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Abstract: The work deals with the model-based characterization of the failure transients of a fail-safe
rotary EMA developed by Umbragroup (Italy) for the flap movables of the RACER helicopter-
plane by Airbus Helicopters (France). Since the reference application requires quasi-static position-
tracking with high disturbance-rejection capability, the attention is focused on control hardover
faults which determine an actuator runaway from the commanded setpoint. To perform the study, a
high-fidelity nonlinear model of the EMA is developed from physical first principles and the main
features of health-monitoring and closed-loop control functions (integrating the conventional nested
loops architecture with a deformation feedback loop enhancing the actuator stiffness) are presented.
The EMA model is then validated with experiments by identifying its parameters by ad-hoc tests.
Simulation results are finally proposed to characterize the failure transients in worst case scenarios
by highlighting the importance of using a specifically designed back-electromotive damper circuitry
into the EMA power electronics to limit the position deviation after the fault detection.

Keywords: health monitoring; electro-mechanical actuators; modelling; simulation; testing; flight
control; reliability; fault-tolerant systems; failure transient analysis

1. Introduction

The aircraft electrification is surely one of the most important and strategic initia-
tives currently supporting the innovation of the aviation industry [1,2]. In particular, the
more-electric aircraft concept entails the gradual replacement of onboard systems based on
mechanical, hydraulic, or pneumatic power sources with electrically powered ones, aiming
to reduce weight and costs, to optimize energy and to increase the eco-compatibility of
future aircrafts [3–6]. Electro-mechanical actuation clearly plays a key role for pursuing
these challenging objectives. The applicability of Electro-Mechanical Actuators (EMAs) in
aerospace is proven in terms of load and speed performances [7–12], but several reliability
concerns still remain open [13–17]. The use of EMAs for safety-critical functions can be
thus obtained only by fault-tolerant architectures, which apply hardware redundancies on
electrical, electronic, or mechanical parts.

In general terms, depending on how the redundancy is applied, a fault-tolerant
function can be maintained after a fault, or it can be lost while avoiding the extension of the
fault effects to other functions, so that fail-operative or fail-safe functions are respectively
obtained. With reference to flight control functions, this concept can be applied to both
movables and actuators. To obtain a fail-operative flight control, different architectures
can be used by applying load-level redundancy (splitting the movable into sub-movables
and using a fail-safe EMA on each part), actuator-level redundancy (using multiple fail-
safe EMAs on a single movable), or subsystem-level redundancy (using a single fail-
operative EMA on a single movable). Any fault-tolerant system necessitates effective
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health-monitoring algorithms aiming to anticipate (i.e., avoid) or detect/isolate the fault,
so that prognostic and diagnostic approaches are respectively defined. The prognostic
solution, though potentially overwhelming [18–21], is nowadays far from being applicable
to airworthy systems, and diagnostic approaches are typically preferred [22–24]. The
diagnostic monitoring requires that the Fault Detection and Isolation (FDI) is implemented
and executed in real time by onboard control electronics [25–28], so that, in case of fault,
the redundant components or the isolation devices can be engaged [29,30].

The design and the validation of health-monitoring systems play a key role in this
context. In a flight control EMA, the FDI output, including the consequent accommoda-
tion/compensation of the fault, must be provided with very small latency, and the failure
transients must be adequately limited. The development of high-fidelity experimentally
validated models of EMAs is of paramount importance for the validation of monitoring
functions. Since nonlinearities, disturbances, environment, and loads can significantly
affect the actuator response, an in-depth knowledge of both normal and faulty behaviours
is required. The crucial problem entails the knowledge of faulty dynamics, especially in
complex systems with a huge number of fault modes [31–33]. In the so-called data-driven
techniques, this knowledge is achieved via experiments, by artificially injecting the major
faults in the EMA and measuring its response [20,34–36]. This method provides accurate
predictions, but rigging costs are often prohibitive. In addition, the FDI validation strongly
depends on test conditions. As a relevant example, in [20], the mechanical degradation of
the ball-screw elements of an aircraft EMA is investigated via a data-driven approach: the
lifecycle of a rudder control actuator, including periodical maintenance checks, is simu-
lated by testing a prototype EMA in laboratory environment with alternate endurance and
monitoring trials. To accelerate the mechanical degradation, the prototype is intentionally
modified with respect to the nominal design, by using a reduced number of recirculating
paths in the ball-screw, by removing the anti-rotation device on the output shaft, by ap-
plying relevant radial loads, and by progressively removing the lubricant. Discrete-time
and continuous-time fault symptoms are then computed by leveraging the EMA outputs
via multivariate statistical methods (such as Hotelling’s T2 and Q techniques). The health
monitoring demonstrates to be very effective, but the entire experimental activity required
a specifically dedicated rig and took seven months. In addition, the experimental campaign
did not take into account temperature effects.

In model-based techniques, the knowledge of the faulty dynamics is to a great extent
obtained from mathematical models, capable of simulating the fault by physical first
principles, and are experimentally validated with reference to normal and/or regime faulty
conditions [26–28,37,38]. Oppositely to the data-driven case, this method generally provides
less accurate predictions, but it is cost-effective, allows to verify the FDI functionalities
in extreme conditions, and (above all) permits to generalize the validity of algorithms to
similar equipment (i.e., governed by similar equations). As a relevant example, in [28],
the major faults of a primary flight control movable driven by active-active EMAs are
addressed via model-based approach: a set of monitoring algorithms are designed using
a detailed nonlinear model of the system capable of fault simulation. Robust detection
thresholds are determined taking into account parametric and input uncertainties, and the
health-monitoring is verified through simulation, by injecting faults in an experimentally
validated model of the system.

The basic objective of this work is to validate the monitoring algorithms of the fail-
safe EMA developed by UmbraGroup (Italy) for the flap movables of the RACER (Rapid
And Cost-Efficient Rotorcraft) helicopter-plane by Airbus Helicopters with reference to
the model-based analysis of the failure transients related to the hardover of the control
electronics (major EMA fault mode). The paper is articulated as follows: the first part is
dedicated to the system description and to the EMA modelling; successively, the main
features of the closed-loop control and health-monitoring functions are presented. Finally,
an excerpt of simulation results is proposed by characterizing the EMA failure transients
in selected worst-case scenarios. The results are finally discussed by highlighting the
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effectiveness and the most relevant criticalities of the proposed approach with suggestions
of possible enhancements.

2. Materials and Methods
2.1. System Description

The reference EMA is used to control the six flap movables of the RACER helicopter-
plane, an innovative, high-speed, more-electric air vehicle developed by Airbus Helicopters,
Figure 1. The RACER helicopter-plane is designed to reach maximum cruise speed 50%
faster than a conventional helicopter (the Velocity Never Exceed, VNE, is 115 m/s) and to
consume 15% less fuel per distance at reference cruise speed (90 m/s) [39]. The aerodynamic
concept essentially merges a conventional helicopter with a low aspect-ratio box-wing
airplane; at cruise speed, the two wing propellers generate thrust and the box-wing con-
tributes to lift, generating low induced drag and minimized interactions with the main
rotor flow [40,41], so that the rotor can be slowed by up to 15%, preventing the blades from
working with transonic local flow (which reduces performances). The electrical system
is based on high-voltage direct current power generation, assuring a consistent weight
reduction [42].
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The RACER flaps placed on both box-wing (four) and vertical stabilizers (two) are
used to adapt the vehicle attitude, to enhance stability, to optimize the trim configuration,
and to abate noise [43–45]. Depending on the vehicle weight, the airspeed, the altitude,
and the rotors speed, the wing flaps are deflected to optimize the mean lift coefficient of
the main rotor. On the other hand, the flaps on the vertical fins are used to eliminate the
residual yawing torque generated by the propellers, by assuring that they only contribute
to propulsion during cruise [43]. Given these basic flight control functions, the design of the
closed-loop position control of the flap movables is mainly driven by disturbance rejection
requirements (i.e., the capability to minimize the position deviation from the commanded
setpoint under external disturbances).

It is worth noting that in the RACER helicopter-plane, the flaps are not used for ma-
noeuvrability (trajectory control is managed through the cyclic stick, as for conventional
helicopters), so that they are classified as secondary flight controls. The flap EMAs are
thus designed to be fail-safe systems in such a way that, after a major fault, the actuator
is still capable of maintaining the flap movable at a fixed deflection (last or neutral po-
sition, depending on the fault mode), providing an adequate torsional stiffness to avoid
flutter concerns.

Each flap EMA is composed of two parts, Figure 2: an electromechanical rotary
actuator (FLap Actuator, FLA) and a control electronic box (Actuator Control Electronics,
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ACE). The equipment locations on the RACER helicopter-plane are shown in Figure 3 (note
that the reported layout also depicts flaps on the horizontal tail since they have been initially
included in the flight control system [41,43], but then eliminated from the final design).
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The ACE includes three electronic boards, Figures 4 and 5:

• COMmand (COM) board, implementing the EMA closed-loop control functions and
the control of one of the two motor brakes (BCCOM in Figure 4);

• MONitor (MON) board, implementing the EMA health-monitoring algorithms and
the control of one of the two motor brakes (BCMON in Figure 4);

• PoWeR (PWR) board, including the power supply regulation for all electrical compo-
nents, the MOSFET bridge, the six currents sensors (three ones for the COM board and
three ones for the MON board, CFx COM and CFx MON in Figure 4) and a BEMF (Back
Electro-Motive Force) damper circuitry, Figure 5.

The activation of the BEMF damper circuitry in the PWR board is obtained by a
logic signal named system validity (SV in Figures 4 and 5), which derives from an “AND”
operator applied to the local validity signals provided by the two boards (LVCOM and
LVMON in Figures 4 and 5). When SV is true, the power bridge thyristors are opened,
and the damper thyristor is closed (Figure 5), so that the motor phases are shorted to the
ground, and an electromagnetic damping torque is developed and transmitted to the EMA
output shaft. This strategy permits significantly limiting the failure transients related to
major faults (e.g., the control electronics hardover) since the unavoidable delays needed
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to achieve the full engagement of the motor brakes can determine an excessive deviation
from the commanded setpoint with potentially dangerous concerns due to the impact on
mechanical stops.
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Both COM and MON boards are controlled by Texas Instruments TMS570LC4357-EP
ARM-based microcontrollers [46] using a 10 kHz sample rate for the digital signal processing.

The FLA basically includes, Figure 6:

• a three-phase Permanent Magnet Synchronous Machine (PMSM) with surface-mounted
magnets and sinusoidal back-electromotive forces, driven via Field-Oriented Control
(FOC) technique;

• two motor rotation sensors: a resolver interfaced with the COM board and a magnetic
encoder interfaced with the MON board (RFCOM and RFMON in Figure 4);

• a dual magnetic encoder for the output shaft rotation sensing, interfaced to both COM
and MON boards (PFCOM and PFMON in Figure 4);

• two temperature sensors (TFCOM and TFMON in Figure 4);
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• two power-off electromagnetic brakes used to block in position the EMA after a major
fault detection;

• an innovative Umbragroup-patented differential ball-screw mechanism implementing
the mechanical power conversion from motor to output shaft, which, if compared
with conventional gearboxes, assures a high gear ratio (more than 500) with minimum
backlash (less than 0.05 deg) and superior efficiency (about 95%).
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Table 1 reports the main characteristics of the sensors used for the closed-loop control
and health-monitoring functions of the actuator [47–51].

Table 1. EMA control sensors data.

Component Model Range Accuracy

Current sensor Allegro
ACS723LLCTR-10AB-T ±10 A 0.1 A

Resolver Tamagawa
TS2610N171E64 ±π rad 4 × 10−4 rad

Resolver analog-to-digital
converter

Analog Devices
AD2S1210 ±π rad 2 × 10−4 rad

Magnetic encoder (motor) Analog Devices
ADA4571 ±π rad 4 × 10−4 rad

Duplex magnetic encoder
(output) RLS AksIM-2 ±0.157 rad 1.7 × 10−3 rad

2.2. Nonlinear Dynamic Modelling

The EMA health-monitoring algorithms have been designed with the essential support
of the dynamic simulation by artificially injecting major system faults in a detailed nonlin-
ear model of the actuator, developed via physical first principles and validated through
experiments. This approach is of paramount importance, especially for the failure transient
characterisation which is often unfeasible (or problematic) via testing.

The model of the RACER flaps EMA is essentially composed of:

• an electromechanical section, simulating

# FOC current dynamics;
# multi-harmonic modelling of PMSM torque disturbances (due to cogging ef-

fects [52–55] and/or BEMF waveform distortions);
# 2-degree-of-freedom mechanical transmission with equations of motions re-

lated to motor and output rotations;
# sliding friction on motors and output shaft, described via combined “Coulomb–

tanh” model [56,57];
# mechanical freeplay [21];
# internal stiffness dependence on output shaft position;
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• an electronic section simulating the control and health-monitoring algorithms imple-
mented by the COM and MON boards, including

# Clarke-Park transforms for the FOC technique implementation;
# sensor errors and nonlinearities (bias, noise, resolution);
# command nonlinearities (saturation, rate limiting);
# digital signal processing at 10 kHz sampling rate;
# control hardover fault simulation, implying that the voltage demands on both

quadrature and direct axes suddenly assume and maintain random values, so
that the EMA motion is out of control (as a worst case scenario, the quadrature
voltage is set to saturation value, while the direct voltage is set to zero).

2.2.1. Electro-Mechanical Section of the Model

The electro-mechanical section of the model, schematically represented in Figure 6, is
governed by Equations (1)–(10),

Vabc = RIabc + L
.
Iabc + eabc, (1)

eabc = λmnd
.
θm
[
sin(ndθm) sin

(
ndθm − 2

3 π
)

sin
(
ndθm + 2

3 π
)]T , (2)

Jm
..
θm = Tm + Tb − Ts f mtanh

( .
θm

ωs f m

)
− dv f m

.
θm −

ds
.
θs + ksθs

τg
, (3)

Jo
..
θo = Taer − Ts f otanh

( .
θo

ωs f o

)
− dv f o

.
θo + ds

.
θs + ksθs, (4)

Tm = λmnd

[
Ia sin(ndθm) + Ib sin

(
ndθm −

2
3

π

)
+ Ic sin

(
ndθm +

2
3

π

)]
+

M

∑
j=1

Thdj sin
(

nhdjθm

)
, (5)

ks = ksmin + γk(θo − θomax)
2, (6)

Tb =

{
0 t < tFC

−kb[θm − θm(tFC)]− db

[ .
θm −

.
θm(tFC)

]
t ≥ tFC

, (7)

.
θs =

{
− ks

ds
θs

∣∣θg − θo
∣∣ < εp

.
θg −

.
θo

∣∣θg − θo
∣∣ ≥ εp

, (8)

θs =

{ ∫ .
θsdt

∣∣θg − θo
∣∣ < εp

θg − θo − εpsgn
(
θg − θo

) ∣∣θg − θo
∣∣ ≥ εp

, (9)

.
θg =

.
θm

τg
, (10)

where Vabc = [Va, Vb, Vc]T is the applied voltages vector, Iabc = [Ia, Ib, Ic]T is the phase
currents vector, eabc is the back-electromotive forces vector (sinusoidal BEMF waveforms
are assumed), λm is the magnet flux linkage, R and L are the resistance and the inductance
of motor phases, respectively, nd is the number of rotor pole pairs, θm is the motor rotation,
θg is the theoretical rotation imposed by a rigid ball-screw drivetrain, θs is the torsional
deformation referred to the first structural mode of the EMA, θo is the output rotation, Jm
and Jo are the motor and output inertias, respectively, τg is the gear ratio of the differential
ball-screw mechanism, εp is the internal freeplay, Tm is the motor torque, Thd j and nhd j are
the amplitude and mechanical period indices, respectively, related to the j-th (j = 1, . . . ,
M where M is an integer number) harmonic torque disturbance contribution, Taer is the
aerodynamic hinge moment, Tb is the brakes torque, kb and db are the torsional stiffness
and damping of the brakes, respectively, tFC is the time at which the fault compensation
occurs, ks and ds are the torsional stiffness and damping, respectively, referred to the first
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structural mode of the EMA, ksmin is the minimum internal stiffness, γk is the parameter
defining the stiffness variation with respect to output position, dvfm and dvfo are the viscous
friction coefficients related to the motor and output shafts, respectively, while Tsfm, ωsfm,
Tsfo, and ωsfo are the parameters of the “Coulomb–tanh” models simulating the sliding
friction on motor and output shaft, respectively.

Concerning the aerodynamic hinge moment applied on the EMA (Taer, in Equation (4)),
the requirements indicate that, apart from static loadings, two contributions of dynamic
loads must be taken into account for the performance analysis: a deterministic one (related
to the helicopter-plane motion, main rotor speed and angle, wing propeller speeds), in
which harmonic loads of specific amplitudes and frequencies are superimposed, and a
non-deterministic one, including gust loads and harmonic loads of constant amplitudes
randomly applied along the the position-tracking frequency range. In this work, the study
is focused on the vertical stabilizer flaps, since it represents the worst-case scenario for the
EMAs employed in the RACER helicopter-plane, Table 2.

Table 2. Loads on vertical stabilizer FLA at VNE (derived from CFD analyses by Airbus Helicopters,
worst-case scenario, all positions).

Static [Nm] Harmonic
Amplitude [Nm]

Harmonic Frequency
[Hz]

Dynamic Load
Definition

±100

2 15

Deterministic
3 20

15 23
2 30
2 46

1.5 From 1 to 100 Non-deterministic

It is worth noting that the proposed model represents a balance between prediction
accuracy, objectives of the study, and complexity of the model itself. More accurate simula-
tions could include sophisticated friction models [56,57] and iron losses in the motor [58,59],
but the inclusion of these features would entail minor effects for the examined application.
In particular, the motor iron losses have been neglected because they depend on electri-
cal frequency, which is relatively small in the position-tracking frequency range (<50 Hz,
Table 2). On the other hand, more accurate friction models (including load and temperature
dependence) could enhance the simulation, but a simplified approach has been preferred
both for the lack of detailed information and to limit the number of model parameters.

The EMA model has been entirely developed in the Matlab–Simulink–Stateflow envi-
ronment, and the numerical solution is obtained by a Runge–Kutta method with 10−6 s
integration step. The choice of a fixed-step solver is not strictly related to the objectives of
this work in which the model (once experimentally validated) is used for “off-line” simula-
tions characterising the EMA failure transients, but it has been selected for the next steps
of the project, when the algorithms for the closed-loop control and the health-monitoring
will be implemented in the ACE boards via the automatic Matlab compiler and executed in
“real-time”.

The parameters of the electro-mechanical section of the model are given in Table 3.

Table 3. Parameters of the electro-mechanical section of the model.

Parameter Meaning Value Unit Identification Method
(See Section 2.3)

L Motor phase inductance 15 × 10−3 H Test 1, Test 2
R Motor phase resistance 1.53 ohm Test 1, Test 2

λm Magnet flux linkage 0.014 N·m/A Test 3
nd Motor pole pairs 10 – Design
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Table 3. Cont.

Parameter Meaning Value Unit Identification Method
(See Section 2.3)

Jm Motor inertia 4 × 10−5 kg·m2 Design, Test 5
Tsfm Coulomb friction on motor shaft 0.015 N·m Test 5
ωsfm Coulomb velocity on motor shaft 0.1 rad/s Test 5
dvfm Viscous friction coefficient on motor shaft 10−4 N·m s/rad Test 5
τg Differential ball-screw gear ratio 500 – Design

θomax Mechanical endstroke, from centred 0.14 rad Design
ksmin Drivetrain torsional stiffness at θo = θo max 1.15 × 104 N·m/rad FEM analysis

γk Parameter of the stiffness curve 1.3 × 105 N·m/rad3 FEM analysis
ds Drivetrain damping (1st vibration mode) 2.6 N·m s/rad FEM analysis
Jo Output inertia, including flap movable 0.06 kg·m2 Design, Test 5

Tsfo Coulomb friction on output shaft 0.5 N·m Test 5
ωsfo Coulomb velocity on output shaft 10−3 rad/s Test 5
dvfm Viscous friction coefficient on output shaft 0.1 N·m s/rad Test 5
kb Brakes stiffness 150 N·m/rad Test 4
db Brakes damping 0.02 N·m s/rad Test 4
εp End-life internal freeplay 1.3 × 10−3 rad Design
M Number of cogging torque harmonics 3 – Test 5

Thd1 Torque disturbance amplitude, 1st harmonic 0.001 N·m Test 5

nhd1
Torque disturbance period index, 1st

harmonic 10 – Test 5

Thd2 Torque disturbance amplitude, 2nd harmonic 0.007 N·m Test 5

nhd2
Torque disturbance period index, 2nd

harmonic 20 – Test 5

Thd3 Torque disturbance amplitude, 3rd harmonic 0.002 N·m Test 5

nhd3
Torque disturbance period index, 3rd

harmonic 24 – Test 5

Vmax DC voltage supply 28 V Design
Iqmax Maximum quadrature current 4 A Design

ωm max Maximum motor speed 100 rad/s Design

2.2.2. Electronic Section of the Model

The closed-loop control of the RACER flap EMAs is schematically represented in
Figure 7. The position-tracking architecture integrates the conventional three nested loops
on motor currents, motor speed, and output position [8,9] with a deformation feedback
loop (“Stiffness Enhancement System, SES” block in Figure 7) and a model-based correction
of voltage commands, aiming to decouple the currents dynamics from the motor motion
(“electro-mechanical decoupler” block in Figure 7).
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The FOC technique implemented in the COM board applies the direct and inverse
Clark–Park transforms [60] via Equations (11)–(13),

xαβγ = TCxabc =

√
2
3

 1 −1/2 −1/2
0

√
3/2 −

√
3/2√

2/2
√

2/2
√

2/2

xabc, (11)

xdqz = TPxαβγ =

 cos(ndθm) sin(ndθm) 0
− sin(ndθm) cos(ndθm) 0

0 0 1

xαβγ, (12)

xdqz = TPTCxabc ⇔ xabc = (TPTC)
Txdqz, (13)

where xαβγ = [xα, xβ, xγ]T, xabc = [xa, xb, xc]T, and xdqz = [xd, xq, xz]T are generic three-phase
vectors in the Clarke, Park, and stator reference frames, respectively, while TC and TP are
the Clarke and Park transforms.

The digital regulators on position, speed, and currents implement proportional/integral
actions on tracking error signals, plus anti-windup functions with back-calculation tech-
nique [61] to compensate for commands saturation. Each j-th (with j = θ,ω, and I indicating
the position, speed, and currents loops, respectively) digital regulator is governed by
Equations (14) and (15):

y(j)
PI = k(j)

P ε(j) +
k(j)

I Ts

z− 1

[
ε(j) + k(j)

AW

(
y(j) − y(j)

PI

)]
(14)

y(j) =

y(j)
PI

∣∣∣y(j)
PI

∣∣∣ < y(j)
sat

y(j)
satsgn

(
y(j)

PI

) ∣∣∣y(j)
PI

∣∣∣ ≥ y(j)
sat

(15)

where z is the discrete-time operator, ε(j) is the regulator input (tracking error), y(j) is the
regulator output, y(j)

PI is the saturator block input (proportional–integral with respect to

error, if no saturation is present), while k(j)
P and k(j)

I are the proportional and integral gains,

k(j)
AW is the back-calculation anti-windup gain, y(j)

sat is the saturation limit, and Ts is the
sampling time.

Concerning the SES loop, its basic objective is to enhance the loads disturbance rejec-
tion in the frequency range where the first resonant pulsation of the ball-screw mechanism
is located (according to FEM analyses performed by Umbragroup, from 70 to 90 Hz, depend-
ing on output shaft position, Equation (6)). The control task is achieved by superimposing
to the current demand generated by the speed regulator (Iqc, in Figure 7) an additional
one (IqSES, in Figure 7) that depends on the torsional deformation (δf) reconstructed by the
motion feedbacks (θmf and θof in Figure 7), Equations (16)–(18).

Iqd = Iqc + IqSES, (16)

..
IqSES = −aSES

.
IqSES − bSES IqSES − kSES

.
δ f , (17)

δ f =
θm f

τg
− θo f , (18)

The structure of the current demand regulator (a second-order system responding
to deformation rate input, Equations (17) and (18)) is defined by pursuing the following
requirements:

• the loop shall not affect the EMA low-frequency behaviour (maxima loads, position
tracking, etc.);

• the loop shall generate demands only in the frequency range where the first resonant
pulsation of the ball-screw mechanism is located, and the compensation shall imply
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an increase of EMA stiffness, enhancing the disturbance rejection capabilities related
to external loads.

To fulfill these objectives, the positive-defined parameters, kSES, aSES, and bSES in
Equation (17) are set in such a way that

• by tuning aSES and bSES, the phase response of the SES current demand (IqSES) with
respect to torsional deformation is about −180◦ from 70 to 90 Hz;

• by tuning kSES, the SES current demand (IqSES) implies an effective compensation
without affecting the control stability.

Figure 8 shows the Bode diagram of the transfer function defined in Equation (19),
which relates in the Laplace domain (i.e., s represents the complex variable) the SES current
demand with the reconstructed deformation feedback,

IqSES(s)
δ f (s)

= − kSESs
s2 + aSESs + bSES

, (19)
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It can be noted that the design implies that from 70 to 90 Hz the phase response ranges
from −175◦ to −190◦, and the regulator gain achieves its maximum, while it tends to be
negligible at both low and high frequencies.

Regarding the currents-motion decoupling, it is obtained via Equations (20) and (21):

Vd = Vdc − Lqnd Iq f
.
θm f , (20)

Vq = Vqc +

(√
3
2

λm + Ld Id f

)
nd

.
θm f , (21)

where Vdc and Vqc are the direct and quadrature voltage demands generated by the current
regulators, and Ld and Lq are the inductances on the direct and quadrature axes (in the
reference PMSM, having surface-mounted magnets, Ld = Lq = L). The currents dynamics
imposed by the FOC technique implies that in the PMSM rotor frame (Equation (13)),

L
.
Id = Vd − RId + Lnd Iq

.
θm, (22)



Aerospace 2022, 9, 527 12 of 23

L
.
Iq = Vq − RIq −

(√
3
2

λm + LId

)
nd

.
θm, (23)

Thus, by substituting Equations (20) and (21) into Equations (22) and (23), we have

L
.
Id = Vdc − RId + Lnd

(
Iq

.
θm − Iq f

.
θm f

)
, (24)

L
.
Iq = Vqc − RIq −

√
3
2

λmnd

( .
θm −

.
θm f

)
− Lnd

(
Id

.
θm − Id f

.
θm f

)
, (25)

Now, if the sensor dynamics imply minor phase delays and/or attenuations (θmf ≈
θm, Iqf ≈ Iq, Idf ≈ Id), the residuals terms at second hands in Equations (24) and (25) can
be neglected, so that the currents dynamics on both direct and quadrature axes behave
independently and are decoupled from the rotor motion.

To protect the system from major faults and to permit its reversion into a fail-safe
configuration (EMA with engaged brakes, maintaining the flap at fixed deflection), the
following set of health-monitoring algorithms are executed by the MON board:

• over-temperature monitor, checking that the motor stator temperature does not exceed
a pre-defined threshold;

• over-current monitor, checking that the quadrature current does not exceed a pre-
defined threshold;

• Over-Speed Monitor (OSM), checking that the motor speed does not exceed a pre-
defined threshold;

• currents consistency monitor, checking that the sum of the phase currents is lower
than a pre-defined threshold;

• mechanical consistency monitor, checking that the EMA torsional deformation is lower
than a pre-defined threshold;

• position deviation monitor, checking that the deviation of the output position feedback
from the commanded setpoint is lower than a pre-defined threshold.

For the examined application, the most feared EMA failure is the control hardover,
i.e., an electronic fault for which the COM board applies and maintains random voltage
demands on both quadrature and direct axes, so that the actuator motion is out of control.
The coverage of this failure is here provided by the OSM, whose working flow chart
is reported in Figure 9. The OSM fault flag (Fmon) is generated by elaborating as fault
symptom the amplitude of the speed feedback signal (ωmon) at the k-th monitoring sample
(processed at 10 kHz rate): if the fault symptom is greater than a pre-defined threshold
(ωth), a fault counter (cmon) is increased by 2; if the threshold is not exceeded, the fault
counter is decreased by 1 if it is positive at the previous step, otherwise it is held at 0. The
fault is thus detected when the fault counter exceeds a pre-defined value (cmon max, which
basically defines the OSM FDI latency).

The parameters of the electronic section of the model are given in Table 4.

Table 4. Parameters of the electronic section of the model.

Parameter Meaning Value Unit

Ts Digital control sample time (all regulators) 10−4 s

k(θ)P
Proportional gain of the position regulator 1.58 × 104 1/s

k(θ)I
Integral gain of the position regulator 1.1 × 105 1/s2

k(θ)AW
Anti-windup gain of the position regulator 0.69 s

y(θ)sat Saturation limit of the position regulator 100 rad/s

k(ω)
P

Proportional gain of the speed regulator 0.07 A s/rad

k(ω)
I

Integral gain of the speed regulator 2 A/rad

k(ω)
AW

Anti-windup gain of the speed regulator 0.28 rad/(A s)
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Table 4. Cont.

Parameter Meaning Value Unit

y(ω)
sat Saturation limit of the speed regulator 4 A

k(I)
P

Proportional gain of the current regulators 2.78 V/A

k(I)
I

Integral gain of the current regulators 4.1 × 103 V/(A s)

k(I)
AW

Anti-windup gain of the current regulators 150 A/V

y(I)
sat Saturation limit of the current regulators 28 V

aSES SES regulator parameter 1 1.02 × 103 rad/s
bSES SES regulator parameter 2 2.37 × 105 rad2/s2

kSES SES regulator gain 103 A/(m s)
ωth OSM fault symptom threshold 0.0175 rad/s

cmonmax OSM fault counter threshold 250 –
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2.2.3. Fault Simulation

As previously mentioned, the basic objective of the work is to validate the EMA
health-monitoring algorithms with reference to the control hardover fault (worst-case
failure), by particularly focusing on the failure transient characterisation. The model has
been developed as a finite-state machine by using Matlab-Simulink-Stateflow charts and
logics so that the simulations of both hardover fault and the subsequent activation of the
back-electromotive circuitry are integrated in the EMA simulator.

The hardover fault is simulated by Equation (26), so that when the fault is injected
(t = tFI), the direct and quadrature voltages are switched from the values demanded by the
EMA control laws (Equations (20) and (21)) to zero and saturation values, respectively:

Vd =

{
Vdc − Lnd Iq f

.
θm f t < tFI

0 t ≥ tFI
; Vq =

Vqc +

(√
3
2 λm + LId f

)
nd

.
θm f t < tFI

Vmax t ≥ tFI

, (26)

As described in Section 2.1, the PWR board of the EMA includes a BEMF damper
circuitry, which, in case of a detected fault, imposes that the motor phases are shorted
to the ground (so that an electromagnetic damping torque is developed and transmitted
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to the EMA output shaft). In the model, the BEMF damper activation is simulated via
Equation (27), where tFD is the time at which the fault is detected by the OSM.

Vabc =

{
(TPTC)

TVdqz t < tFD

0 t ≥ tFD
, (27)

2.3. Experimental Test Campaign for the Model Validation

To substantiate the failure transient analysis presented and discussed in Section 3, the
EMA model has been experimentally validated through a specific test campaign carried
out at the Umbragroup facilities. In particular, the following tests have been performed,
aiming to identify the model parameters reported in Table 3:

• Unloaded, open-loop tests

# Test 1 (blocked motor with engaged brakes): chirp wave inputs are given as
direct voltage demand, while the quadrature voltage is set to zero, aiming to
identify motor phase resistance and inductance (R and L). The test is repeated
at a different position of the PMSM rotor to verify that the phase inductance
does not significantly depend on motor angle (assumption of the model);

# Test 2 (blocked motor with engaged brakes): step inputs of different amplitudes
are given to the quadrature voltage demand, while the direct voltage is set to
zero, aiming to confirm the values of motor phase resistance and inductance.
The test is repeated at different position of the PMSM rotor;

# Test 3 (free-wheeling motor with disengaged brakes and open phases): the
PMSM rotor is dragged by an external motor at different speed amplitudes
and the phase-to-phase BEMF is measured, aiming to identify the motor flux
linkage (λm) and to eventually highlight higher harmonic components in the
BEMF waveform;

• Unloaded, closed-loop tests

# Test 4 (blocked motor with engaged brakes): current loop tracking is tested by
providing square-wave inputs of different amplitudes as quadrature current
demand, while the direct current is set to zero, aiming to identify the damping
and stiffness of the brakes (db and kb);

# Test 5 (disengaged brakes): speed loop tracking is tested, by providing square-
wave inputs of different amplitudes as speed demand, aiming to identify the
torque disturbance parameters (M, Thd1, nhd1, Thd2, nhd2, Thd3 and nhd3), the
viscous damping coefficients (dvfm and dvfo), the parameters of the sliding
friction models (Tsfm, Tsfo ωsfm and ωsfo), and the actuator inertias (Jm and Jo).

At the current stage of the campaign, loaded tests and position-loop tests have not
been carried out, but they have been planned for the future steps of the research, mainly to
confirm the predictions of the resonant frequency of the ball-screw drivetrain, currently
estimated through FEM analyses.

3. Results
3.1. Experimental Validation of the Model

An excerpt of the results obtained during the model validation campaign is reported
from Figures 10–13.

Figures 10 and 11 are devoted to the identification of the electrical parameters of the
motor phases (i.e., resistance and inductance), and it can be noted that the model succeeds
in predicting the hardware response in both steady-state and dynamic operations. The
repetition of tests at different positions of the PMSM rotor provided essentially identical
results, thus confirming that the position-dependence of electrical parameters is negligible
(basic assumption of the model).
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Figure 10. Response to Test 1 (open-loop, engaged brakes, chirp wave input applied on direct voltage
demand, ±2 V ranging from 10 Hz, at t = 0 s, to 10 kHz, at t = 10 s).
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Figure 12 is instead relevant for the identification of the magnet flux linkage as well
as for the characterisation of the BEMF waveform with respect to the motor angle. Again,
the model succeeds in predicting the hardware response in terms of both magnet flux
linkage and BEMF waveform, which is essentially sinusoidal for the reference PMSM (basic
assumption of the model).

Figure 13 finally reports a closed-loop speed-tracking response, which is essentially
relevant for the identification of system inertias (lower left plot in Figure 13), torque
disturbance parameters (upper and lower right plots in Figure 13), and friction parameters.
It is interesting to note that the FFT analysis performed on quadrature current signal clearly
highlights the presence of three harmonic disturbances. The first two harmonic components
are multiples of the fundamental electrical frequency, being 10 and 20 times the mechanical
frequency (nd = 10, Table 3), and they derive from small deviations of the BEMF from the
sinusoidal waveform. The resting harmonic component is instead located at 24 times the
mechanical frequency, and the disturbance can be interpreted as an effect of cogging torque,
due to assembly tolerances and/or magnet imperfections. As discussed in [52–55], these
irregularities generate torque harmonics at frequencies that are multiple of the stator slots,
which in the reference PMSM is 12.

3.2. Loads Disturbance Rejection Capability

Before performing the failure transient analysis (Section 3.3), the control system per-
formances have been verified using the experimentally validated model of the EMA by
characterizing the disturbance rejection capability against external loads.

The performance specification actually requires that under any of the load conditions
reported in Table 2, the EMA position deviation shall be lower than the position sensor
accuracy (0.1 deg). To demonstrate the effectiveness of the developed control system with
special reference to the application of the SES deformation loop, an extensive simulation
campaign has been carried out, and a summary of the results is given in Figure 14.
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The results clearly highlight that the use of the SES deformation loop implies a relevant
enhancement of performances. The compliance response under deterministic loading
profiles is marginal without using the SES loop, while it significantly diminishes if the
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SES loop is present. Further, the compliance under non-deterministic loads exceeds the
requirement limit in the resonant pulsation region (70 Hz) if the SES loop is not used, while
it becomes adequate if the SES loop is applied.

3.3. Failure Transient Analysis

The experimentally validated model of the EMA has been finally used to characterise
the failure transients related to a control hardover fault, as simulated in Equation (26). The
following worst-case scenario has been simulated:

• the maximum static load plus the deterministic dynamic loads defined in Table 2 are
applied to the output shaft;

• the EMA is demanded to move to the maximum positive deflection (minimum stiffness);
• the control hardover fault occurs immediately after the EMA reaches the position

setpoint (t = tFI = 0 s);
• the brakes activation occurs with a predefined delay from the fault detection (tFC −

tFD = 51 ms, Umbragroup information).

To evaluate the effectiveness of the BEMF damper circuitry, the simulation is performed
by activating or not the system, obtaining the results in Figures 15 and 16.
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Figure 16. EMA failure transient with a control hardover fault with BEMF damper circuitry: sim-
ulation obtained with the experimentally validated model of the actuator (tFI = 0 s; tFD = 13.4 ms;
tFC = 64.4 ms).

It is interesting to note that, though the fault detection latency is extremely small (in
both simulations, tFD = 13.4 ms), the position deviation without BEMF damper is excessive
and the EMA reaches the mechanical endstroke at high speed, possibly implying permanent
damages (Figure 15). On the other hand, the use of the BEMF damper permits to strongly
limit the position deviation during the failure transient, and the EMA can be blocked by
the brakes in safety.

4. Discussion

As highlighted by the results in Section 3.3, the control hardover fault can determine
EMA damages and potentially unsafe operation for the FLA movables. The failure transient
analysis conducted using the experimentally validated model of the EMA highlights that, in
some special operating conditions, even if the fault is detected with extremely small latency
(less than 15 ms), the actuator can reach the mechanical endstroke impacting at high speed,
thus causing permanent damages. To counteract this adverse situation, essentially caused
by unavoidable delays in the activation of EMA brakes, the PWR board of the RACER flaps
EMAs includes a specifically designed BEMF damper circuitry, which, immediately after
the fault detection, opens the power bridge thyristors and connects all the motor phases to
the ground, thus generating an electromagnetic damping torque.
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5. Conclusions

The failure transients related to control hardover fault in the EMA employed for the
flap movables of the RACER helicopter-plane are characterised using an experimentally
validated model of the system, which includes multi-harmonic torque disturbance simula-
tion, “Coulomb–tanh” friction, mechanical freeplay, and position-dependant stiffness of
the ball-screw drivetrain. The failure transient characterization performed in a worst-case
scenario in terms of external loads and position setpoint demonstrates that, though the
fault detection is executed with extremely small latency (less than 15 ms), a potentially dan-
gerous actuator runaway can occur, causing high-speed impacts on the EMA mechanical
endstroke, caused by the activation delay of the EMA brakes (about 50 ms). Simulation
is thus used to point out that an effective solution can be obtained by including a BEMF
damper circuitry in the EMA power electronics, which, immediately after the fault detec-
tion, opens the power bridge thyristors and connects all the motor phases to the ground,
thus generating an electromagnetic damping torque.

The future developments of the research will be focused on:

• extension of the model validation with loaded position-loop tests, aiming to:

# verify the actual location of the resonant pulsation of the ball-screw drivetrain
(currently estimated via FEM analyses);

# characterise the actual disturbance rejection of external loads;

• model enhancement, by including a friction model that takes into account dependence
on applied loads and temperature;

• robustness analysis of the health-monitoring performances against model parameters
uncertainties.
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