
Citation: Dumitrescu, F.; Ceachi, B.;

Truică, C.-O.; Trăscău, M.; Florea,

A.M. A Novel Deep Learning-Based

Relabeling Architecture for Space

Objects Detection from Partially

Annotated Astronomical Images.

Aerospace 2022, 9, 520. https://

doi.org/10.3390/aerospace9090520

Academic Editor: Peng Wei

Received: 13 July 2022

Accepted: 14 September 2022

Published: 17 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

A Novel Deep Learning-Based Relabeling Architecture for
Space Objects Detection from Partially Annotated
Astronomical Images
Florin Dumitrescu *,† , Bogdan Ceachi *,† , Ciprian-Octavian Truică * , Mihai Trăscău
and Adina Magda Florea

Computer Science and Engineering Department, Faculty of Automatic Control and Computers,
University Politehnica of Bucharest, RO-060042 Bucharest, Romania
* Correspondence: florin.dumitrescu97@upb.ro (F.D.); bogdan.ceachi@upb.ro (B.C);

ciprian.truica@upb.ro (C.-O.T.)
† These authors contributed equally to this work.

Abstract: Space Surveillance and Tracking is a task that requires the development of systems that
can accurately discriminate between natural and man-made objects that orbit around Earth. To
manage the discrimination between these objects, it is required to analyze a large amount of partially
annotated astronomical images collected using a network of on-ground and potentially space-based
optical telescopes. Thus, the main objective of this article is to propose a novel architecture that
improves the automatic annotation of astronomical images. To achieve this objective, we present
a new method for automatic detection and classification of space objects (point-like and streaks)
in a supervised manner, given real-world partially annotated images in the FITS (Flexible Image
Transport System) format. Results are strongly dependent on the preprocessing techniques applied
to the images. Therefore, different techniques were tested including our method for object filtering
and bounding box extraction. Based on our relabeling pipeline, we can easily follow how the number
of detected objects is gradually increasing after each iteration, achieving a mean average precision
of 98%.

Keywords: astrometry; space surveillance; image processing; relabeling; deep learning; object
detection; classification

1. Introduction

As space assets are becoming a serious concern in terms of security and safety across
the world, Space Surveillance and Tracking is the field that utilizes different optical and
radar sensors to collect space data in order to create an inventory of objects that are orbiting
around Earth [1]. To monitor and survey the space objects, sensors need to be fast and
accurate to predict the trajectory and prevent spacecraft collisions. The collected data
are in turn used to provide the best information to governmental protection services to
prevent uncontrolled events. Thus, the aim of the Space Surveillance programs is to support
the utilization of and the access to space-related information for research or services by
providing timely and quality visual and radar sensor data. This information can be used
to develop real-time environment-aware knowledge-based services that can mitigate any
threats and offer the support for sustainable exploitation of the outer space surrounding
our planet.

The Space Surveillance and Tracking (SST) of both natural and man-made objects
requires the development of architectures that can identify in real-time the orbiting objects
around Earth, estimate their orbital parameters, and determine the evolution of their orbits.
These systems must be able to (1) collect sensor data in form of images from a network of
on-ground and potentially space-based optical telescopes. (2) process images, individually

Aerospace 2022, 9, 520. https://doi.org/10.3390/aerospace9090520 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace9090520
https://doi.org/10.3390/aerospace9090520
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0002-7936-5736
https://orcid.org/0000-0002-3290-9484
https://orcid.org/0000-0001-7292-4462
https://orcid.org/0000-0002-0061-5684
https://orcid.org/0000-0001-7249-1871
https://doi.org/10.3390/aerospace9090520
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace9090520?type=check_update&version=2


Aerospace 2022, 9, 520 2 of 11

for object detection or sequentially for tracking, to extract and then discriminate between
man-made and natural objects.

Even though the task of detecting and discriminating between space objects in as-
tronomical images is not new, this task is a very hard one. The current solutions in the
literature either use synthetic datasets [2] or apply a classifier on the objects extracted
from the image using SExtractor [3]. Collecting a dataset of images acquired by Space
Surveillance Optical Telescopes and annotating the objects of interest is no easy feat, as the
image quality is impacted by a lot of external factors, such as clouds, light pollution, oper-
ational temperature, etc., making template matching an unreliable method for the object
detection task. Because of this, each object of interest should be manually annotated as
either point-like or streak, which is an arduous and time-consuming process. Thus, the main
objective of this article is two-fold:

• Propose a novel relabeling architecture for satellite detection from partially annotated
astronomical images;

• Benchmark our proposed analysis using a real-world dataset.

To address the first objective, the proposed architecture utilizes partially annotated
images to extend a real-world dataset with more annotated visible objects in each input
image. This pipeline consists of an object detector and classifier ensemble. To implement
the object detection model, we use the Detectron 2 [4] framework that employs Faster
R-CNN [5] with ResNet-18 [6] as a backbone. The classifier ensemble uses a convolutional
encoder with three convolutional layers and a dense block with three fully-connected layers
to discriminate between point-like and streak objects in the images. We train our deep
learning models in a K-fold manner. For the second objective, we perform an in-depth
analysis using our architecture with a real-world dataset.

The rest of this paper is structured as follows. In Section 2, we discuss the current
state-of-the-art methods related to relabeling astronomical images for space object detection.
In Section 3, we present our methodology and the proposed novel architecture. In Section 4,
we present the experimental setup and our results on a real-world dataset. In Section 5, we
discuss our findings and hint at current challenges that we identify for the task of image
relabeling for space object detection. Finally, in Section 5, we present conclusions and
outline future directions.

2. Related Work

Algorithms for searching and recognizing celestial objects using neural networks have
been used since 1988 [7], but, unfortunately, the hardware capabilities at that time were not
so advanced. Thus, algorithms such as subgraph isomorphism and pattern recognition [8]
are frequently used to identify and search celestial objects, but with time expense in terms
of database search. With the advancement of technology, deep learning methods become
frequently used, managing to obtain much better results than the classic algorithms. One
big advantage of their use in identifying celestial objects is by removing the time spent
searching for them in databases because all the extracted features of an object are stored in
the network.

In a recent work, Rijlaarsdam et al. [9] demonstrate how using a small fully connected
network is the preferred choice in terms of speed and lightweight design for the star
identification algorithm, being able to classify a large number of stars.

Another similar approach is used by Yang et al. [10] where the authors proposed a
one-dimensional Convolutional Neural Network (1D CNN) to identify stars in catalogs,
being highly robust to position and magnitude noise with an identification accuracy of 98%.

Jia et al. [11] investigates the use of relatively simple convolutional (CNN) and re-
current (RNN) network architectures to classify transient astronomical objects into three
categories: point, artifact or streak. The classification achieves an accuracy of over 98%,
but the candidate images in their case come directly from the SExtractor utility, the classifi-
cation not being executed on the primary images.



Aerospace 2022, 9, 520 3 of 11

González et al. [12] look for deep learning methods for detecting and identifying
galaxy types (e.g., spiral, elliptical, edge-on) from telescope images (e.g., Hubble) or from
the Galaxy Zoo archive. The paper investigates the use of an adapted version of the
YOLOv3 [13] network (an already classic network for detecting objects in everyday life) for
the detection and classification of galaxy types. An important aspect that the authors are
looking for is to increase the amount of data, especially by different methods of converting
the image space from FITS (Flexible Image Transport System) format to RGB format,
in order to exploit the existing YOLO network.

One of the problems of existing object detection and classification networks is that
they are less efficient when the objects of interest are small (i.e., they occupy a small area as
the number of pixels in the picture). Thus, depending on the performance of the fine-tuning
approach of the existing networks, an alternative method can be explored, which modifies
the existing networks to become more efficient in the detection of small objects.

Techniques of this kind try to increase the image area to which the convolutional
layers look (effective receptive field), as well as the construction of auxiliary objectives for
segmenting small objects (e.g., Sun et al. [14]) modifying the types of proposed regions (i.e.,
rectangular templates, mode common for searched objects) for object detection, or the use
of feature pyramid networks.

3. Method and Processing Pipeline
3.1. Data Preprocessing

The dataset used in our experiments was collected using the gendared applica-
tion, which is described in Piso et al. [15] and was developed by GMV. The gendared
pipeline [15,16] receives as input the raw images in FITS format from optical telescopes
and generates as output astrometric and photometric data for the target objects detected in
an observation image.

The main goal of our proposed pipeline is to detect the objects of interest in astro-
nomical images, which can appear as point-like or streaks corresponding to either satellites
or stars, depending on the observational context, using neural network approaches. The
images that we are using are coming from two telescopes with different fields of view and
image sizes (i.e., 2.106◦ width/2.105◦ height for an image size of 4096× 4096 px for one
telescope and around 43.9 arcminutes width/29.25 arcminutes height for an image of size
2004× 1336 px for the other), as well as different exposure times. In one telescope, stars
appear as streaks because it is tracking satellites, while with the other they appear as points
because the telescope is compensating for the sky rotation. The resolution is high enough
to not influence the appearance of the visible objects (i.e., a point-like object is unlikely to
appear as a streak or vice versa). However, there are still objects that appear in star catalogs
that are not visible in our images.

Because FITS files contain raw pixel data, represented as 16-bit floating point values,
we could not train an object detection model directly on them, as the interval on which
the pixel values are defined is not fixed. As such, we decided to convert the images from
FITS format into JPEG format using different preprocessing techniques. We had to decide
what attributes in our data are the most important, for example, the details of a specific
set of values or the full dynamic range. A common tactic is by using two main types of
transformations: normalization and stretching of image values. Image values can be set in
the range [0, 1] using lower and upper limits or by using a linear or non-linear function.
In literature, those approaches are frequently used, one example is the most popular
framework Astropy [17], which provides several classes for automatically determining
intervals (e.g., linear stretch with a slope and offset, log stretch, a sinh stretch, using image
percentiles or interval based on IRAF’s z-scale). The first technique was to use the 1st and
the 99th percentile of the raw data values in each image and map them into smaller values
inside the [0, 255] range. However, the resulting images, were extremely noisy, causing
the annotation filtering and bounding box generation algorithm to be very sensitive to the
choice of its parameters, and in turn, limiting the ability of the object detection model to



Aerospace 2022, 9, 520 4 of 11

learn; an example can be observed in Figure 1a. Since the brightest sources are often orders
of magnitude brighter than the low-level variations in the sky background, we used the
logarithmic function to stretch the interval of pixel values, resulting in a higher contrast
between the image background and the objects of interest, as can be observed in Figure 1b.

(a) Percentile (b) Logarithmic

Figure 1. Examples of FITS images converted to JPEG using different methods.

We used as ground truth for the object detection algorithm the centroids of the objects
detected using the gendared pipeline. However, the detection algorithm requires either
bounding boxes around the objects or segmentation masks to learn their features. Thus,
we used computer vision methods to extract the bounding box of each object based on
the provided centroid. The idea is that if an object is present at the centroid’s coordinates,
then the contour of the object is also centered and is unique. To filter out the outliers
(i.e., image noise annotated as an object of interest) we also computed the object’s contour
area and, if it is under a set threshold, the object is discarded. Algorithm 1 describes this
procedure. A drawback of this approach is the dependency on the image preprocessing
method employed in the previous step, as we have to manually set the parameters of the
functions. Our solution involves visually inspecting the results of the algorithm at different
parameter values and choosing those values that result in the least number of outliers.
The resulting annotated dataset has then been validated by the experts.

Algorithm 1 Object filtering and bounding box extraction

Require: (cx, cy), image
Ensure: (xmin, ymin, xmax, ymax)

1: crop← extractCrop(image, (cx, cy))
2: binaryCrop← binaryThreshold(crop)
3: contours← cannyEdge(binaryCrop)
4: for each cnt ∈ contours do
5: cntArea← computeContourArea(cnt)
6: if cntArea ≤ areaThreshold then . Drop any small contour
7: continue
8: end if
9: if not isCentered(cnt) then . Drop any uncentered contour

10: continue
11: end if
12: (xmin, ymin, xmax, ymax)← fitBoxAroundContour(cnt)
13: return (xmin, ymin, xmax, ymax)
14: end for
15: return None

Because the images had different sizes and some were too big to reasonably train the
model with, we had to slice them to a smaller, fixed size with a small overlap to ensure that
no objects were removed during this process. Any object that becomes partially visible in
an image slice is discarded, as it will most likely still be fully visible in an adjacent image



Aerospace 2022, 9, 520 5 of 11

slice. A file containing the relationships between the original image and its slices is also
saved to be able to map the detections on the slices to the original image.

To build the dataset that is used in this pipeline, we used the image slices from both
telescopes and split them into train and test sets. As we want to re-annotate the entire
dataset using this pipeline, we use K-fold cross-validation, i.e., the original set is split into
K equal groups, where we use K− 1 groups for training and the last group for validation.

3.2. Architecture Description

The problem with our dataset is that only a small percentage of the total number of
visible objects in images are annotated and a supervised object detection algorithm has
trouble learning which objects are of interest or not. However, it will also detect a lot more
than the annotated objects, albeit with low confidence or assigning the wrong class.

Filtering out the outliers using Algorithm 1 helps the learning process by reducing the
number of noise patches classified as objects of interest and increasing the confidence of the
object detector, but does not completely solve our problem. By using a secondary image
classification algorithm trained on crops centered around the filtered annotated objects, we
can remove any noise patch classified as an object of interest by the detector. Unlike an
object detector, which looks after candidate regions of interest in an image (i.e., can detect
an unannotated object), a classifier only has access to the image patches (crops) that we are
sure to contain the objects of interest (point-like or streaks), as well as noise (background).
Because of this, the classifier has less variance in the training data than the object detector.
The results are then saved in the same format as the original image annotations and the
process is repeated for other train-test splits.

We call the full K-fold cross-validation procedure a re-annotation step, with the
pipeline replacing the annotations at the end of each step, i.e., when the pipeline finishes
relabeling the test set of the ith train-test split, the new annotations are not immediately
used in the (i + 1)th train-test split but instead are stored until the next relabeling step.
Figure 2 presents an overview of our pipeline for a single train-test split, while Figure 3
shows how a single re-annotation step works. After the last re-annotation step, the objects
detected in the image slices are mapped back to the original image.

Figure 2. An overview of our re-annotation model. It consists of 3 stages: the detection stage, in which
the object detection model is trained and the objects of interest are detected on the validation set;
the cropping stage, in which crops for the classifier are extracted based on the detections from the
previous stage; the re-annotations stage in which the classifier is trained on the extracted crops of the
objects of interest from the train set, as well as noise, and then used to detect which objects found in
the detection stage are valid. In the last stage, the valid detected objects are also saved to be used in
the next re-annotation step.



Aerospace 2022, 9, 520 6 of 11

Figure 3. An example of a single re-annotations step. For the sake of this example, we split the dataset
into 4 sets, and, for each model, we choose 1 set to be re-annotated while the others are used to train
the model. At the end of the re-annotation stage, the entire dataset is re-annotated. The re-annotation
step can be repeated multiple times.

We used Detectron 2 [4] framework to implement our object detection algorithm:
Faster R-CNN [5] with ResNet-18 [6] as backbone. We chose to use an existing framework,
as it allows us to easily implement and test different architectures, such as Faster R-CNN,
which is already available. As for the backbone of choice, we found that using a smaller
backbone does not negatively impact the performance of the detection algorithm compared
to using a deeper one, such as ResNet-50, while also reducing the computational cost of
the model.

To create a dataset to train the classification model, we used a modified version of
Algorithm 1, which saves the cropped objects as images of a fixed size and also keeps a
mapping between the cropped images and their coordinates in the original image. It also
extracts random noise patches that do not intersect with any detected object or contain pos-
sible objects of interest (using the same contour area thresholding logic as in Algorithm 1).
This cropping algorithm is also used to save image crops of the detected objects from the
test set.

For the classifier, we used a simple and fast architecture, as our objects of interest
appear as point-like or streaks in the images. It consists of two parts: a convolutional
encoder with three convolutional layers and a dense block with three fully-connected
layers. Each convolutional block has a convolutional layer with a kernel size of 3 × 3 and
after each layer Batch Normalization is used for network convergence rate, followed by
a rectified linear unit (ReLU) activation function and max pooling operation (stride 2) to
reduce the dimensionality via spatial downsampling. The final output layer corresponds
to the number of possible output classes (line, point and noise). Due to the limited data
available and the class imbalance between the number of point-like and streaks, a weighting
random sampling technique was used along with data augmentations, such as rotations
and flipping. For this type of architecture, we achieved 98% accuracy, and what should be
noted is that a low complexity network, such as the one described, can be scaled up to be
used with other environments.

In Figure 4, we can see the image heatmaps for the areas that our network is looking
at in order to decide which class to assign to the image. We can assume that the network
always looked in the center of the image and took the shape of our objects of interest
(line, point and noise). In general, this is exactly how any other classical computer vision
techniques (template matching and canny) used in this domain of expertise would approach
such a task. The resulting procedure is fast and with good results, but it depends on the
type of preprocessing techniques applied before the training process.



Aerospace 2022, 9, 520 7 of 11

(a) Line (b) Point (c) Noise

Figure 4. The gradient heatmaps for our 3 classes (computed using GradCam [18]).

4. Results

In our scenario, we used real-world images coming from two different telescopes and,
because of the problems that we mentioned, there is a limited number of experiments we
can conduct. Unfortunately, we do not have a gold standard due to the partially annotated
dataset and are unable to measure the performance of our pipeline using standard quan-
titative metrics (i.e., the AP metric, which is commonly used to evaluate object detection
algorithms, is negatively impacted by the high number of unannotated objects). Because of
this, our scope is not to present how an object detector would fare on real astronomical
data, but to propose a general pipeline that can be implemented in similar problems.

Our re-annotation pipeline was trained and evaluated using a collection of 70,243 image
slices of size 512× 512 px. We trained the detector for 15 K iterations for each data split,
with a batch size of 16 images and using SGD with an initial learning rate of 1× 10−3 and a
step scheduling policy, the learning rate being multiplied with 0.1 after 10 K and 12.5 K steps,
respectively. The classifier was trained for 6 epochs on image crops of size 70× 70 px (which
was determined experimentally to fit all objects), using AdamW [19] with an initial learning
rate of 1× 10−4 and a weight decay of 1× 10−2. The learning rate was reduced according
to an exponential learning rate scheduling method with γ = 0.5.

As shown in Table 1, after each iteration, the number of detected objects is gradually
increasing, with the model achieving a score of 0.62 mAP in detecting point-like or streaks
objects after two iterations.

Table 1. Number of objects of interest in the entire dataset at different steps of the re-annotations
pipeline.

Total

Point Line

Initial 14, 205 22, 893
Iteration 1 36, 817 32, 397
Iteration 2 44, 814 36, 437

A visual representation of the results from the pipeline at each iteration for a sample
image is shown in Figure A1. For each step starting from left to right, the procedure will
rely heavily on the trained classifier to keep or eliminate proposed objects coming from the
detector. We used a confidence threshold of 0.6 for the detector to find as many candidates
in the image as possible. We also dropped any objects for which the average confidence
score between the detector and classifier scores was lower than 0.6. The results at each
steps are represented in Tables 2 and 3.



Aerospace 2022, 9, 520 8 of 11

Table 2. Comparison between the number of unchanged, removed and newly added objects in the
entire dataset at different steps of the re-annotation pipeline.

Comparison
Unchanged Removed Added

Point Line Point Line Point Line

Initial Iteration 1 11,184 17,381 3020 5506 25,626 15,015
Initial Iteration 2 7280 17,087 6925 5802 37,530 19,350

Iteration 1 Iteration 2 34,797 30,663 2020 1734 10,017 5774

Table 3. Quantitative results before and after each re-annotation step. If not specified, AP is considered
the mean average precision calculated at different IoU thresholds between 0.5 and 0.95 with a step
size of 0.05.

mAP mAP@0.5 mAP@0.75 AP-Point AP-Line

Initial 34.01 63.78 33.08 36.06 31.96
Iteration 1 59.34 95.67 71.9 59.01 59.68
Iteration 2 62.25 98.04 77.68 59.98 64.53

5. Discussion

It is important to mention that in the initial step we do not have a gold standard
(due to the partially annotated dataset), and we are not able to evaluate the performance
of our initial object detector using any quantitative metric (i.e., the initial detector will
always be weak). This is why we use a secondary classifier to validate the candidate objects
proposed by the object detector. The secondary object detector is also dependent on the
filtered dataset, as it uses the annotated data in the training stage, but has fewer outliers
than the object detector. There may be annotated objects that are not visible in the images,
regardless of the preprocessing method used, although they may exist in star catalogs such
as 2MASS [20], GAIA [21] and Tycho-2 [22].

Our pipeline manages to overcome this obstacle by eliminating false positive anno-
tations and detecting new objects. By comparing the performance of the object detection
algorithm before and after each step of the pipeline, we observe an increase in the quality
of the detections, both quantitatively due to the lower number of unannotated objects
(see Table 2) and qualitatively (see Figure A1), the model being able to detect objects of
interest with higher confidence. Figure A1 also illustrates how the classification model
filters possible false positives. However, regardless of the models used in the pipeline,
the process can be repeated only a limited number of times as, considering the nature of
the pipeline, the models can become biased towards the results from the previous iteration.
This also emphasizes that our pipeline is heavily reliant on the classifier and the data with
which it is trained.

A possible limitation of the approach is that the time required for a single step is
directly proportional to the size of the dataset and the number of splits. For example, for a
K split of our dataset, both the detector and the classifier will need to be trained K times.

Another limitation of our pipeline is the object filtering and bounding box extraction
algorithm, which is reliant on the hyper-parameters obtained via experimentation that are
different depending on the quality of the telescope images. As such, a more generalized
method that is less sensitive to the choice of hyper-parameters needs to be explored. A good
outlier (bounding box with no object inside, only noise) removal technique is essential to
train any supervised classification model. A starting point could be to explore adaptive
binarization or segmentation techniques based on classic computer vision methods, the rest
of the algorithm remaining the same. We can also eliminate the need for the threshold area
of the counter used to determine whether an annotation contains an object or not, through
an unsupervised image categorization process. For example, one could use an image feature
extraction algorithm (e.g., SIFT [23], SURF [24] etc.) followed by a dimension reduction



Aerospace 2022, 9, 520 9 of 11

step (e.g., PCA [25]) and a non-parametric clustering algorithm (e.g., K-means [26]) to filter
out the false positive annotations.

Given that the images in the dataset are captured in bursts of at least length 3, we
wish to expand our pipeline by implementing an additional validation by a tracking stage,
which should remove some of the bias created by training the pipeline on the results from
a previous step of the re-annotation process. We need at least three images in sequence to
compute a trajectory for every object detected using the detector-classifier ensemble, as the
distance between the position of an object in 2 consecutive frames can be quite large due to
the high exposure time needed to capture an image.

After a reliable dataset is built using the aforementioned pipeline, we can use it to train
any model, which can then be utilized to detect objects in astrometry images in real-time.

6. Conclusions

This work demonstrates that datasets of astronomic images with incomplete data (i.e.,
not all visible objects of interest are annotated) can be re-annotated using our proposed
approach. To achieve our first objective to relabel satellite detection from partially annotated
astronomical images, we developed a novel architecture composed of a detection algorithm,
which identifies the celestial bodies in the images, and a classifier, which filters the detected
objects and removes any noisy or low confidence results.

To achieve our second objective of benchmarking our approach, we used the dataset
provided by gendared , which consists of real-world images from telescopes that were
preprocessed using the gendared application, and performed an in-depth analysis of the
proposed novel relabeling architecture on it. The object filtering and bounding box
extraction algorithm relies heavily on the chosen hyper-parameters, which makes our
approach less flexible when it comes to using it on images of different quality. New
techniques need to be explored to achieve better or similar results without relying on
manually choosing the parameters. Some possible future approaches have been proposed.

The experimental results using a real-world dataset prove that the pipeline increased
the number of annotated objects by at least twofold, which means that a lot of the vis-
ible objects of interest were not annotated. The decrease in the number of objects that
were not originally annotated improves the accuracy of the detection algorithms with
higher confidence.

Author Contributions: Conceptualization, F.D., B.C., C.-O.T. and M.T.; methodology, F.D., B.C.,
C.-O.T. and M.T.; software, F.D. and B.C.; validation, F.D. and B.C.; formal analysis, F.D., B.C., C.-O.T.
and M.T.; investigation, F.D. and B.C.; resources, A.M.F.; data curation, F.D. and B.C.; writing—
original draft preparation, F.D., B.C., C.-O.T., M.T. and A.M.F.; writing—review and editing, C.-
O.T., M.T. and A.M.F.; visualization, F.D. and B.C.; supervision, C.-O.T., M.T. and A.M.F.; project
administration, A.M.F.; funding acquisition, A.M.F.; All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset will be made available upon request.

Acknowledgments: This work was supported in-part by a grant of the Romanian Ministry of Educa-
tion and Research, CCCDI - UEFISCDI, project number PN-III-P2-2.1-PTE-2019-0554 “Îmbunătăt, irea
Capacităt, ilor Funct, ionale ale Aplicat, iei GENDARED prin Utilizarea Algoritmilor de Inteligent, ă Artifi-
cială” (Artificial intelligence upgrade for the generic data reduction framework for space surveillance),
within PNCDI III and in-part by and University Politehnica of Bucharest.

Conflicts of Interest: The authors declare no conflict of interest.



Aerospace 2022, 9, 520 10 of 11

Abbreviations
The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
RNN Recurrent Neural Network
R-CNN Region-based Convolutional Neural Network
YOLO You Only Look Once
ResNet Residual Convolutional Neural Network
GradCAM Gradient-weighted Class Activation Mapping
RGB Red-Green-Blue
SGD Stochastic Gradient Descent
AP Average Precision
mAP Mean Average Precision
SST Space Surveillance and Tracking
SExtractor Source-Extractor
2MASS Two Micron All Sky Survey
FITS Flexible Image Transport System
JPEG Joint Photographic Experts Group
gendared The Generic Data Reduction Framework for Space Surveillance

Appendix A

(a) Iteration 0

(b) Iteration 1

(c) Iteration 2

Figure A1. Comparison between the annotated objects (left) and the detector results (right) at different
steps of the re-annotation pipeline.



Aerospace 2022, 9, 520 11 of 11

References
1. Allahdadi, F.A.; Rongier, I.; Wilde, P.D. Safety Design for Space Operations; Butterworth-Heinemann: Oxford, UK , 2013.
2. Fletcher, J.; McQuaid, I.; Thomas, P.; Sanders, J.; Martin, G. Feature-Based Satellite Detection Using Convolutional Neural

Networks. In Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, Maui, HI, USA, 17–20
September 2019.

3. Bertin, E.; Arnouts, S. SExtractor: Software for source extraction. Astron. Astrophys. Suppl. 1996, 117, 393–404. [CrossRef]
4. Wu, Y.; Kirillov, A.; Massa, F.; Lo, W.Y.; Girshick, R. Detectron2, Version 0.5. 2019.

Available online: https://github.com/facebookresearch/detectron2 (accessed on 20 August 2021).
5. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE

Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef]
6. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
7. Alvelda, P.; Martin, A.M.S. Neural Network Star Pattern Recognition for Spacecraft Attitude Determination and Control. Proc.

NIPS 1988, 1, 314–322 .
8. Rijlaarsdam, D.; Yous, H.; Byrne, J.; Oddenino, D.; Furano, G.; Moloney, D. A Survey of Lost-in-Space Star Identification

Algorithms Since 2009. Sensors 2020, 20, 2579. [CrossRef] [PubMed]
9. Rijlaarsdam, D.; Yous, H.; Byrne, J.; Oddenino, D.; Furano, G.; Moloney, D. Efficient Star Identification Using a Neural Network.

Sensors 2020, 20, 3684. [CrossRef] [PubMed]
10. Yang, S.; Liu, L.; Zhou, J.; Zhao, Y.; Hua, G.; Sun, H.; Zheng, N. Robust and Efficient Star Identification Algorithm based on 1D

Convolutional Neural Network. IEEE Trans. Aerosp. Electron. Syst. 2022, 1. [CrossRef]
11. Jia, P.; Zhao, Y.; Xue, G.; Cai, D. Optical Transient Object Classification in Wide-field Small Aperture Telescopes with a Neural

Network. Astron. J. 2019, 157, 250. [CrossRef]
12. González, R.; Muñoz, R.; Hernández, C. Galaxy detection and identification using deep learning and data augmentation. Astron.

Comput. 2018, 25, 103–109. [CrossRef]
13. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [CrossRef]
14. Sun, S.; Yin, Y.; Wang, X.; Xu, D.; Zhao, Y.; Shen, H. Multiple receptive fields and small-object-focusing weakly-supervised

segmentation network for fast object detection. arXiv 2019, arXiv:1904.12619.
15. Piso, A.M.A.; Voicu, O.; Sprimont, P.; Bija, B.; Lasheras, Ó.A. gendared: The Generic Data Reduction Framework for Space

Surveillance and Its Applications. In Proceedings of the The 8th European Conference on Space Debris, Darmstadt, Germany,
20–23 April 2021.

16. Bija, B.; Lasheras, O.A.; Danescu, R.; Cristea, O.; Turcu, V.; Flohrer, T.; Mancas, A. Generic Data Reduction Framework for Space
Surveillance. In Proceedings of the The 7th European Conference on Space Debris, Darmstadt, Germany, 18–21 April 2017.

17. Price-Whelan.; A.M.; Sipőcz, B.M.; Günther, H.M.; Lim, P.L.; Crawford, S.M.; Conseil, S.; Shupe, D.L.; Craig, M.W.; Dencheva, N.;
Ginsburg, A.; et al. The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package. Astron. J. 2018,
156, 123. [CrossRef]

18. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks
via Gradient-Based Localization. Int. J. Comput. Vis. 2019, 128, 336–359. [CrossRef]

19. Loshchilov, I.; Hutter, F. Decoupled Weight Decay Regularization. arXiv 2017, arXiv:1711.05101.
20. Skrutskie, M.F.; Cutri, R.M.; Stiening, R.; Weinberg, M.D.; Schneider, S.; Carpenter, J.M.; Beichman, C.; Capps, R.; Chester, T.;

Elias, J.; et al. The Two Micron All Sky Survey (2MASS). Astron. J. 2006, 131, 1163–1183. [CrossRef]
21. Gaia Collaboration; Brown, A.G.A.; Vallenari, A.; Prusti, T.; de Bruijne, J.H.J.; Babusiaux, C.; Bailer-Jones, C.A.L.; Biermann, M.;

Evans, D.W.; Eyer, L.; et al. Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 2018, 616, A1.
Available online: http://xxx.lanl.gov/abs/1804.09365 (accessed on 12 December 2021). [CrossRef]

22. Høg, E.; Fabricius, C.; Makarov, V.V.; Urban, S.; Corbin, T.; Wycoff, G.; Bastian, U.; Schwekendiek, P.; Wicenec, A. The Tycho-2
catalogue of the 2.5 million brightest stars. Astron. Astrophys. 2000, 355, L27–L30.

23. Lindeberg, T. Scale Invariant Feature Transform. Scholarpedia 2012, 7,10491. [CrossRef]
24. Bay, H.; Tuytelaars, T.; Van Gool, L. SURF: Speeded up robust features. In Proceedings of the 9th European Conference on

Computer Vision, Graz, Austria, 7–13 May 2006; Volume 3951, pp. 404–417. [CrossRef]
25. Karl Pearson, F.R.S. LIII. On lines and planes of closest fit to systems of points in space. Dublin Philos. Mag. J. Sci. 1901, 2, 559–572.

[CrossRef]
26. Lloyd, S. Least squares quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137. [CrossRef]

http://doi.org/10.1051/aas:1996164
https://github.com/facebookresearch/detectron2
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.3390/s20092579
http://www.ncbi.nlm.nih.gov/pubmed/32369986
http://dx.doi.org/10.3390/s20133684
http://www.ncbi.nlm.nih.gov/pubmed/32630128
http://dx.doi.org/10.1109/TAES.2022.3160134
http://dx.doi.org/10.3847/1538-3881/ab1e52
http://dx.doi.org/10.1016/j.ascom.2018.09.004
https://doi.org/10.48550/ARXIV.1804.02767
http://dx.doi.org/10.3847/1538-3881/aabc4f
http://dx.doi.org/10.1007/s11263-019-01228-7
http://dx.doi.org/10.1086/498708
http://xxx.lanl.gov/abs/1804.09365
http://dx.doi.org/10.1051/0004-6361/201833051
http://dx.doi.org/10.4249/scholarpedia.10491
http://dx.doi.org/10.1007/11744023_32
http://dx.doi.org/10.1080/14786440109462720
http://dx.doi.org/10.1109/TIT.1982.1056489

	Introduction
	Related Work
	Method and Processing Pipeline
	Data Preprocessing
	Architecture Description

	Results
	Discussion
	Conclusions
	
	References

