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Abstract: Despite the obvious benefits and growing popularity of Machine Learning (ML) technology,
there are still concerns regarding its ability to provide Financial Distress Prediction (FDP). An accurate
FDP model is required to avoid financial risk at the lowest possible cost. However, in the Internet
era, financial data are exploding, and they are being coupled with other kinds of risk data, making
an FDP model challenging to operate. As a result, researchers presented several novel FDP models
based on ML and Deep Learning. Time series data is are important to reflect the multi-source and
heterogeneous aspects of financial data. This paper gives insight into building a time-series model
and forecasting distress far in advance of its occurrence. To build an efficient FDP model, we provide
a hybrid model (GALSTM-FDP) that incorporates LSTM and GA. Unlike other previous studies,
which established models that predicted distress probability only within one year, our approach
predicts distress two years ahead. This research integrates GA with LSTM to find the optimum
hyperparameter configuration for LSTM. Using GA, we focus on optimizing architectural aspects for
modeling the optimal network based on prediction accuracy. The results showed that our algorithm
outperforms other state-of-the-art methods in terms of predictive accuracy.

Keywords: financial distress prediction (FDP); long short term memory (LSTM); genetic algorithm
(GA); machine learning (ML)

1. Introduction

Financial distress prediction (FDP), the significant factor of enterprise risk manage-
ment, is also the core of enterprise financial distress theory (Wanke et al. 2015). As a result
of the COVID-19 pandemic and current global economic recession, the probabilities of
numerous sorts of businesses entering financial distress or insolvency is steadily increas-
ing (El-Bannany et al. 2021; Khan et al. 2020). Many studies have shown that ignoring
enterprise financial risks is an important cause of business failure, and FDP has a great
impact on corporate sustainability (Mehreen et al. 2020). Thus, for enterprises with signifi-
cant financial risks, but which have not yet caused significant losses, it is critical to be able
to timely spot potential financial difficulties and warn them (Hu and Sathye 2015; Khedr
et al. 2021). For businesses and other market participants, obtaining an FDP model with
significant operability, strong predictive accuracy, and a broad application scope is crucial.
Machine Learning (ML) approaches began to emerge as efforts in the field of FDP increased,
including Neural Network (NN), Genetic Algorithm (GA), Support Vector Machines (SVM),
etc. Moreover, as ML technology improves, combining several ML approaches during the
FDP process has become a new trend (Sreedharan et al. 2020a; Zhu et al. 2022). The majority
of studies indicate that data mining techniques can forecast distress better and outperforms
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traditional methods (Sreedharan et al. 2020b). For model construction, on one hand, classic
statistical and ML methods are applied in feature engineering and classification, such as
Naïve Bayesian, SVM, and ensemble learning, including decision-trees-based Gradient
Boosting Decision Tree (GBDT), Random Forest (RF), eXtreme Gradient Boosting (XGB),
and Adaptive Boosting (AdaBoost) (Başoğlu Kabran and Ünlü 2021; Gepp and Kumar
2015; Khedr et al. 2021; Kim et al. 2019; Min and Lee 2005; Wu et al. 2008). On the other
hand, various Deep Learning (DL) models are also employed for modeling, such as Genetic
Algorithm (GA), Convolutional Neural Network, and Self Organizing Map (SOM) (Bukhari
et al. 2020; Jang et al. 2019). Because of their excellent prediction accuracy, Neural Networks
are frequently employed in FDP (Zhu et al. 2022).

Past studies on FDP show that DL techniques performed better than traditional tech-
niques over time-series data (El Bannany et al. 2021; Geng et al. 2015; Ribeiro and Lopes
2011). In particular, among DL architectures, Recurrent Neural Networks (RNNs) have
proved their superiority in analyzing financial time-series data (Bukhari et al. 2020). A re-
current neural network (RNN) is an ANN in which node connections form a directed graph
along a time sequence. As a result, it can display temporal dynamic behavior. The selection
of hyperparameters has a significant impact on the efficiency of an LSTM. The fine-tuning
of these parameters is a critical step in increasing the model’s prediction accuracy. Using
brute force trial and error to try every possible combination of reasonable parameters is
one method for determining ideal hyperparameters. Many LSTMs must be trained one by
one, multiple times. This takes a significant amount of time and computer resources.

This paper gives insight into building a time-series model and forecasting distress
far in advance of its occurrence. In order to make up for the shortcomings of a single
prediction model, a new hybrid model that incorporates LSTM and GA is presented in
this work. We created an FDP model using a DL algorithm called the Long Short-Term
Memory (LSTM) Recurrent Neural Network (RNN). An LSTM network is a type of deep
RNN model composed of LSTM units, which was introduced as a way to overcome the
long-term dependency problem (Hochreiter and Schmidhuber 1997). The LSTM can scale
to much longer sequences than simple RNN, overcoming the intrinsic drawbacks of simple
RNN. The LSTM is advantageous for forecasting financial distress because it can efficiently
learn sequential patterns in the given data including sequential or temporal characteristics
and predicts time-series data well. GA is a metaheuristic and stochastic optimization
algorithm inspired by the process of natural evolution, and it is widely used to find near-
optimal solutions to optimization problems with large search spaces (Sun and Hui 2006).
To build an efficient FDP model, we provide a hybrid model that incorporates LSTM and
GA. In contrast to other previous studies that predicted financial distress probability only
within one year, our GALSTM-FDP approach predicts distress two years ahead. This
research integrates GA with LSTM to find the optimum hyperparameter configuration for
LSTM. Using GA, we focus on optimizing architectural aspects for modeling the optimal
network based on prediction accuracy. GA is a heuristic search and optimization technique
based on natural selection, and it is commonly employed to obtain a near-optimal solution
to optimization problems with a broad parameter space (Sun and Hui 2006). To the best of
the authors’ knowledge, this is the first study that uses a hybrid optimized GA and LSTM
model in FDP studies based on time-series data and predicts distress more than a year in
advance. Because we incorporated just within-company data, our model is compatible
with any region data.

The major contributions of this paper are: First, we propose an LSTM-RNN model
as an FDP model that accurately predicts distress two years ahead. The LSTM is one of
the most advanced DL architectures for capturing long-term dependencies from financial
time-series data. In order to improve the prediction performance of the FDP model, we
provide a hybrid optimized GALSTM-FDP model. We integrate GA with LSTM to find
the optimum hyperparameter configuration for LSTM where we focus on optimizing
architectural aspects of the model for enhanced prediction power. Second, we provide a
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strong and effective distress prediction model that is beneficial for the corporate, market
participants and policymakers.

The rest of the study is structured as follows: Section 2 provides a brief overview of the
related research. The proposed GALSTM-FDP model formation is presented in Section 3.
Data and modeling details are provided in Section 4. Section 5 discusses the results and
compares the prediction performance of the proposed hybrid model with existing ML
models. Finally, Section 6 concludes the paper by stating potential future directions.

2. Related Research

Statistical and ML approaches have been utilized in earlier research to forecast financial
distress (Sreedharan et al. 2020a). Conventional statistical models employed in the domain
of distress prediction include discriminant analysis and the logit model. Altman (1968)
utilized discriminant analysis to anticipate financial distress in firms, whereas Ohlson (1980)
used the logit model to forecast financial distress. Later, Falbo (1991) presented a modified
discriminatory model of study over a period of several years using financial stability ratios
to enhance discriminatory strength. Traditional linear techniques were ineffective and had
their own limits. Such straightforward approaches need more predictive history data and
could not be utilized to develop a strong classifier for actual predictions. SVM as a non-
parametric binary classification technique is widely used in financial time-series forecasting,
and the work in (Başoğlu Kabran and Ünlü 2021) utilized SVM for the prediction of bubbles.

As financial data are considered non-linear, statistical approaches cannot be utilized to
build a credible prediction model. ML methods are widely employed in financial distress
prediction because of their significant benefits in extracting non-linear data relationships
without previous input knowledge. As a result, ML techniques such as Logistic Regression,
SVM (Min and Lee 2005; Sun et al. 2017), and NNs (Cleofas-Sánchez et al. 2016; Ravisankar
and Ravi 2010) were incorporated in past research. According to their results, these ap-
proaches have proven relative effectiveness over statistical methods due to their capability
to identify noisy data without making any statistical predictions. Cleofas-Sanchez et al.
applied Santiago-Montero’s hybrid associative classifier with translation (HACT) model to
predict financial distress and provided empirical results supporting that HACT dominated
four traditional neural networks, including multi-layer perceptron (MLP), radial basis
function (RBF), Bayesian network (BN), and voted perceptron (VP), one SVM, and one
multi-variate logistic regression (LR) model (Cleofas-Sánchez et al. 2016). While the HACT
model can be trained easily due to its feed-forward learning framework, it is only suitable
for simple data with repetitive structures. It would not be able to generate good learning
and prediction results for complicated data. Chou et al. proposed a GA-based fuzzy
clustering algorithm for FDP (Chou et al. 2017). In particular, key financial ratios selected
by the GA are clustered by the fuzzy C-means clustering after the training data are divided
into financially distressed and financially non-distressed samples. The optimal number of
clusters for both samples are decided by the WB index. However, the major drawbacks
of this method are the high possibility of over-fitting the training data as well as the time
consumed to find the optimal results. Ruibin et al. evaluated the effectiveness of ML
approaches for predicting distress in publicly listed Chinese businesses (Geng et al. 2015).
They examined three popular classifiers in data mining and analyzed their effectiveness
using majority voting. A study on datasets gathered from various nations is also observed
utilizing data mining techniques in (Bae 2012). SVM and NN classifiers show fairly good
efficiency in predicting financial distress.

The learning time of NN classifiers was substantially decreased with the introduction
of parallel processing technology. As a result, researchers have attempted to form DNN-
based models for prediction purposes (Huang and Yen 2019; Shen et al. 2015). Due to
their exceptional classification performance, DL algorithms were eventually used in the
field of FDP (Glorot et al. 2011). Ribeiro and Lopes presented a DBN-based prediction
model to forecast failures in French companies (Ribeiro and Lopes 2011). Matin et al. (2019)
present distress prediction using DL, which employs unstructured textual information
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in financial statements for prediction. To improve prediction performance on corporate
financial problems, a genetic algorithm was combined with existing machine learning
techniques. Jie Sun used the genetic algorithm in conjunction with the Decision Tree to
optimize the financial ratio defined in the prediction of distress (Sun and Hui 2006). Hou,
in 2016, introduced the K-clustering algorithm based on the genetic algorithm to solve
certain conventional K-means clustering problems whilst predicting financial distress (Hou
2016). Kim et al. developed a genetic approach to optimize several heterogeneous design
variables of SVMs at the same time (Kim et al. 2019). Though deep NN models are a great
tool for predicting financial difficulties, there are numerous disadvantages to using them.
The capacity of NN models to describe the final decision that models obtain is limited.
Although NNs can give a substantial solution to the goal problem, they cannot provide
a good explanation for the projected results. Shin and Lee presented a hybrid strategy
of merging ANN and evolutionary algorithms and extracting rules from the bankruptcy
prediction model to overcome this difficulty (Shin and Lee 2002). Another issue is that,
like other NN models, an RNN contains numerous parameters that the researcher must
tune. However, due to time and computational constraints, it is not possible to skim over a
parameter space in order to find the optimal setting. Jang et al. (2019) developed a business
failure prediction model based on LSTM and showed that it outperforms FNN and SVM
in predicting construction contractors’ business failure. Halim et al. (2021) examined the
effectiveness of DL models such as RNN, GRU, and LSTM for FDP among publicly listed
organizations in Malaysia using time-series data only in a single year. El-Bannany et al.
(2020) employs three distinct DL models: MLP, LSTM, and CNN for FDP considering
single-year data.

From the previous studies, it is evident that not much research has been carried out
considering the problem as a time series to capture long-term dependencies from financial
time-series data. We have selected an effective algorithm for time-series analysis, the
LSTM-RNN algorithm. In order to make up for the shortcomings of a single prediction
model, a new hybrid model that incorporates LSTM and GA is presented in this work.
To the best of authors’ knowledge, this is the first study that uses a hybrid optimized GA
and LSTM model in FDP studies based on time-series data and predicts distress more
than a year in advance. Because we only incorporated within-company data, our model
is compatible with any region data. In contrast to other previous studies that predicted
financial distress probability only within one year, this paper gives insight into building
a time-series model and forecasting distress far in advance of its occurrence. Using GA,
we focus on optimizing architectural aspects for improved performance. By adjusting
the hyperparameters, we use the evolutionary algorithm approach to model the optimal
network based on prediction accuracy.

3. Proposed GALSTM-FDP Model Formation

In this section, we provide an overview of the main models used in this study, includ-
ing the LSTM, GA, and the proposed hybrid GALSTM-FDP model. The goal of this study
is to identify the optimal LSTM parameter values for predicting financial distress using a
genetic algorithm. We concentrate on fine-tuning the hyperparameters—the number of hid-
den layers, neurons, epochs, and batch size. Following this phase, the top five networks are
identified and assessed based on prediction accuracy. The suggested hybrid model is then
compared to traditional machine learning techniques in the following part of the research.

3.1. Long Short-Term Memory (LSTM)

Hochreiter and Schmidhuber proposed the LSTM neural network, which is commonly
used to process sequence information due to its benefits in recognizing long-term depen-
dencies (Hochreiter and Schmidhuber 1997). As a result, creating an LSTM model for
financial time-series data is theoretically possible. An LSTM network is a type of deep
RNN model composed of LSTM units. As discussed earlier, RNN is a DL network with
internal feedback between neurons. The structure of RNN, as shown in Figure 1, can
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theoretically map from all prior inputs to each output. The recurrent connections in RNN
allows the memory of earlier inputs to survive in the internal state of the network and
therefore impact the output of the network. Unfortunately, the RNN struggles from the
vanishing gradients issue, that is, the impact of an input datum on a hidden layer and thus
on the network output, which either deteriorates or explodes exponentially while looping
through the recurrent connections of the network. Hochreiter and Schmidhuber (1997)
advocated for LSTM for a lengthy span of time to address this issue. Its architecture is
made up of LSTM memory blocks that are comparable to the RNN’s hidden neurons. They
are capable of learning long-term dynamics and avoiding the disappearing and inflating
gradient issues. The LSTM-RNN can understand temporal and sequential patterns from
time-series or data sequences. Many recent research have used LSTM to forecast time-
series data and demonstrated that it outperforms other methodologies. To anticipate the
sudden stochastic fluctuation of the financial market, a novel hybrid approach with the
power of fractional order derivative was provided with the properties of LSTM networks
in (Bukhari et al. 2020).

Figure 1. Structure of an RNN.

3.2. Genetic Algorithm (GA)

GA is a metaheuristic and stochastic optimization algorithm inspired by the process
of natural evolution (Sun and Hui 2006). They are widely used to find near-optimal
solutions to optimization problems with large search spaces. GA is a powerful optimization
technique that works on principles such as selection, crossover, and mutation. Processing
the GA can be divided into different stages: initialization, fitness calculation, termination
condition check, selection, crossover, and mutation.

3.3. Hybrid GALSTM-FDP Model for FDP

This study develops an FDP model using an LSTM-RNN coupled with GA to obtain
the best parameter setting for our problem. As previously stated, an LSTM is a form of RNN
designed to learn sequential and temporal patterns from time-series data. The proposed
GALSTM-FDP structure contains one input layer with time step = 3, one or more hidden
layers, a dropout layer for each LSTM layer, and an output layer. The flow diagram of the
proposed model is given in Figure 2.

A dropout layer should be added to every LSTM layer. By neglecting randomly chosen
neurons during training, this layer alleviates over-fitting and therefore decreases sensitivity
to the particular weights of individual neurons. The 20% rule is frequently employed as a
reasonable balance between maintaining model accuracy and avoiding over-fitting.

We have used a tumbling window rather than a sliding window as our data are panel
data that consider each company distinctly. For this, we have set our stride parameter to
5 and window length to 3. As we are predicting distress two years ahead, the number of
input is 3 (taking the first 3 years in the dataset and skipping the next year) with 26 features.
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Figure 2. Flow diagram of the GALSTM-FDP model for FDP.

Optimizing the LSTM Model Using GA

This study examines how GAs can be used to optimize LSTM networks for FDP. We
have applied GA to optimize the number of units in the LSTM layers, activation functions,
number of epochs, and batch size. The algorithm starts with a random initial population,
forming the core of the GA. At each generation, a new population is created from the initial
population after the process of evaluation, selection, crossover, and mutation. This process
continues over the generations until an optimum solution is attained. Figure 3 depicts the
process of optimizing the LSTM model using GA.

• Generate the initial population: The creation of the initial population, which forms
the basis of GA is the first step. By randomly mixing various hyperparameter values,
20 distinct LSTM networks are produced, constituting the starting population of the
GA. Antonio Dourado (2013) has offered a solid rule of thumb for avoiding over-fitting:
start with [Number of Training Samples/2 × (Number of Input Neurons + Number of
Output Neurons). In most cases, it works, but if the problem is too simple or complex,
we can experiment increasing or decreasing the number of neurons. We have picked
two values that are less than 64 and two values that are larger than 64. The popular
Adam optimizer was chosen as the activation function for this model. The initial
population in this study is made up of a collection of 20 random networks. The other
two parameters that can be varied are the number of epochs and batch size.

• Compute fitness: Each individual network in the population is trained and tested
using the MENA dataset and scored according to the predictive accuracy. We did not
run cross-validation on this dataset because it is a time-specific dataset. The highest-
scoring networks are retained in order to increase the population of the next generation.
The remaining networks of the existing population are discarded.

• Selection: An LSTM network with high accuracy has a greater probability of being
chosen for the following generation. During the selection phase, we identify networks
from the present population that will be passed down unchanged to the future genera-
tion. The top-ranked quarter (five numbers) networks based on accuracy scores are
transferred directly to the next population. In order to prevent being trapped at the
local maximum, three low-performing networks are also preserved and transferred to
the next generation.
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• Breeding: For the next generation, we currently have eight networks in the population.
The remaining 12 are the product of crossover or breeding. To produce one or more
children for the following generation, two networks from the current population,
known as parents, are required. The parents are chosen based on their scores, and the
network parameters are combined to generate a new offspring that is a hybrid of its
parents. Each child in this study is a network with a random set of parameters from
its parents.

• Mutation: We randomly adjust some of the properties of random networks in the
population to have a population for the next generation. This technique aims to create
better networks for the population.

Figure 3. Optimizing the LSTM model using GA for FDP.

Algorithm 1 involved in this study is given below:

Algorithm 1 GALSTM-FDP

1: Construct a population of LSTM networks and allocate them all random hyperparameters.
- Number of hidden layers: {1, 2, 3, 4}
- Neurons per layer: {16, 32, 64, 128, 256}
- Batch size: {35, 70, 105, 140, 175 }
- Epochs: {50, 100, 200, 300, 400, 500}
- Select 20 random LSTM as the current population.

2: Train each network in the population using the given MENA dataset.
3: Calculate the prediction accuracy for each one and pick the top performing ones for the next step.
4: Select some top networks and non-top networks (to avoid getting stuck at local maximum).
5: Crossover: The parameters of two members of the chosen networks are crossed over. By merging

the parents, this will result in a “child” network possessing some features of the first and some
of the second.

6: Mutate the parameters of some of the child networks
7: Save the generated child networks in a new population and allocate it to the variable that holds

the former population.
8: Repeat steps 2 to 7 for 10 generations.

We used an initial set of 20 random networks to establish the population in this study,
and we repeated the evaluation, selection, crossover, and mutation procedure for 10 gener-
ations. As a result of our research, we have trained approximately 200 LSTMs, resulting
in a stronger population over time. In the following part, the top five LSTM networks
from the final population set are determined and examined based on prediction accuracy.
The predictive accuracy of networks in the population improved over generations, and the
models were trained and generated using the Python libraries Scikit-learn and Keras. We
also evaluated the performance of the proposed model to that of traditional ML models.
The simulation results revealed that the proposed hybrid model has much greater predic-
tion accuracy when compared to SVM, DT, and standalone LSTM classifier algorithms.
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4. Data and Modeling

The goal of this study is to identify the optimal LSTM parameter values for predicting
financial distress using a genetic algorithm. We have applied GA to optimize the number of
units in the LSTM layers, activation functions, number of epochs, and batch size. Following
this phase, the top five networks are identified and assessed based on prediction accuracy.
The suggested hybrid model is then compared to traditional machine learning techniques
in the following part of the research. To evaluate whether a company shows up as finan-
cially distressed or not, the FDP problem discussed in this paper is modeled as a binary
classification problem. In the financial dataset, the output or target attribute belongs to any
one of the two classes: financially distressed companies and financially healthy companies.
All of the other attributes in the dataset are continuous values with the exception of this
target attribute, which has a binary value.

Dataset Description: The dataset considered for evaluating the predictive perfor-
mance includes sample data gathered from MENA (Middle East and North Africa) listed
firms, extracted from the Osiris database. Financial companies are exempted due to the
difference in their operational environment. We selected only the companies with 5 years
(2015–2019) of consecutive data in the final dataset, totaling to 9765 company years of
1953 companies. The financial variables extracted from financial statements and balance
sheets of respective companies are selected considering the variables and ratios used in
prior studies in this area. A detailed description of the ratios calculated from 20 financial
variables is given in Table 1. The 20 variables along with 6 ratios are taken as input to
the network.

Table 1. Financial Indicators.

Indicators Formula

Solvency Total liabilities/Total assets
Current assets/Current liabilities
Current assets-inventory/Current liabilities
Total liabilities/total shareholders’ equity
Current liabilities/total assets
Net operating cash flow/current liabilities
Earnings before interest and tax/interest expense

Capital Expansion Net profit/number of ordinary shares at the end of year
Net assets/number of ordinary shares at the end of year
Net increase in cash and cash equivalents/number of ordinary
shares at the end of year
Capital reserves/number of ordinary shares at the end of year

Pro f itability (Sales revenue–sales cost)/sales revenue
Net profit/sales revenue
Earnings before income tax/average total assets
Net profit/average total assets
Net profit/average current assets
Net profit/average fixed assets
Net profit/average shareholders’ equity

Business Development Business income of this year/Business income of last year
Total assets of this year/total assets of last year
Net profit of this year/net profit of last year

Operational Capabilities Main business income/average total assets
Sales revenue/average current assets
Sales revenue/average fixed assets
Main business cost/average inventory
Main business income/average balance of accounts receivable
Cost of sales/average payable accounts
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Table 1. Cont.

Indicators Formula

Structural Soundness Current assets total assets
Fixed assets/total assets
Shareholders’ equity/fixed assets
Current liabilities/total liabilities

Prior to actual fitting of the model to the dataset, three steps must be completed:
(1) Data cleaning, (2) Normalization, and (3) Splitting.

1. Data cleaning: This phase is used to validate the data contained within the dataset.
As seen in Table 2, the value ranges between variables have a wide variation. Our
samples, like most real datasets, contain null values and missing properties. These
issues were resolved during the pre-processing stage, where we scaled the dataset
after filling in the missing values with forward and backward fill within each company
as the units of several variables were also different.

2. Normalization: The model rescales the variables to a range of −1 to 1 to produce a
fair result. This process is needed to convert all of the column values in the dataset to
a common scale without distorting the value ranges or causing data loss.

3. Dataset samples splitting: The dataset was then turned into the time-series data that
the LSTM network required. For a realistic evaluation of performance, datasets must
be divided into testing and training sets. We cannot partition our data like other non-
time specific datasets because they are time series. At any given time, our network
receives 5 years’ worth of data (first 3 years of data from 5 years as input and fifth
year as output). Considering this, we have divided our training set into a multiple
of 5: 7810 samples in the training set and the remaining 1955 years in the testing set.
This is approximately 80% of data in the training samples and the remaining 20% in
the testing samples.

Table 2. Descriptive statistics of all individual financial attributes.

Variables Mean Min Max

Total Liabilities 88,751.36508 13 1,669,220
Total Assets 183,280.635 5763 3,091,702
Current Assets 43,249.87 138 676,520
Current Liabilities 46,492.642 10 790,074
Accounts Receivable 11,041.079 5.63 200,071
Accounts Payable 11,966.0634 205 374,494
Total Shareholders Equity 93,131.111 5565 1,422,482
Net Cash Flow 17,297.667 −4600 481,539
EBIT 8274 16 267,461
Net Profit 4253.9524 −31,571 156,702
Cash and Cash Equivalent 12,907.0158 19 209,716
Cost of Goods Sold 22,169.1746 345 266,764
Sales 1,730,068.53 93 10,301,478
Shares 402,708 30,318.8 3,901,347
Capital Reserves 5774.65 −615 182,827
Fixed Assets 140,030.76 599 2,415,182
Average Total Assets 274,315.7778 8815 4,608,537.5
Average Current Assets 66,022.484 210 1,048,037
Average Fixed Assets 208,293.2937 825 3,560,500
Average Equity 140,519.53 8476 2,227,284
Average Accounts Receivable 13,773.69 4069 327,807
Average Accounts Payable 16,861.05 794 555,164.5
Net Increase in Cash −3622.984 −151,247 16,129
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5. Empirical Analysis

Our model is built on the popular Keras ML library in Python. We have used a
tumbling window rather than a sliding window as our data are panel data that consider
each company distinctly. For this, we have set our stride parameter to 5 and window length
to 3. As we are predicting distress two years ahead, the number of input is 3 (taking the
first 3 years in the dataset and skipping the next year) with 26 features.

To evaluate whether a company shows up as financially distressed or not, the FDP
problem discussed in this paper is modeled as a binary classification problem. In the
financial dataset, the output or target attribute belongs to any one of the two classes:
financially distressed companies and financially healthy companies. All of the other
attributes in the dataset are continuous values with the exception of this target attribute,
which has a binary value.

In this research, negative are companies that are financially distressed, whereas positive
are those that are financially sound. If the F1-score is employed as a performance metric,
a balance between precision and recall could be attained.

5.1. FDP Performance Evaluation Metrics

We compare the classifiers’ performances in predicting financial distress with two
common ML evaluation metrics:

1. Accuracy: For performance assessment, the accuracy of the test data is considered.
Accuracy is the percentage of the number of correct predictions from all the predictions
made.

2. F1-score: F1-score is a function of precision (Equation (1)) and recall (Equation (2)) as
defined by Equation (3).

Precision =
True − Positive

(True − Positive + False − Positive)
=

True − Positive
(Total − Predicted − Positive)

(1)

Recall =
True − Positive

(True − Positive + False − Negative)
=

True − Positive
(Total − Actual − Positive)

(2)

F1 − score = 2 ∗ (Precision ∗ Recall)
(Precision + Recall)

(3)

5.2. Correlation and Feature Importance

The descriptive statistics of the attributes are given in Table 2. Figure 4 shows the Pear-
son’s correlation, and Figure 5 depicts the feature importance of the attributes, respectively.
A high correlation means values between −0.50 and −1.00. Feature importance order is
depicted in Figure 5. We included all the attributes, as omitting the least important ones
resulted in lower performance; extreme outliers in the dataset were detected, analyzed (e.g.,
to determine whether they resulted from errors in data entry), and removed.

5.3. Analysis of the Proposed Hybrid GALSTM-FDP Model for FDP

This section presents and analyzes the findings of the proposed hybrid GALSTM-
FDP model for FDP. The average accuracy values of all 20 models in the population over
10 generations are shown in Figure 6.

According to the graph, the financial distress prediction accuracy of networks in the
population has increased over generations. This means that the GA optimizes the network
at each iteration, resulting in the best solution for FDP at the completion of the iterations.
At each generation, a set of 20 networks is trained and scored, then crossed over and
mutated to produce the new population of networks for the coming generation. Table 3
displays the parameters of the five highest scoring networks based on the percentage of
prediction accuracy and F1-score. Figure 7 depicts the accuracy and F1-score graphs for
the same.

The highest predictive accuracy and F1-score for the dataset in percentages are 91.50
and 92.67, respectively. A dataset with a greater number of attributes can be trained more
effectively and provide a more robust model than a dataset with fewer attributes. From the
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above table, we can see that although we have included three and four hidden layers for
analysis the best performing was two layers. That is, an LSTM with two hidden layers is
enough for our FDP problem. Training the model for more number of epochs did yield
a higher accuracy. Our input layer had 26 input attributes, which in turn is the shape of
the input layer. Moreover, 64 or 128 neurons per layer gave a better performance than the
others. We set the batch sizes as multiples of 5 because we take 5 years of data as a single
input; 35 or 70 inputs per batch performed well in our setting.

Figure 4. Pearson’s r correlation.

Figure 5. Feature importance of the attributes.
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Figure 6. Average accuracy score of the GALSTM-FDP model across 10 generations.

Figure 7. Best-performing 5 LSTM models.

Table 3. GALSTM-FDP: Network parameters of top 5 networks based on percentage of accuracy
and F1-score.

Network Hidden
Layers

Neurons per
Layer Batch Size Epoch Testing

Accuracy (%)
Testing

F1-Score (%)

1 2 64 35 500 91.50 92.67
2 2 64 70 400 91.25 92.82
3 1 64 35 500 91.05 92.51
4 2 128 35 400 91.00 92.48
5 1 128 70 500 90.82 92.31

In the last stage of the research, we compared our improved LSTM network against
SVM, DT, and basic LSTM classifier algorithms. Prediction outcomes in terms of accuracy
and F1-score are shown in Table 4. The statistical findings show that the suggested opti-
mized GALSTM-FDP model’s prediction accuracy is substantially greater than that of the
traditional ML models.
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Table 4. Comparison of GALSTM-FDP, LSTM, SVM, and DT in solving the FDP problem.

Financial Distress Prediction Performance

Classifiers Accuracy F1-Score

GALSTM-FDP 91.50 92.67
LSTM 88.75 90.46
SVM 86.50 89.67
DT 81.75 85.46

5.4. GALSTM-FDP: Overall Analysis

The GALSTM-FDP model’s greater performance can be attributed to the fact that the
architecture of the LSTM network substantially improved learning efficiency and reduced
the need for unnecessary computations. We integrated GA with LSTM to find the optimum
hyperparameter configuration for LSTM with the aim of optimizing architectural aspects
of the model for enhanced prediction power. The application of GA to investigate the
optimal architectural factors derives results through this genetic search. The findings
imply that proper parameter tuning is a necessary precondition for achieving adequate
performance. Even if deep learning algorithms are expanding quickly, finding the ideal
set of deep architecture parameters requires extensive understanding. The experimental
findings, however, indicate the potential for the hybrid GALSTM-FDP model’s application
in FDP and show that it can be a useful tool for finding the best or nearly best results.
Because we incorporated just within-company data, our model is compatible with any
region data. In other words, it is most effective in handling FDP based on time-series data,
can accurately predicts distress two years ahead, and is beneficial for the corporate, market
participants and policymakers.

6. Conclusions and Future Work

Finding the best-performing FDP model has always been a focus of researchers,
and numerous FDP models have been developed since then. We presented a hybrid
GALSTM-FDP model for FDP and assessed the performance of LSTM by adjusting the
hyperparameters using a GA. It was observed that if the model is configured with one or
two hidden layers, an acceptable predicted performance rate can be obtained. We trained
and evaluated the models with a dataset of 26 input variables collected from 1953 firms
in the MENA area. The simulation results show that the suggested model outperforms
standalone LSTM and other conventional ML methods such as SVM and DT. All of the
variables in our analysis are within-firm variables. To improve the model, macroeconomic
and other industrial aspects may be incorporated in future study.
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