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Abstract: In this study, the dependence between Bitcoin (BTC) and economic policy uncertainty
(EPU) of USA and China is estimated by applying the latest methodology of quantile cross-spectral
dependence. Daily data comprising a total of 1947 observations and covering the period of 1
October 2013 to 31 January 2019 are used in this study. The findings indicate that a positive return
interdependence between BTC and EPU is high in the short term, and this dependence decreases as
investment horizons increase from weekly to yearly. The information on the time-varying and time–
frequency structure of interdependence is also extracted by applying wavelet coherence analysis. The
estimated results of wavelet coherence suggest that the correlation between BTC and EPU is positive
during a short-term investment horizon. Finally, the frequency domain Breitung and Candelon
causality test is applied, and results show the evidence of insignificant causality between Bitcoin
and EPU. Overall, the findings highlight the diversification benefits of Bitcoin during the period
of uncertainty.

Keywords: Bitcoin; economic policy uncertainty; spillover; wavelet coherence analysis; quantile
cross-spectral dependence

JEL Classification: C58; D80; G11

1. Introduction

In the context of extreme uncertainty regarding economic policy measures and the loss
of confidence in the existing international financial system, Nakamoto (2008) introduced a
new digital currency, i.e., Bitcoin, a fully decentralized cryptocurrency without any control
from a central authority. Since its introduction, the Bitcoin price has increased dramatically
from USD 0.09 on 18 July 2010 to USD 48,767 on 23 August 2021. The dramatic change in the
price of Bitcoin has motivated academicians and practitioners to explore the economic and
financial factors which may affect the Bitcoin price (Demir et al. 2018), since the behavior
of this digital currency seems to be independent of economic and financial development
(Kristoufek 2015). Some studies argue that the attractiveness of Bitcoin increases during the
period of financial distress and economic uncertainty (Bouri et al. 2017; Demir et al. 2018;
Fang et al. 2019). With this backdrop, it is stated that Bitcoin offers significant diversification
benefits to investors during the times of extreme economic uncertainty (Cheng and Yen
2020; Guesmi et al. 2019; Kang et al. 2020; Mokni et al. 2020; Paule-Vianez et al. 2020;
Wang et al. 2019). However, there are several studies that criticized the role and suitability
of Bitcoin in financial markets by analyzing its speculative nature (Corbet et al. 2018;
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Eom et al. 2019), high price volatility (Aalborg et al. 2019; Shi et al. 2020; Elsayed et al.
2022), bubble formation tendencies (Baur et al. 2018; Eom et al. 2019; Bouri et al. 2019),
legal regulations (Spaeth and Peráček 2022), and market efficiency (Al-Yahyaee et al. 2020;
Choi et al. 2022; Mensi et al. 2019).

No doubt, government’s economic policies, namely, fiscal and monetary policies, sig-
nificantly impact the entire economy. Specifically, during the period of recession/distress,
direct government intervention significantly impacts financial markets. Frequent interven-
tions after global financial turmoil have aroused scholars’ interest in such issues. In this
regard, Baker et al. (2016) introduced the economic policy uncertainty (EPU) index to mea-
sure the uncertainties that arise due to government intervention and policies. Following
that, recent studies have analyzed that such policy uncertainties have considerable impact
on real economic systems and financial markets (Arreola Hernandez et al. 2022; Baker et al.
2016; Nguyen et al. 2020; Darsono et al. 2022; Mensi et al. 2021).

The interest in investigating the impact of EPU on the cryptocurrency market is fairly
recent. Bouri et al. (2017), Bouri and Gupta (2019), Fang et al. (2020), and Colon et al.
(2021) found that EPU is a significant predictor of volatility in the cryptocurrency market,
especially in the Bitcoin market. Demir et al. (2018), Mokni et al. (2020), Mokni (2021),
and Rubbaniy et al. (2021) reported that EPU significantly impacts Bitcoin returns and
that Bitcoin acts as a potential hedging tool against economic uncertainty. On the contrary,
Cheema et al. (2020) and Hasan et al. (2022) noted that cryptocurrencies do not act as a
hedge or safe-haven during risky periods. Shaikh (2020) found that EPU in the US and
Japan are negatively associated with the Bitcoin market whereas EPU in China is positively
associated. Cheng and Yen (2020) found a positive correlation between Chinese EPU and
the cryptocurrency market, while Yen and Cheng (2021) showed a negative correlation
between Chinese EPU and the cryptocurrency market. Jiang et al. (2021) demonstrated
that cryptocurrencies act as a hedge for higher EPU but not in moderate or low EPU.
Furthermore, Haq et al. (2021) conducted a systematic review of empirical literature
based on the cryptocurrency market and discovered the mixed connectedness pattern
of cryptocurrency with all national EPU. This heterogenous correlation patterns suggest
future research avenues in the cryptocurrency market.

Accordingly, this study explores the linkage between Bitcoin returns and EPU indices
of USA and China developed by Baker et al. (2016). More precisely, the dependence
structure between Bitcoin and EPU is measured using the latest methodology of quan-
tile cross-spectral (QS) analysis proposed by Baruník and Kley (2019). Our research has
the following three contributions. First, prior studies (e.g., Demir et al. 2018; Wang et al.
2019; Shaikh 2020) have ignored the quantile interdependence across varied frequencies in
describing the interrelationship between Bitcoin and EPU. Our study captures the interde-
pendencies at various market conditions across and at different investment horizons. This
is important because money market correlation increases during uncertain periods (Longin
and Solnik 2001). Second, to enrich our results with respect to interdependence between
Bitcoin and EPU across time frequencies, we have applied wavelet coherence analysis.
Indeed, it is important to recognize the behavior of Bitcoin across various frequencies
because the driving forces behind Bitcoin pricing are not constant since its inception in
the global market (Maghyereh and Abdoh 2021). Third, Breitung and Candelon’s (2006)
Granger causality test is applied to investigate the causality between BTC and EPU at
various frequency domains.

The general outcomes of the study estimated by applying quantile cross-spectral (QS)
methodology indicate that EPU does not affect Bitcoin returns over long terms. Further-
more, the dependence between BTC and EPU decreases with the increase in frequency
from weekly to yearly. Breitung and Candelon’s (2006) Granger causality test shows evi-
dence of an insignificant bidirectional causality between Bitcoin and USA-EPU at long-term
frequencies. Moreover, the weak dependence and insignificant causality between Bitcoin
and USA-EPU suggest the better diversification benefits of Bitcoin and USA-EPU.
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The structure of the paper is as follows. In Section 2, we discuss data and methodolog-
ical choices. Section 3 contains empirical results and their discussion. Section 4 explains the
conclusion of the study.

2. Data and Empirical Analysis Methods
2.1. Data

The daily data comprising a total of 1947 observations and covering the period 1
October 2013 to 31 January 2019 was used for empirical investigation. The price data on
Bitcoin (BTC) denominated in USD was gathered from the website: https://bitcoincharts.
com (accessed on 3 March 2019). The data of the EPU index of USA (USA-EPU) and EPU
index of China (CHN-EPU) was obtained from the website: https://www.policyuncertainty.
com (accessed on 3 March 2019).

The statistical properties of BTC and EPU indices are reported in Table 1. It is shown
from Table 1 that BTC has the highest mean value of 2491.5, followed by CHN-EPU with a
value equal to 129.3. The standard deviation of BTC is the highest, whereas the standard
deviation of USA-EPU is the lowest. All variables are skewed to the right as demonstrated
by the positive value of skewness. Furthermore, the calculated values of kurtosis statistics
are high, implying a wider distribution than normal distribution. The values of the Jarque–
Bera test statistic suggest that the distribution of selected variables is not normal.

Table 1. Descriptive analysis.

BTC_USD CHN_EPU USA_EPU

Mean 2491.518 129.3412 85.34069

Median 639.1537 117.6304 74.99000

Maximum 19,395.84 651.0512 586.5500

Minimum 100.8108 0.000000 3.320000

Standard deviation 3436.336 68.20854 48.13624

Skewness 1.867128 2.023943 2.116218

Kurtosis 6.328758 10.83213 12.60083

Jarque–Bera 2030.177 6305.661 8931.008

p-value 0.0000 0.0000 0.0000

Observation 1947 1947 1947
Note: BTC_USD = Bitcoin dominated in US dollar; CHN_EPU = Chinese economic policy uncertainty index;
USA_EPU = USA economic policy uncertainty index.

2.2. Empirical Analysis Methods

In this study, the dependence structure between BTC and EPU is measured by applying
quantile cross-spectral (QS) analysis. This method can capture the extreme period of
interrelationship between variables in the frequency domain. This technique is independent
of the conditional variances of the distribution in recognizing the co-movement of BTC and
EPU at different quantiles. Thus, with the application of this technique, we can elucidate
the interrelationship between BTC and EPU at varying frequencies as well as identify the
dynamic correlation between these variables under changing market conditions.

In the next step, we have applied the wavelet coherence analysis to measure the
strength of co-movement between time-series of BTC and EPU across frequencies and
time scales. This technique has the ability to control for non-linearities, non-stationarity,
structural breaks, and any seasonality in the linkage between time-series (Roueff and
Sachs 2011). Cross-wavelet transformation is used to estimate wavelet coherence following
the approach of Reboredo et al. (2017). Finally, Breitung and Candelon’s (2006) Granger
causality test is applied for further clarification of results.

https://bitcoincharts.com
https://bitcoincharts.com
https://www.policy uncertainty.com
https://www.policy uncertainty.com
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2.2.1. QS Approach

Following Baruník and Kley (2019), (<t)t∈2 has two components and represents two
strictly stationary processes of <t =

(
<t,j1,<t,j2

)
. Thus, the quantile coherency between

these two processes (<j1,j2) can be written as:

<j1,j2(v; η1, η2) :=
f j1,j2(v; η1, η2)(

f j1,j1(v; η1, η1) f j2,j2(v; η2, η2)
)1/2 (1)

where −π < v < π and (η1, η2) ∈ [0, 1]. QS density and quantile spectral densities of
<t,j1 and <t,j2 are represented by f j1,j2 , f j1,j1 , and f j2,j2 , respectively. These densities can
be obtained from the Fourier transform of the matrix of quantile-cross covariance kernels,
Γ(η1, η2) := ( f (v; η1, η2))j1 j2 :

γ
j1,j2
m := Cov

(
1
{

Xt+m,j1 ≤ qj1(η1)

}
,
{

Xt+m,j2 ≤ qj2(η2)

})
, (2)

where j1, j2 ∈ {1, . . . . ., d}, m ∈ Z, η1, η2 ∈ [0, 1], and 1{A} is the indicator function of event
A. The information about the serial dependence is denoted by the m value. Further informa-
tion about cross-section dependence can be obtained by choosing j1 6= j2. In the frequency
domain, this yields the matrix of QS density kernels, f (v; η1, η2) := ( f (v; η1, η2))j1 j2 :

f (v; η1, η2) := (2π)−1
∞

∑
m=−∞

γ
j1,j2
m (η1, η2)e−imv. (3)

Then, quantile coherency can be estimated by the smoothed quantile cross-periodograms as

Ĝj1,j2
n,< (v; η1, η2) :=

2π

n

n−1

∑
s=1

wn

(
v− 2πs

n

)
I j1,j2
n,R

(
2πs

n
, η1, η2

)
, (4)

where I j1,j2
n,R shows the rank-based copula cross-periodograms matrix and Wn describes

the sequence of weight functions. Then, the estimators for the quantile coherency can be
computed by

<̂j1,j2
n,< (v; η1, η2) :=

Ĝj1,j2
n,< (v; η1, η2)(

Ĝj1,j1
n,< (v; η1, η1)Ĝ

j1,j1
n,< (v; η1, η1)

)1/2 . (5)

The coherency matrix for three quantiles (lower 0.05, medium 0.5, and upper 0.95) and
the combination of quantile levels of joint distribution (0.05|0.05, 0.5|0.5, and 0.95|0.95)
are estimated in this paper.

2.2.2. Wavelet Coherence

The cross-wavelet of two time-series y(t) and z(t) is written as:

Wy,z(v, s) = Wy(v, s)W∗z (v, s),

where v represents the position index and s denotes the scale.
According to Torrence and Webster (1999), the co-movement between y(t) and z(t)

over time and across frequencies can be estimated using wavelet coherence, which can be
written as:

R2(v, s) =

∣∣S(s−1Wyz(v, s)
)∣∣2

S
(

s−1
∣∣Wy(v, s)

∣∣2s−1|Wz(v, s)|2
) . (6)
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In the above equation, R2(v, s) is the squared wavelet coherence coefficient and S is the
smoothing operator in both time and frequency. The value of R2(v, s) lies between ‘0’ and ‘1’
in the time–frequency space. The value of R2(v, s) close to zero indicates weak correlation
between time-series and a value close to 1 indicates a strong correlation. Monte Carlo
simulations with statistical significance at 5% is used to examine statistical significance of
coherence (Torrence and Compo 1998).

2.2.3. Granger Causality Test

The dependence structure between Bitcoin and EPU is further explored by applying
Breitung and Candelon’s (2006) Granger causality test in the frequency domain. This test
is based on the fact that causality between two stationary time-series can vary along the
time-scale as well as over different frequencies.

Breitung and Candelon (2006) used the bivariate vector autoregressive (VAR) model
to show the relationship between yt and zt variables. The model takes the following form:

yt = α1yt−1 + . . . . . . . . .+αpyt−p + β1zt−1 + . . . . . . . . .+βpzt−p + µt, (7)

where αp and βp are coefficients and µt is the error term. The null hypothesis of Granger
causality from zt to yt at frequency (ω) is tested by Mz→y(ω) = 0, which is equivalent to
the null linear restriction:

H0 = R(ω)β = 0, (8)

where β =
∣∣β1, . . . . . ., βp

∣∣ ′ is the vector of the coefficients zt and

R(ω) =

[
cos(ω) cos(2ω) . . . . . . cos(pω)
sin(ω) sin(2ω) . . . . . . . sin(pω)

]
. (9)

F-statistics are used to test the null hypothesis in the frequency interval, ω ∈ (0, π).

3. Results of Empirical Analysis
3.1. Results of Quantile Coherency Estimation

The quantile coherency results estimated by applying the QS approach are displayed
in Figure 1. The plots show the real and unreal parts of the quantile coherency estimates
across various frequencies and different quantiles (lower 0.05|0.05, middle 0.5|0.5, upper
0.95|0.95) in their joint distribution. The lower label of the horizontal axis shows the daily
cycles, while the upper label illustrates the frequency cycles. The vertical axis displays
the interdependence between BTC and EPU. The visual inspection of plots shows that
return quantiles of BTC and USA-EPU, and BTC and CHN-EPU are strongly connected in
short-term frequency as compared to long-term frequency. Indeed, a strong dependence
between BTC and EPU indices is shown in the case of the short-term horizon, i.e., weekly
frequency. Moreover, the dependence between BTC and EPU decreases with the increase in
frequency from weekly to yearly. Overall, the estimates indicate that the irregularity in the
interdependence structure between BTC and EPU depends upon market conditions and
investment time horizons.
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Figure 1. Quantile coherence estimates. (a) BTC vs. USA-EPU. (b) BTC vs. CHN-EPU. Notes: (i) BTC 
= Bitcoin; CHN_EPU = Chinese economic policy uncertainty index; USA_EPU = USA economic pol-
icy uncertainty index. (ii) The plots report the real (left) and unreal (right) parts of the quantile co-
herency estimates for the different lower, middle, and upper quantiles (0.05|0.05, 0.5|0.5, and 
0.95|0.95) of the joint distribution across the different frequencies. The daily cycles over the intervals 
[0, 0.5] are shown on the horizontal axis, whereas the vertical axis measures the co-dependence of 
two time series. The frequency cycles in the upper label of the horizontal axis show how yearly (Y), 
monthly (M), and weekly (W) frequencies are connected across the joint-distribution quantiles. 

With respect to weekly frequency, it can be noted that the dependence of the BTC 
high return quantile on CHN-EPU is slightly highest with a value of 0.25 as compared to 
USA-EPU with a value of 0.20. Overall, the findings indicate that short-term fluctuation 
can explain well the positive return portfolio of BTC and EPU. The findings are consistent 

Figure 1. Quantile coherence estimates. (a) BTC vs. USA-EPU. (b) BTC vs. CHN-EPU. Notes: (i)
BTC = Bitcoin; CHN_EPU = Chinese economic policy uncertainty index; USA_EPU = USA economic
policy uncertainty index. (ii) The plots report the real (left) and unreal (right) parts of the quantile
coherency estimates for the different lower, middle, and upper quantiles (0.05|0.05, 0.5|0.5, and
0.95|0.95) of the joint distribution across the different frequencies. The daily cycles over the intervals
[0, 0.5] are shown on the horizontal axis, whereas the vertical axis measures the co-dependence of
two time series. The frequency cycles in the upper label of the horizontal axis show how yearly (Y),
monthly (M), and weekly (W) frequencies are connected across the joint-distribution quantiles.

With respect to weekly frequency, it can be noted that the dependence of the BTC
high return quantile on CHN-EPU is slightly highest with a value of 0.25 as compared to
USA-EPU with a value of 0.20. Overall, the findings indicate that short-term fluctuation
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can explain well the positive return portfolio of BTC and EPU. The findings are consistent
with the study of Cheng and Yen (2020) that CHN-EPU can better predict the BTC monthly
returns than USA-EPU.

By using the QS approach, the dependence of the joint distribution between 0.05|0.95
quantiles can also be measured. In particular, we can examine the positive return of BTC
(0.95 quantile) and a negative effect of EPU (0.05 quantile) by using the QS approach. The
plots of Figure 2 show that the extreme return quantiles are weak for BTC with respect to
USA-EPU and dependence displays the lowest level at a monthly frequency. However,
the extreme return quantiles are strong for BTC and CHN-EPU. This result explains that
greater uncertainty in the economic policies of China leads to asymmetric information in
the market and, in turn, leads to asymmetric investors’ expectations (Akerlof 1970). This
evidence supports the conclusion of Fang et al. (2019) and Paule-Vianez et al. (2020) that
Bitcoin is an investment asset like gold and not just a means of exchange.
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USA_EPU = USA economic policy uncertainty index. (ii) The plots measure the interdependence
between the 0.05|0.95 quantiles of joint distribution. The daily cycles over the intervals [0, 0.5] are
shown on the horizontal axis, whereas the vertical axis measures the co-dependence of two time
series. The frequency cycles in the upper label of the horizontal axis show how yearly (Y), monthly
(M), and weekly (W) frequencies are connected across the joint-distribution quantiles.

3.2. Results of Wavelet Coherence Analysis

Next, we have applied wavelet coherence and phase difference to investigate the
correlation and causality between BTC and EPU over time and frequency domains. Figure 3
shows the outcomes of wavelet coherence and phase difference for pairs of BTC and EPU
from 2 days to 512 days (approximately two years). The horizontal axis displays the
time-scale, whereas the vertical axis measures the frequencies. Higher frequencies relate
to a short-term investment horizon, whereas the lowest frequencies relate to a long-term
investment horizon. The direction of arrows signifies the phase differences between BTC
and EPU. Arrows pointing right and left indicate that both time-series are in phase and out
of phase, respectively. An upward direction of an arrow indicates that BTC returns were
leading during economic uncertainty, whereas a downward direction of an arrow indicates
that BTC returns were lagging during uncertainty.

The panel (a) of Figure 3 demonstrates the significant and strong interdependence
between BTC and USA-EPU for the 2013–2015 period during a short-term investment
horizon, i.e., a 280–512 day frequency band, with Bitcoin returns leading during the period
of economic uncertainty. Some evidence of relatively strong and significant coherence is
also observed during the 2013–2014 period and a 64–128 day frequency band with leading
Bitcoin returns. The evidence of weak and negative coherence is observed at a long-term
investment horizon and a 2–6 day frequency cycle throughout the sample period where
Bitcoin returns are lagging during uncertainty. These outcomes support the short-run
effectiveness of the hedge/diversification benefits of Bitcoin during uncertainty such as
the European Sovereign debt. Our findings corroborate the conclusion of Cheng and Yen
(2020), Mokni et al. (2020), and Paule-Vianez et al. (2020).

The panel (b) of Figure 3 explains that the strong coherence between BTC and CHN-
EPU is observed from a 16–512 day frequency cycle during the mid-2016–2019 period. At
the long-term investment horizon, the co-movement between BTC and CHN-EPU becomes
weak and insignificant. The evidence of strong coherence from mid-2016–2019 supports
the conclusion of Cheng and Yen (2020) that the trade ban announced by the Chinese
government in 2017 increased the predictive ability of the CHN-EPU index for BTC returns.

Overall, the findings of this section support the previous analysis that coherence
between BTC and EPU is strong during short-term and medium-term scales and future
returns of Bitcoin increase during uncertainty that justify the role of Bitcoin as a hedging
instrument during crisis periods.
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This test is a modified version of the Granger causality test and does not depend on sta-
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causality either bidirectionally or unidirectionally between USA-EPU and BTC. This 

Figure 3. Wavelet coherence. (a) BTC vs. USA-EPU. (b) BTC vs. CHN-EPU. Notes: (i) BTC = Bitcoin;
CHN_EPU = Chinese economic policy uncertainty index; USA_EPU = USA economic policy un-
certainty index. (ii) The plots show the estimated wavelet coherence for pairs of Bitcoin and the
EPU. Lower scales are associated with the long-term investment horizon, whereas higher scales are
associated with the short-term investment horizon. The horizontal axis shows the time; the leftmost
reflects the start of the data interval and the rightmost reflects the end of the data interval. Warm
colors such as red represent high coherence (or correlation) and cold colors such as blue represent low
coherence. A thick black line represents statistically significant areas of coherence. The direction of
the black arrows displays two things: the sign of correlation and the lead–lag phase relations between
the two series.
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3.3. Result of Additional Test

We have applied the Breitung and Candelon’s (2006) Granger causality test to further
investigate the interdependence structure between BTC and EPU in the frequency domain.
The advantage of this test is that it explains causality between two stationary time-series at
various time-scales and across varying frequencies by imposing linear restriction on the
autoregressive parameters in a VAR model.

However, prior to the application of Breitung and Candelon’s (2006) Granger causality
test, we have applied the Toda–Yamamoto (TY) causality test, as shown in Table 2. This
test is a modified version of the Granger causality test and does not depend on stationary
properties of a time-series. The outcomes show clear evidence of a unidirectional causal
relationship from CHN-EPU to BTC. In contrast, we cannot find evidence to prove causal-
ity either bidirectionally or unidirectionally between USA-EPU and BTC. This evidence
indicates that Bitcoin returns are independent of the changes of EPU and can be used as a
safe-haven or a diversifier in conditions of extreme EPU shocks. In other words, Bitcoin
can be a safe-haven, like gold, and allows investors to consider this cryptocurrency as a
tool to protect their savings in times of economic uncertainty. The role played by Bitcoin
in uncertainty is found to be relevant in the formation of investment portfolios, because
this cryptocurrency can contribute to the construction of better diversified portfolios. This
result supports the findings of Wang et al. (2019).

Table 2. TY Granger causality test.

GC from
USA-EPU to

BTC

GC from BTC
to USA-EPU

GC from
CHN-EPU to

BTC

GC from BTC
to CHN-EPU

Test 3.937 11.791 2.493 32.584

p-value 0.787 0.107 0.972 0.000
Note: GC = Granger causality; BTC = Bitcoin; CHN_EPU = Chinese economic policy uncertainty index; USA_EPU
= USA economic policy uncertainty index.

Unfortunately, Toda–Yamamoto causality cannot identify the evidence of causality
across different frequency bands, and that was why we applied Breitung and Candelon’s
(2006) Granger causality approach. Figure 4 illustrates that CHN-EPU Granger cause
BTC at short-term frequencies, whereas BTC does not show Granger causality with CHN-
EPU at any frequency level. Granger causality from USA-EPU to BTC is significant at an
intermediate level of frequency; however, we cannot find evidence of causality from BTC to
USA-EPU. Finally, the causality from CHN-EPU to BTC is more significant than USA-EPU
to BTC.
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Figure 4. Breitung and Candelon’s (2006) Granger causality test. Notes: (i) BTC = Bitcoin; CHN_EPU
= Chinese economic policy uncertainty index; USA_EPU = USA economic policy uncertainty in-
dex. (ii) Breitung and Candelon’s (2006) Granger causality test measures the causality in the fre-
quency domain.

4. Conclusions

This study investigates the dependence structure between BTC and EPU indices of
USA and China by applying the latest QS dependence approach and wavelet coherence
analysis. The findings estimated using daily data covering the period of 1 October 2013
to 31 January 2019 demonstrate that (i) the positive return quantile of BTC and EPU is
higher in the short term rather than in the long term, (ii) a strong dependence between
BTC and EPU indices is observed during the short-term horizon, i.e., weekly frequency,
(iii) the correlation between BTC and EPU is found to be significant and strong during
the 2013–2015 period and the short-term investment horizon, i.e., 280–512 day frequency
cycle, (iv) the frequency domain causality test shows the evidence of a significant causal
relationship running from CHN-EPU to BTC at short-term frequencies. Overall, the results
suggest that prevalence of EPU over the long run do not affect BTC returns and BTC
provides more diversification benefits during USA-EPU due to its weak dependence and
insignificant causality with BTC.

From a policy perspective, our findings are useful to researchers and Bitcoin market
participants to understand the diversification benefit of Bitcoin and in making better risk
management decisions in terms of portfolio optimization since uncertainty is an important
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factor driving investor behavior in financial markets. Furthermore, the announcement
of the ban on crypto-trading by the Chinese government to curtail financial losses and
prevent economic instability is not the right solution because the ban on crypto-trading
has no significant impact on the predictive power of the CHN-EPU for the volatility of
Bitcoin. The need of the hour is to develop a more comprehensive regulatory framework for
Bitcoin exchange that will protect investors and firms alike. The security risks and financial
losses call for risk management approaches and insurance of the individual users of
cryptocurrencies. Finally, the hedging quality and diversification benefits of Bitcoin demand
the acceleration and prioritization of the development of Blockchain technology (see also
Čajková and Čajka (2021) on the sustainability of China’s socio-economic development).

Although the findings of this study are relevant to the literature on the role played
by Bitcoin in the face of uncertainty, it is not without limitations. In this study, for the
measurement of economic policy uncertainty, we used the daily CHN-EPU and US-EPU
indices developed by Baker et al. (2016), and the prices of Bitcoin are dominated by USD.
In the future, our research can be extended to examine whether our results are sensitive to
the use of other uncertainty measures and Bitcoin data dominated in other currencies.
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