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Abstract: This paper follows an incomplete market pricing approach to analyze the evaluation of weather
derivatives and the viability of a weather derivatives market in terms of hedging. A utility indifference
method is developed for the specification of indifference prices for the seller and buyer of a basket of
weather derivatives written on rainfall and temperature. The agent’s risk preference is described by
an exponential utility function and the prices are derived by dynamic programming principles and
corresponding Hamilton Jacobi-Bellman equations from the stochastic optimal control problems. It is
found the indifference measure is equal to the physical measure as there is no correlation between the
capital market and weather. The fair price of the derivative should be greater than the seller’s indifference
price and less than the buyer’s indifference price for market viability and no arbitrage opportunities.

Keywords: incomplete market; basket option; indifference price; utility function; dynamic programming
principle; Hamilton Jacobi-Bellman equations

1. Introduction

In the context of climate change, rainfall and temperature are the major determinants of uncertainty
affecting crop yield. Crop yields are strongly susceptible to extreme conditions such as drought, flood and
heat waves Zscheischler et al. (2017). Temperature and rainfall processes are the key driving factors of
crop yield. Typically, temperature determines the duration of the growing season, whereas rainfall has
impact on plant production (leaf area and the photosynthetic efficiency) Medori et al. (2012).

Ray et al. (2015) estimated that globally variation in temperature and precipitation accounts for
about a third of the crop yield variability. Besides agriculture, weather risks have a major influence in
many economic sectors as several companies are weather dependent. However, the interdependence
between these two variables proves it is difficult to accurately analyze and simulate their joint behavior.
The impact of rainfall on moisture in turn controls the partition between the sensible and latent heat
fluxes Cong and Brady (2012).

This draws attention to contingency planning such as establishing contingency funds, increasing
forex reserves for external shocks and piloting the use of weather insurance Syroka and Nucifora (2010).
Similarly, weather derivatives sold to small scale farmers may act as risk management tool at household
level against poor yields.

To overcome the loss of crop yield due to weather factors, a farmer can explore the possibility of
hedging the risks due to weather by buying weather derivatives that guarantee a payoff once there is
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erratic rainfall or temperature. For this to be effective, a better understanding of weather dynamics,
especially temperature and rainfall processes, and possible hedging mechanisms would therefore offer a
new way of transferring financial risks in the uncertainties of weather and climate to financial markets
where risk management strategies exist.

A weather derivative is a financial instrument used by companies or individuals to hedge against the
risk of weather related losses Alexandridis and Zapranis (2012). Weather derivatives have an underlying
index that measures a particular aspect of weather such as total accumulated rainfall, number of cooling
degree days, etc. over a specific period of time. They cover low risk, high probability events unlike
weather insurance that deals with high risk, low probability events. In agriculture, a farmer may buy
a weather derivative to hedge against poor yields caused by too much or too little rainfall, sudden
temperature changes, or destructive winds. In terms of weather risk management, weather derivatives
serve a significant role considering the global exposure of large businesses to increasingly uncertain global
weather conditions in sectors such as energy, agriculture, tourism, insurance and retail. This is because
weather derivatives are economical, flexible and require no proof of loss Brockett et al. (2009).

Several studies have been carried on weather derivative evaluation and pricing procedures, e.g.,
on rainfall Cao et al. (2004); Carmona and Diko (2005); López Cabrera et al. (2013); Leobacher and Ngare
(2011); Odening et al. (2007); Xu et al. (2007) (and the references therein) and temperature Benth and
Šaltytė-Benth (2005); Benth and Šaltytė Benth (2011); Brody et al. (2002); Cui (2014); Wang et al. (2015).
Typically, these studies only consider a single weather element—rainfall, temperature or wind—in the
pricing and evaluation.

However, weather derivatives present a new market, thus analysis and examination of market
viability provide important insights for investors. Hence, in this paper, we explore the possibility of basket
weather derivatives whose underlying indexes are rainfall and temperature, both of which are not tradable.
A basket option is a financial derivative where the underlying asset is a group of commodities, securities or
currencies. The simultaneous role of rainfall and temperature in agriculture cannot be underrated, as it is
common knowledge that crop yield greatly depends on them. Turvey, Calum G (2001) and Ray et al. (2015)
independently concluded that up to 30% of crop yield variability can be attributed to heat and rainfall
events, therefore temperature and rainfall remain the driving force in agriculture.

There are no known basket weather derivatives and their application in agriculture or any other
weather related industries currently and therefore this paper aims to fill that gap. A better understanding
of the dynamics driving both the rainfall and temperature processes and possible hedging approaches
provide a new way to transfer financial risks due to weather to financial markets where risk management
strategies are available. This basket weather derivative enables the farmer to hedge risk due to rainfall and
temperature variation at the same time in one transaction and to do it more cheaply rather than hedging
rainfall and temperature independently. Such a derivative is more applicable as the likelihood of both
temperature and rainfall variation to affect yield is higher.

The paper is structured into three parts. In Section 2, we look at pricing approaches in an incomplete
market and the challenges of pricing weather derivatives in an incomplete market where no arbitrage
theory prices cannot be used. In Section 3, we price the weather derivatives using the utility indifference
pricing method. We derive the seller’s and buyer’s indifference price using dynamic programming
principles where three stochastic optimal control problems are solved with the exponential utility function
as the investor’s risk preference. The conditions for market viability and no arbitrage opportunities are
also stated. Finally, we conclude the study in Section 5.
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2. Pricing in an Incomplete Market

A market is said to be complete if all contingent claims can be replicated by a self financing portfolio.
By replication, we mean a process where a portfolio in stocks and bonds recreates the terminal pay-off of
the option, thus removing all risks and uncertainty. In a complete market, the price of a contingent claim F
which depends on a stochastic variable I and expires at time T is given as

F = e−rTEQ[WT(I)], (1)

where WT(I) is the pay-off of the derivative, E is the expectation conditioned on the present information,
and Q are the risk neutral probabilities Xu et al. (2007). Using the Radon–Nikodym derivative of Q with
respect to the physical probabilities P, Equation (1) can be expressed as

F = e−rTEP

(
dQ
dP WT(I)

)
. (2)

This change makes the stochastic process of I into a martingale. If the stock follows a geometrical
Brownian motion, change of measure can be achieved by reducing the drift to the risk free interest rate.

However, weather indexes are not tradable, therefore the market is incomplete as the derivatives
cannot be replicated by a self financing portfolio. This makes it impractical to apply no arbitrage pricing
models to weather derivatives Alexandridis and Zapranis (2012); Benth and Benth (2007) as we cannot
construct a risk free portfolio consisting of weather index and the derivative. In addition, the no arbitrage
condition does not result in a unique price as many martingale measures exists, thus only bounds for
contingent claims can be obtained Xu et al. (2007). Formally, we have the range[

inf
Q

e−rTEP

(
dQ
dP WT(I)

)
, sup

Q
e−rTEP

(
dQ
dP WT(I)

)]
, (3)

where Q denotes the set of all equivalent martingale measures where the interval in Equation (3) is very
large and hence not useful Eberlein and Jacod (1997). In an incomplete market, the investor aspires to
maximize the expected utility of final wealth and reduce the risks due to the uncertain pay-off through
dynamic trading Carmona (2008). Hence, the goal is to find a trading strategy that minimizes the
risk quantified by a risk measure while maximizing the expected utility of terminal wealth under the
physical measure.

Several approaches are used to price contingent claims in an incomplete market and there is no
consensus about the best approach since all existing approaches have their particular shortfalls ranging
from no theoretical basis to some requiring several assumptions to make them tractable. The approaches
include utility indifference pricing, super-replication, quadratic approaches, quantile hedging, shortfall
minimization, and marginal utility approach (Brockett et al. (2009); Henderson and Hobson (2004);
Xu et al. (2007) and the references therein).

In this study, we price the basket weather derivatives using utility indifference approach to derive
the buyer’s and sellers’ price. As observed by Xu et al. (2007), the indifference approach starts with an
appealing idea that the amount of money at which a potential buyer (seller) of a claim is indifferent in
terms of expected utility between buying (selling) and not buying (selling) constitutes an upper (lower)
limit for the contract price. The utility indifference price approach is used because it incorporates risk
aversion in the model, results in a nonlinear price model, and reduces to the complete price, which is a
necessary feature of any good price mechanism Henderson and Hobson (2004).



Int. J. Financial Stud. 2019, 7, 35 4 of 14

3. Indifference Pricing Approach

In this study, we want to price a contingent claim written on rainfall and temperature, both of which
are weather indexes that are not traded but have huge influence on agriculture products.

Historical daily rainfall and daily average temperature data are used to predict the future behavior of
the weather elements. We assume a static option in that the portfolio dynamics cannot be changed once
the buyer and the seller agree on the prices. The basket option is held for the whole growing season entire
contract duration regardless of the current weather data being experienced. In that way, the model is time
consistent such that, if at some point in the future one option costs more than the other option in every
world state, the same should be true today.

The intensity of rainfall is modeled as a Gamma distributed with the probability density function as

f (R) =
αPRP−1e−αR

Γ(P)
R > 0,

which is a strong stationary process with fixed mean and variance. This is equivalent to

f (R) =
RP−1

Γ(P)γP e−
R
γ , γ =

1
α

,

such that P is shape parameter and γ is a scale parameter.
To model the rainfall intensity process as a mean reverting process, the probability density function is

transformed to a stationary Gamma probability density function by introducing the location parameter µ

and a scale parameter λ, which represents the speed of decrease towards equilibrium in the stochastic
differential equation. Hence, the probability density function becomes

f (R) =
λP(R− µ)P−1

Γ(P)γP e−λ(
R−µ

γ )

γ > 0, λ > 0, P > 0, µ < R < ∞,

Based on the approach by Hertzler (2003), given f (R) we have to find the functions g(R) and h(R)
such that

dR = ϕ(R)dt + υ(R)dW,

where dW is the Wiener process and satisfies the Kolmogorov forward equation:

∂[ϕ f ]
∂R

− 1
2

∂2

∂R2 [υ
2 f ] = 0. (4)

Integrating Equation (4), we have

ϕ f − 1
2

∂[υ2 f ]
∂R

= 0.

The choice of f and h is heuristic and hence we verify whether the chosen functions satisfy the
Kolmogorov forward equation. Letting υ =

√
2γ and ϕ = −λ + (P− 1)(R− µ)−1γ, we have
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ϕ f = −λ + (P− 1)(R− µ)−1γ

[
λP(R− µ)P−1

Γ(P)γP e−λ(
R−µ

γ )
]

∂[υ2 f ]
∂R

=
2γλP

Γ(P)γP

[
(P− 1)(R− µ)P−2e−λ(

R−µ
γ ) − λ

γ
((R− µ)P−1e−λ(

R−µ
γ )
]

,

thus we clearly have ϕ f − 1
2

∂[υ2 f ]
∂R

= 0.
Therefore, the stochastic differential equation driving the dynamics of rainfall intensity is

dRt = −λ + (P− 1)(R− µ)−1γdt +
√

2γdW1
t

= ϕ(R)dt + υ(R)dW1
t where

R0 = r ∈ R,

where R is the daily rainfall intensity.
For the temperature process, the statistical analysis involves removing long-term trends, global

warming impact and the seasonal mean, which is cyclic. The remaining residual is an autoregressive
model whose order depends on location; however, since the marginal distribution tail is heavier than
normal, we represent it more generally without constant and deterministic volatility as in Carmona (2008),
thus the dynamics are as follows:

dYt = −k[Yt − st]dt + ϑ(t)dW2
t

= η(Y, t)dt + ϑ(t)dW2
t

Y0 = y ∈ R,

where Y is the average daily temperature, st is the cyclic season mean and ϑ(t) is the volatility function.
Since there is interdependence between the temperature and rainfall processes, we have a correlation

between W1
t and W2

t with a correlation parameter ρ ∈ [−1, 1]. The market model consists of a risky asset
S that is traded and presence of temperature and rainfall indexes on which a European basket option is
written. The tradable asset has a price dynamics as follows:

dSt = µStdt + σStdW3
t (5)

S0 = s ∈ R. (6)

The processes W1
t , W2

t , W3
t are Wiener processes defined on a filtered probability space

[Ω,=, (=)0≤t≤T ,P], where (=) is σ -algebra generated by {W1
u , W2

u , W3
u : 0 ≤ u ≤ t}.

The relevant conditions for the existence and uniqueness of the solution to Equations (5) and (6) are
summarized in Lemma 1.

Lemma 1. Bjork (2009) Suppose there exists a constant K such that the following conditions are satisfied ∀x, y, t

||µ(t, x)− µ(t, y)|| ≤ K||x− y||
||σ(t, x)− σ(t, y)|| ≤ K||x− y||

||µ(t, x)|| − ||σ(t, x)|| ≤ K(1 + ||x||),

then there exists a unique solution to Equations (5) and (6) that is =W3
t

t adapted and a Markovian process.
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It is also assumed that there is a riskless bond that matures at T available for trading under a constant
rate r, 0 ≤ r < µ, so that the bond price is

dBt = rBdt.

Weather derivatives are constructed to hedge risks due to weather factors such as rainfall, temperature,
wind, etc. for a specific period of time. In this paper, we design a European basket option that is written
in terms of cumulative rainfall and cooling degree days simultaneously. We assume that, for a growing
season, the maize requires a specific amount of rainfall cumulatively and also that it grows well on
specific temperature during the season. Hence, the option takes into account the difference between the
recommended amount of rainfall and the cumulative rainfall of the season as well as accounts for days
on which temperature is way above the recommended one. We assume that hedgers of this weather
derivative hold it for the whole growing season up to maturity date.

The investor starts with initial wealth of x at time t and re-balances his portfolio by dynamically
deciding the investments allocation πb

s and πs in the bond and risky asset, respectively, where we do not
allow intermediate consumption or infusion of funds. Hence, the current wealth is defined by

Xs = πb
s + πs, t ≤ s ≤ T.

Proposition 1. The budget equation for the investor is given by

dXs = rXsds + (µ− r)πsds + σπsdW3
s , t ≤ s ≤ T (7)

Xt = x ∈ R.

Proof. The wealth dynamics is dXs = φsdSs + ψsdBs, where φt and ψt are the number of shares of risky
asset and the bond, respectively, held by the investor. For πs amount of money in risky asset, we have

πs = φsSs, ψs = Xs − πs = Xs − φsSs

Then,

dXs = φsdSs + ψsdBs

=
πs

Ss
dSs +

Xs − πs

Bs
dBs

=
πs

Ss
[µSsds + σSsdW3

s ] +
Xs − πs

Bs
[rBsds]

= rXsds + (µ− r)πsds + σπsdW3
s , t ≤ s ≤ T,

where Xt = x is the initial wealth.

πs is deemed admissible if there exists a unique positive wealth process solving Equation (7) such that

∫ T

t
π2

s (Xπ
s )

2ds < ∞.

We denote the set of all admissible controls as Π. We model the agent’s risk preference using
exponential utility function defined as

U(x) = −e−γx, γ > 0, x ∈ R,
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where γ is the risk aversion of the agent representing his or her attitude towards the risk that cannot be
eliminated. Any chosen utility function should be increasing to reflect the investor’s preference of more
wealth and concave as the investor is risk averse. Other utility functions such as power, mean-variance or
log functions may be applied as well to describe the investor’s risk preference. The exponential utility
function is chosen based on that risk neutral measure implied by the indifference pricing equals the
minimum entropy measure Xu et al. (2007).

The main objective is to price the weather derivative WT(R, Y) as the agent tries to hedge away
the risk associated with the derivative with a portfolio invested in the tradable asset S. This entails an
optimization problem where we find an admissible strategy π∗ (optimal) such that the utility derived
from the wealth is maximized at the final time T with and without the weather derivative respectively.

To make the most significant parameters of the model in the budget equation more transparent, we
assume r = 0 so that dynamics of the bond are removed from the model. The valuation of the weather
derivative is based on the comparison of maximal expected utility pay-off corresponding to the investment
opportunities with and without the weather derivative. This entails formulating a stochastic optimal
control problem, deriving and linearizing a Hamilton–Jacobi–Bellman (HJB) equation and stating the
stochastic representation of the solution. Similar approaches were done by Benth and Karlsen (2005);
(Musiela and Zariphopoulou 2001, 2003, 2004), however, unlike all these researchers, our work here
considers presence of two non-tradable weather indexes on which the European option is written. The
alternative method to solve such stochastic problems is to use martingale approach; however, it was
observed by Musiela and Zariphopoulou (2001) that the approach produces limited results in an incomplete
market setting, hence is not reliable to use.

The indifference price of the contingent claim WT(R, Y) is constructed from three stochastic optimal
control problems as follows:

The first problem is where the agent maximizes the expected utility wealth without the contingent
claim WT(R, T), commonly known as the classical Merton model of investment with the value function
defined as

V(x, t) = sup
π∈Π

E
[
−e−γXT |Xt = x

]
. (8)

Taking into account the contingent claim WT(R, Y), we have the following value functions for the
seller and the buyer, respectively,

Vs(x, r, y, t) = sup
π∈Π

E
[
−e−γ[XT−WT(R,Y)]|Xt = x, Rt = r, Yt = y

]
, (9)

Vb(x, r, y, t) = sup
π∈Π

E
[
−e−γ[XT+WT(R,Y)]|Xt = x, Rt = r, Yt = y

]
. (10)

Definition 1. Musiela and Zariphopoulou (2004) The indifference price of the seller of the weather derivative is
defined as a function ps(x, r, y, t) such that the investor is indifferent towards the following two cases: optimizing the
expected utility without employing the derivative, and optimizing it taking into account on the one hand the liability
WT(R, Y) at expiration T and on the other hand the compensation ps(x, r, y, t) at inscription t. Mathematically,

V(x, t) = Vs(x + ps(x, r, y, t), r, y, t),

and similarly the buyer’s indifference price pb(x, r, y, t) satisfies

V(x, t) = Vb(x− pb(x, r, y, t), r, y, t).
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Definition 2. A process π in the form πs = a(s, X(s)) for some measurable function

a : [0, T]× Rn → Rn

is called Markovian.

Restricting the optimization of the value functions in Equations (8)–(10) to Markovian
admissible controls leads to the derivation of the HJB equation by dynamic programming principle
Fleming and Soner (2006).

The corresponding HJB equation for the classical Merton problem value function V is as follows

Vt + max
π

(
µπVx +

1
2

σ2π2Vxx

)
= 0

V(x, T) = e−γx.

Differentiating µπVx +
1
2

σ2π2Vxx with respect to π, the optimal value π∗ is

πσVxx + µVx = 0

π∗ = −µ

σ

Vx

Vxx
.

Substituting into the HJB equation, we have

Vt −
1
2

µ2

σ2
V2

x
Vxx

= 0

V(x, T) = e−γx.

By separation of variables approach, we suggest a candidate solution to the problem as
V(x, t) = −e−γx A(t) so that

−e−γx At −
1
2

µ2

σ2

(
γ2e−2γx A2

t
−γ2e−γx

)
= 0.

Evaluating to

At −
1
2

µ2

σ2 A(t) = 0

A(T) = 1.

Hence, this reduces to

ln A(T)− ln A(t) =
1
2

µ2

σ2 (T − t)

ln A(t) = −1
2

µ2

σ2 (T − t)

A(t) = e
−

1
2

µ2

σ2 (T−t)
.
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Proposition 2. Without weather hedging, the optimal value function and control are, respectively,

V(x, t) = −e−{γx+ 1
2

µ2

σ2 (T−t)}

π∗ =
µ

σγ
.

For the seller’s agent whose value function is Equation (9), the corresponding HJB equation is
as follows

Vt + max
π

(
µπVx +

1
2

σ2π2Vxx + ρ1σπυ(R)Vxr + ρ2σπϑ(t)Vxy

)
+

ϕ(R)Vr + η(Y, t)Vy ++ρυ(R)ϑ(t)Vry +
1
2

υ2(R)Vrr +
1
2

ϑ2(t)Vyy = 0

V(T, x, r, y) = −e−γ[x−w(r,y)].

Carrying out the optimization function by differentiating with respect to π and since ρ1 = ρ2 = 0
because the capital market is not correlated with the weather, we have the optimal control as

π∗ = − µ

σ2
Vx

Vxx
.

Substituting in the HJB equation [where we suppress the variables of function g(y, t) = g] yields

Vt −
1
2

µ2

σ2
V2

x
Vxx

+ ϕVr + ηVy + ρυϑ(t)Vry +
1
2

υ2Vrr +
1
2

ϑ2(t)Vyy = 0

V(T, x, r, y) = −e−γ[x−w(r,y)].

We postulate a solution of separable variables having the form V(x, r, y, r, t) = −e−γx A(r, y, t) where
the function A(t, r, y) is twice differentiable in the second and third variables and square integrable.
The HJB yields

−e−γx At −
1
2

µ2

σ2
[γe−γx A]2

[−γ2e−γx]A
+ ϕ[−e−γx Ar] + η[−e−γx Ay] + ρυϑ(t)[−e−γx Ary]+

1
2

υ2[−e−γx Arr] +
1
2

ϑ2(t)[−e−γx Ayy] = 0,

which reduces to

At −
1
2

µ2

σ2 A + ϕAr + ηAy + ρυϑ(t)Ary +
1
2

υ2 Arr +
1
2

ϑ2(t)Ayy = 0 (11)

A(r, y, T) = −eγw(r,y). (12)

Applying the Feynman–Kac formula to the model in Equations (11) and (12), we find the value of
A(t, r, y) as

A(t, r, y) = e−
µ2

2σ2 (T−t)EP[−eγWT(RT ,YT)|Rt = r, Yt = y], (13)
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where R and Y are solutions, respectively, to

dRs = ϕds + υdW1
s

dYs = ηds + ϑdW2
s .

Proposition 3. The optimal value and control in the presence of weather hedging, for the seller’s agent
is, respectively,

V(t, x, r, y) = −e−γsx− µ2

2σ2 (T−t)EP[−eγsWT(RT ,YT)|Xt = x, Rt = r, Yt = y]

π∗ =
µ

σγs
,

where the subscript s indicates that this is the risk aversion for the seller.

Proposition 4. The seller’s utility indifference price is

ps(x, r, y, t) =
1
γs

ln
(

EP[eγsWT(RT ,YT)|Xt = x, Rt = r, Yt = y]
)

.

Proof. The utility indifference price for the seller is a function ps(x, r, y, t) that satisfies

V(x, t) = Vs(x + ps(x, r, y, t), r, y, t),

i.e.,

−e−{γsx+ 1
2

µ2

σ2 (T−t)}
= −e−γs [x+ps(x,r,y,t)]− µ2

2σ2 (T−t)EP[−eγsWT(RT ,YT)|Xt = x, Rt = r, Yt = y],

which gives

ps(x, r, y, t) =
1
γs

ln
(

EP[eγsWT(RT ,YT)|Xt = x, Rt = r, Yt = y]
)

. (14)

Proposition 5. Following same reasoning, one can obtain the buyer’s utility indifference price as

pb(x, r, y, t) = − 1
γb

ln
(

EP[e−γbWT(RT ,YT)|Xt = x, Rt = r, Yt = y]
)

. (15)

The utility indifference prices ps(x, r, y, t) and pb(x, r, y, t) are clearly independent of initial wealth x
and is nonlinear, which agrees with Carmona (2008); Musiela and Zariphopoulou (2001). The nonlinearity
of these prices implies that the buyer should not pay twice as much for twice as many options but requires
a reduction in the price to take on the additional risks, whereas the seller requires more than twice the
price for taking on twice the risk.

Another notable observation is that the presence of the traded asset is irrelevant from the perspective
of risks to be hedged. This is because the correlation between the capital market and the weather indexes is
negligible and hence the expectation is taken on physical probabilities P such that the indifference measure
is the same as the historical measure. However, both prices are built on the investor’s preference towards
risks that cannot be be eliminated γ due to market incompleteness.
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For the market to be viable and free of arbitrage opportunities, the market forward price F(W) of the
weather derivative must not be less than the seller’s utility indifference price and similarly not more than
the buyer’s utility indifference price. Therefore, the utility indifference prices serve as the starting point
for price negotiations for weather derivatives between potential buyers and sellers. They are a pricing
(bid–ask spread) for a specific agent as currently weather derivatives are sold on the counter and not on
the capital market.

4. Hedging Maize Yield Using Basket Weather Derivative

Maize is the most important grain crop in Malawi and accounts for almost 90% total calorie intake
Dorward and Chirwa (2011). It is produced throughout the country under diverse environments.
The maize crop requires around 450 mm of accumulated water per season, which runs for 140 days
from November to mid-March mainly acquired from soil moisture Kawaye and Hutchinson (2018). It is a
warm weather crop and does not grow well in areas where the mean daily temperature is less than 19 ◦C
or where the mean of the summer months is less than 23 ◦C.

High temperatures coupled with drought can significantly affect the pollination process, especially if
it occurs during and within 10 days of pollination period. In addition, lack of rainfall or too much of it
can reduce the maize yield by 100% Harrison et al. (2011), resulting in severe hunger and leaving a lot of
people vulnerable and food insufficient.

In view of climate change, especially variability of rainfall and temperatures, there is a need to
introduce weather derivatives as contingent measure to help farmers to hedge potential losses in maize
yield. The study introduces basket weather derivatives whose underlying indexes are rainfall and
temperature processes, which are arguably among the most important factors contributing to maize
yield variability.

For the specification of the relationship between weather in terms of rainfall and temperature,
and maize yield Y, the model by Vedenov et al. (2004) is:

Y = I + ε where (16)

I = α0 + α2Rcd + α3CDD + α3R2
cd + α4CDD2 + α5RcdCDD. (17)

Here, I denotes the weather index, and ε ∼ N[0, σ2].
Rcd is cumulative rainfall deficit during the whole growing season defined as

Rcd =
n

∑
i=1

min

0,
is

∑
j=(i−1)s+1

ri − rmin

 . (18)

Equation (18) measures the shortfall of the sum of daily rainfall amounts ri during the period of s days
relative to the required amount rmin. CDD is the number of cumulative cooling degree days defined as the
number of days in which the average daily temperature Ti is more than the recommended temperature for
maize growth at 23 ◦C given as

CDD =
n

∑
i=1

1Ti>23. (19)

Estimation of parameters α0, . . . , α5 can be based on the maize yield data while the weather variables
should be derived from average daily temperature and daily rainfall data.
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Based on this information, a basket weather derivative can be designed that maximizes the hedging
effectiveness of maize producers. Choosing a put option with pay-off WT at the expiration date T,

WT = max(0, K− IT)× L, (20)

where IT is the weather index at expiration date, K is the strike price of the option and L is the tick size
determined in such away that a negative correlation between pay-off of the option and the revenues of the
maize production is maximal.

Utility indifference prices of the buyer and seller for the basket option were simulated where it was
assumed that the option has a relative risk averse parameter of γ = 0.1 since in most cases farmers are risk
averse and would not be willing to take huge risks.

Rainfall and temperature data for 20 seasons were obtained from Balaka district in Malawi, for which
we calculated utility indifference prices for the latest five years.

Table 1 shows the utility indifference prices for the seller and buyer of a basket weather derivative
simulated using Equations (14) and (15) for rainy seasons from 2011 to 2016. We assumed the same risk
aversion for both seller and buyer.

Table 1. Utility indifference prices for basket weather derivatives.

Year Risk Averse Seller’s Price Buyer’s Price

2016 0.1 826.59 976.80
2015 0.1 697.03 781.11
2014 0.1 709.49 804.63
2013 0.1 687.03 773.64
2012 0.001 674.11 703.41
2011 0.1 590.31 622.53

The prices vary on each season depending on the rainfall and temperature of that particular year.
The future price of a basket weather derivative then should be negotiated in between the two prices so that
there is no arbitrage opportunities. The indifference prices for the seller constitute a lower bound for the
fair asking price of the derivative. In reality there will be transaction costs for developing and launching
the derivatives added to the prices. Furthermore the willingness for a farmer to buy the derivative may
also depend on other factors like farm size and family income but the model has demonstrated that it is
possible to hedge crop yield against risks due to rainfall and temperature in one transaction.

5. Conclusions

The weather derivative market is a classical incomplete market since the weather indexes are not
tradable assets, thus traditional no arbitrage pricing methods such as the Black–Scholes are not applicable
in pricing weather derivatives. In this paper, we adopt the utility indifference pricing approach where the
investor’s risk preference towards the risks that cannot be eliminated is described by a utility function,
exponential in our case. The approach takes into account price risk, weather risks and all other risks in the
financial capital market.

The buyer’s and seller’s indifference prices are derived and conditions for market viability and no
arbitrage opportunities are derived, which all relate to the investor’s risk aversion based on the utility
function. In this paper, we assume that there is no correlation between the tradable asset and weather
indexes, considering that we are interested in how a farmer can hedge weather risks related to rainfall
and temperature simultaneously, and it is found that the indifference pricing measure is the same as the
physical measure.
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The pricing model developed can be used in agriculture industry where a farmer is interested in
hedging weather risks due to rainfall and temperature simultaneously and economically. It can also be
used to price weather derivatives in other weather related industries affected by rainfall, temperature
or both.

The model developed can be refined by ether choosing a different utility function such as power
utility, which means a different risk preference by the investor, or taking into account the bond in the
model (r 6= 0). Since weather derivatives are traded on the counter, one may compare the prices developed
here with those by actuarial approaches.
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Benth, Fred Espen, and Jūratė Šaltytė Benth. 2011. Weather derivatives and stochastic modelling of temperature.
International Journal of Stochastic Analysis 2011: 576791. [CrossRef]

Benth, Fred Espen, and Kenneth Hvistendahl Karlsen. 2005. A note on merton’s portfolio selection problem for the
schwartz mean-reversion model. Stochastic Analysis and Applications 23: 687–704. [CrossRef]

Bjork, Tomas. 2009. Arbitrage Theory in Continuous Time. OUP Catalogue. Oxford: Oxford University Press.
Brockett, Patrick L., Linda L. Goldens, Min-Ming Wen, and Charles C. Yang. 2009. Pricing weather derivatives using

the indifference pricing approach. North American Actuarial Journal 13: 303–15. [CrossRef]
Brody, Dorje C., Joanna Syroka, and Mihail Zervos. 2002. Dynamical pricing of weather derivatives.

Quantitative Finance 2: 189–98. [CrossRef]
Cao, Melanie, Anlong Li, and Jason Z. Wei. 2004. Precipitation modeling and contract valuation: A frontier in weather

derivatives. The Journal of Alternative Investments 7: 93–99. [CrossRef]
Carmona, René. 2008. Indifference Pricing: Theory and Applications. Princeton: Princeton University Press.
Carmona, René, and Danilova Albina. 2003. Hedging financial instruments written on non-tradable indexes.

Unpublished manuscript.
Carmona, Rene, and Pavel Diko. 2005. Pricing precipitation based derivatives. International Journal of Theoretical and

Applied Finance 8: 959–88. [CrossRef]
Cong, Rong-Gang, and Mark Brady. 2012. The interdependence between rainfall and temperature: Copula analyses.

The Scientific World Journal 2012: 405675. [CrossRef] [PubMed]
Cui, Kaijie. 2014. Weather Derivatives: Modelling, Pricing and Applications. Ph.D. Thesis, University of Calgary,

Calgary, AB, Canada.
Dorward, Andrew, and Ephraim Chirwa. 2011. The malawi agricultural input subsidy programme: 2005/06 to

2008/09. International Journal of Agricultural Sustainability 9: 232–47. [CrossRef]
Eberlein, Ernst, and Jean Jacod. 1997. On the range of options prices. Finance and Stochastics 1: 131–40. [CrossRef]
Fleming, Wendell H., and Halil Mete Soner. 2006. Controlled Markov Processes and Viscosity Solutions. Berlin: Springer

Science & Business Media, vol. 25.

http://dx.doi.org/10.1080/1350486042000271638
http://dx.doi.org/10.1080/14697680601155334
http://dx.doi.org/10.1155/2011/576791
http://dx.doi.org/10.1081/SAP-200064457
http://dx.doi.org/10.1080/10920277.2009.10597556
http://dx.doi.org/10.1088/1469-7688/2/3/302
http://dx.doi.org/10.3905/jai.2004.439656
http://dx.doi.org/10.1142/S0219024905003311
http://dx.doi.org/10.1100/2012/405675
http://www.ncbi.nlm.nih.gov/pubmed/23213286
http://dx.doi.org/10.3763/ijas.2010.0567
http://dx.doi.org/10.1007/s007800050019


Int. J. Financial Stud. 2019, 7, 35 14 of 14

Harrison, L., J. Michaelsen, Chris Funk, and G. Husak. 2011. Effects of temperature changes on maize production in
mozambique. Climate Research 46: 211–22. [CrossRef]

Henderson, Vicky, and David Hobson. 2004. Utility indifference pricing—An overview. In Volume on Indifference
Pricing. Princeton: Princeton University Press.

Hertzler, Greg. 2003. A stochastic differential equation for modeling the “classical” probability distributions.
Paper presented at 2003 Conference (47th) Australian Agricultural and Resource Economics Society (AARES),
Fremantle, Australia, February 12–14; pp. 12–14.

Kawaye, Floney P., and Michael F. Hutchinson. 2018. Are increases in maize production in malawi due to favourable
climate or the farm input subsidy program? In Theory and Practice of Climate Adaptation. Cham: Springer,
pp. 375–90.

López Cabrera, Brenda, Martin Odening, and Matthias Ritter. 2013. Pricing Rainfall Derivatives at the CME. Technical
Report. Berlin: Humboldt University, Collaborative Research Center, p. 649.

Leobacher, Gunther, and Philip Ngare. 2011. On modelling and pricing rainfall derivatives with seasonality.
Applied Mathematical Finance 18: 71–91. [CrossRef]

Medori, Mauro, Lucia Michelini, Isabel Nogues, Francesco Loreto, and Carlo Calfapietra. 2012. The impact of root
temperature on photosynthesis and isoprene emission in three different plant species. The Scientific World Journal
2012: 525827. [CrossRef] [PubMed]

Musiela, Marek, and Thaleia Zariphopoulou. 2001. Indifference prices and related measures, preprint.
Musiela, Marek, and Thaleia Zariphopoulou. 2004. An example of indifference prices under exponential preferences.

Finance and Stochastics 8: 229–39. [CrossRef]
Odening, Martin, Oliver Mußhoff, and Wei Xu. 2007. Analysis of rainfall derivatives using daily precipitation models:

Opportunities and pitfalls. Agricultural Finance Review 67: 135–56. [CrossRef]
Ray, Deepak K., James S. Gerber, Graham K. MacDonald, and Paul C. West. 2015. Climate variation explains a third of

global crop yield variability. Nature Communications 6: 5989. [CrossRef] [PubMed]
Syroka, Joanna, and Antonio Nucifora. 2010. National Drought Insurance for Malawi. Washington: The World Bank.
Turvey, Calum G. 2001. Weather derivatives for specific event risks in agriculture. In Review of Agricultural Economics.

Oxford: Oxford University Press, pp. 333–51.
Vedenov, Dmitry V., and Barry J. Barnett. 2004. Efficiency of weather derivatives as primary crop insurance instruments.

Journal of Agricultural and Resource Economics 29: 387–403.
Wang, Zhiliang, Peng Li, Lingyong Li, Chunyan Huang, and Min Liu. 2015. Modeling and forecasting average

temperature for weather derivative pricing. Advances in Meteorology 2015: 837293. [CrossRef]
Xu, Wei, Martin Odening, and Oliver Mußhoff. 2007. Indifference pricing of weather insurance. Paper presented at

101st Seminar of the European Association of Agricultural Economists (EAAE) “Management of Climate Risks
in Agriculture”, Berlin, Germany, July 5–6.

Zscheischler, Jakob, Rene Orth, and Sonia I. Seneviratne. 2017. Bivariate return periods of temperature and
precipitation explain a large fraction of european crop yields. Biogeosciences 14: 3309–20. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution (CC
BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3354/cr00979
http://dx.doi.org/10.1080/13504861003795167
http://dx.doi.org/10.1100/2012/525827
http://www.ncbi.nlm.nih.gov/pubmed/22701360
http://dx.doi.org/10.1007/s00780-003-0112-5
http://dx.doi.org/10.1108/00214660780001202
http://dx.doi.org/10.1038/ncomms6989
http://www.ncbi.nlm.nih.gov/pubmed/25609225
http://dx.doi.org/10.1155/2015/837293
http://dx.doi.org/10.5194/bg-14-3309-2017
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Pricing in an Incomplete Market
	Indifference Pricing Approach
	Hedging Maize Yield Using Basket Weather Derivative
	Conclusions
	References

