.8679 2770.2903 1.6000 17.4425

Compared to the performance of the EQFREQ and ENTROPY discretization methods,
it is confirmed that the proposed method (GARST) has a better performance, showing
the smallest number of the generated bins and rules across three datasets, namely iris,
wine, and banknote. The ENTROPY method indicates a better performance for the ecoli
dataset, demonstrated by the smallest number of bins; however, the GARST method is still
superior because it succeeded in generating the smallest number of rules in all the datasets,
including ecoli.

Table 4 shows the test results that are presented in statistical measures, namely av-
erage and standard deviation. From this table, it can be seen that the GARST method
has the highest average accuracy, precision, and recall, and has competitive values for
standard deviation.
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Table 4. The accuracy, precision, and recall of each method.

iris ecoli wine banknote
Acc Avg Avg Acc Avg Avg Acc Avg Avg Acc Avg Avg

(%) Prec Recall (%) Prec Recall (%) Prec Recall (%) Prec Recall

ENTROPY Fold-1 96.67 0.97 0.95 29.85 0.18 0.21 38.89 0.42 0.41 74.40 0.74 0.74
Fold-2 93.33 0.93 0.93 34.33 0.27 0.33 50.00 0.50 0.51 99.54 0.81 0.81
Fold-3 96.67 0.97 0.97 26.87 0.42 0.40 41.67 0.38 0.40 99.89 0.84 0.84
Fold-4 93.33 0.94 0.94 20.90 0.24 0.19 50.00 0.44 0.47 99.88 0.65 0.65
Fold-5 93.33 0.95 0.95 25.37 0.23 0.20 49.65 0.51 0.49 99.96 0.83 0.82

Global Avg 94.67 0.95 0.95 27.46 0.27 0.27 46.04 0.45 0.46 94.73 0.77 0.77
Max 96.67 0.97 0.97 34.33 0.42 0.40 50.00 0.51 0.51 99.96 0.84 0.84
Min 93.33 0.93 0.93 20.90 0.18 0.19 38.89 0.38 0.40 74.40 0.65 0.65

StdDev 1.63 0.02 0.01 4.49 0.08 0.08 4.79 0.05 0.04 10.17 0.07 0.07

EQFREQ Fold-1 53.33 0.62 0.54 50.75 0.40 0.34 52.78 0.54 0.53 91.20 0.74 0.74
Fold-2 93.33 0.93 0.94 35.82 0.28 0.19 52.78 0.59 0.46 97.58 0.81 0.81
Fold-3 100.00 1.00 1.00 29.85 0.35 0.19 41.67 0.27 0.42 99.94 0.90 0.90
Fold-4 83.33 0.84 0.85 25.37 0.31 0.13 50.00 0.66 0.53 99.98 0.93 0.93
Fold-5 83.33 0.81 0.83 32.84 0.37 0.23 47.57 0.65 0.53 99.97 0.87 0.87

Global Avg 82.67 0.84 0.83 34.93 0.34 0.22 48.96 0.54 0.49 97.73 0.85 0.85
Max 100.00 1.00 1.00 50.75 0.40 0.34 52.78 0.66 0.53 99.98 0.93 0.93
Min 53.33 0.62 0.54 25.37 0.28 0.13 41.67 0.27 0.42 91.20 0.74 0.74

StdDev 15.97 0.13 0.16 8.63 0.04 0.07 4.13 0.14 0.05 3.39 0.07 0.07

GARST Fold-1 100.00 1.00 1.00 52.24 0.46 0.35 83.33 0.84 0.84 96.80 0.97 0.97
Fold-2 96.67 0.96 0.97 49.25 0.23 0.25 88.89 0.91 0.88 99.86 0.94 0.94
Fold-3 90.00 0.90 0.90 43.28 0.40 0.24 69.44 0.69 0.66 99.96 0.93 0.93
Fold-4 93.33 0.94 0.94 55.22 0.40 0.32 66.67 0.77 0.69 99.99 0.97 0.98
Fold-5 96.67 0.97 0.97 56.72 0.42 0.38 68.06 0.76 0.72 99.99 0.94 0.94

Global Avg 95.33 0.95 0.96 51.34 0.38 0.31 75.28 0.79 0.76 99.32 0.95 0.95
Max 100.00 1.00 1.00 56.72 0.46 0.38 88.89 0.91 0.88 99.99 0.97 0.98
Min 90.00 0.90 0.90 43.28 0.23 0.24 66.67 0.69 0.66 96.80 0.93 0.93

StdDev 3.40 0.03 0.03 4.78 0.08 0.05 9.06 0.07 0.09 1.26 0.02 0.02

Figure 5 describes the distribution of the accuracy values for each test. From this figure,
it can be seen that the GARST method produces consistent accuracy values, although it
is not always superior. Thus, it can be concluded that the GARST method is generally
proven to have a superior performance in terms of accuracy and reliability, as measured by
precision and recall, compared to the other two methods.

Figure 5. Plots showing the distribution of accuracy values.
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According to non-parametric statistical testing, namely the Friedman test, as shown
in Table 5, the p-value obtained is smaller than 0.05, so it can be concluded that there is a
significant difference between the three methods. Meanwhile, from the post hoc test results,
as shown in Table 6, the p-values of ENTROPY vs. GARST and EQFREQ vs. GARST are
all less than 0.05, so it can be concluded that the GARST method is a method that has a
significant difference compared to the other two methods.

Table 5. The results of Friedman test for the accuracy.

Dataset
Discretization Methods

ENTROPY EQFREQ GARST

iris

96.67 53.33 100.00
93.33 93.33 96.67
96.67 100.00 90.00
93.33 83.33 93.33
93.33 83.33 96.67

ecoli

29.85 50.75 52.24
34.33 35.82 49.25
26.87 29.85 43.28
20.90 25.37 55.22
25.37 32.84 56.72

wine

38.89 52.78 83.33
50.00 52.78 88.89
41.67 41.67 69.44
50.00 50.00 66.67
49.65 47.57 68.06

banknote

74.40 91.20 96.80
99.54 97.58 99.86
99.89 99.94 99.96
99.88 99.98 99.99
99.96 99.97 99.99

Friedman Test Result p-value 0.000003224

Table 6. The results of post hoc test.

Method ENTROPY EQFREQ GARST

ENTROPY 1.000 0.556 0.001

EQFREQ 0.556 1.000 0.001

GARST 0.001 0.001 1.000

7. Conclusions

A method to improve the accuracy and reliability of the RST-based classifier model
has been proposed by involving the RST instruments at the beginning of the discretization
process. This method uses a k-means-based discretization method optimized with a genetic
algorithm (GA). As a result, the method was proven not to sacrifice the degree of informa-
tion quality from the dataset and the performance was quite competitive compared to the
popular state-of-the-art methods, namely equal-frequency and entropy-based. Moreover, the
proposed discretization method based on k-means optimized by GA and using one of the
rough set theory instruments has proven to be effective for use in the RST classifier.

The test of the discretization method proposed in this study uses four datasets that
have different profiles in the 5-fold scenario, and the results were tested by using Friedman
and post hoc tests; therefore, it can be concluded that the proposed method should be
effective for discretization purposes to any dataset, especially for the RST-based classi-
fication cases. The disadvantage of this proposed method is an unstable speed during
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discrete processes, especially in the optimization of the number of bins. This is due to the
application of a heuristic approach by GA.
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