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Abstract: The luminescent mini-tufts method is widely used for flow visualization for quantitative
field analysis. A set of numerical methods for digitalization of 3D surfaces surrounding flows with
luminescent mini-tufts has been developed in this study. The procedure includes digital image
pre-processing, mini-tufts recognition, mean field mini-tufts calculation, inclination angle calculation,
oscillation area calculation, etc. The model is subjected to a newly proposed digitalization method and
realized by in-house code. The time mean angle’s changing mode, along the mini-tuft, are analyzed,
which shows that the mini-tuft follows the inflow well. The transient oscillation of mini-tufts is
observed as well, which shows that on the middle part of the irregularity cylinder, the flow oscillates
more intensively.

Keywords: flow visualization; luminescent mini-tufts; digital image processing; transient oscillation

1. Introduction

The luminescent mini-tufts method is one of the most useful techniques of flow visual-
ization [1,2]. This method was proposed firstly in 1979 in order to visualize air tunnel flow.
The key point of this method is to attach extremely thin nylon mono-filament fibers, which
have been treated with fluorescent dye, onto the surface of the target physical model. By
using ultraviolet light, mini-tufts are visible and can be recorded with photography [3]. This
method is widely applied in aircraft design, wing testing, rotor/propeller design, automo-
bile design, etc. [4–12]. It is a typical method that combines high resolution computer-aided
techniques and flow measurement [13]. In recent years, researchers used high-speed cam-
eras to take plenty of snapshots to record the changes in flow characteristics over time. In
this study, an attempt is made to recognize the mini-tufts from the snapshots based on
which quantitative analysis of flow is performed.

Flow visualization plays a key role in experimental fluid mechanics. Flow visualization
has existed as long as fluid flow research itself [14,15]. If flow could be visible, it would be
possible to observe flow phenomena, which is essential for researchers to do predictions
and numerical simulations through flow dynamic data [16–18]. Typical flow visualization
methods can be classified into two types: one is surface visualization, while the other is
off-surface visualization. The first type includes tufts, fluorescent dye, oil, and special clay
mixtures, which are applied on the surface of a target model [19]. Some traces are used
in off-surface visualization, such as smoke particles, oil droplets, and helium-filled soap
bubbles [20,21]. For all flow visualization methods, an appropriate approach to record the
image, such as taking photos or recording videos, is necessary. Profiting from computer
techniques, it is possible to analyze flow visualization automatically and achieve qualitative
and quantitative information by digital image processing [22,23], which is not easy for
conventional flow measurements [24–27].
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Vey et al. [28] established a measurement technique which allows extracting quantita-
tive data from tuft flow visualization on real-world wind turbine blades. Bonitz et al. [29]
applied Vey’s approach on the flow interaction characteristics analysis between the wheel,
wheelhouse, and the rotation of the wheel of a passenger car. Chen et al. [30] analyzed the
steady flow characterization and quantitative flow conducted on a flat plate model with
the luminescent mini-tufts method.

In order to ensure visualization and minimize the impact on flow, the diameter of the
fluorescent fiber is usually set at 0.01–0.1 mm. However, due to the weak reflected-light,
it is hardly visible if the diameter of the mini-tuft is smaller than 0.1 mm. Long exposure
time cannot help on that [20].

In this study, flow surrounding a 3D irregular cylinder model is analyzed quantita-
tively base on the luminescent mini-tufts method. The process includes tuft digitalization
and recognition, tuft angle calculation, and tuft oscillation analysis according to its oscil-
lation area. The tuft recognition process is highlighted in this paper, which automatically
converts multiple snapshots of luminescent mini-tufts to digital matrixes. The details are
given in the following sections.

2. Experimental Set-Ups
Experiment and Model

As shown in Figure 1, the experimental set-up in this study is similar to that in
reference [30]. Excitation UV light source and high-speed camera are placed on top of the
test section, while the target model is mounted inside the visualization section.
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Figure 1. Experimental set-up: model with luminescent mini-tufts and photography device,
Reprinted with permission from Ref. [30]. 2019, Elsevier.

In this study, the target model is an irregular metal cylinder from an aircraft engine, as
shown in Figure 2. The model’s front surface is laid fully with luminescent mini-tufts. The
cylinder model is thin at both ends while thick in the middle. The diameter of its thickest
part is 0.7 m. The width is 1 m.
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In the experiment, the irregular cylinder model is placed in a dark space with the 
temperature at 190 K. Wind flow direction is from left to right with velocity 102 m/s. In 
different experiments, the mini-tufts are attacked by the incoming flow with 3 different 
angles: 4°, 0°, and −4°. Figure 3 shows the snapshots which plot surrounding flow curve 
reflected by the luminescent mini-tufts on the 3D model. As it is shown, there are 96 mini-
tufts on the front surface of the cylinder. The mini-tufts used in this study were prepared 
by our experimental center, using bright silk as the base material.  
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Figure 3. Snapshot example. (a) θa = 4°; (b) θa = 0°; (c) θa = −4°. 

Due to the structure of the irregular cylinder model, as shown in Figure 3, the bright-
ness of each luminescent mini-tuft in one image is not the same. The brightness of each 
image is also not the same because of the minor change in the environment. Furthermore, 
the real situation of fluorescent mini-tufts cannot be fully recovered by the highlighted 
pixels on the image because the area of light is larger than that of fluorescent mini-tufts. 
The above situations bring great difficulties to the flow analysis using the fluorescent 
mini-tufts method. 

3. Data Processing Method 
As mentioned above, with the snapshots of the luminescent mini-tufts, the flow char-

acteristics can be analyzed quantitatively. The first step is to recognize the mini-tufts cor-
rectly. In this section, an image processing approach is proposed that can transfer lumi-
nescent mini-tufts from snapshots to a digital matrix. The coding process flow is shown 
in Figure 4. 

Figure 2. Experimental model.

In the experiment, the irregular cylinder model is placed in a dark space with the
temperature at 190 K. Wind flow direction is from left to right with velocity 102 m/s. In
different experiments, the mini-tufts are attacked by the incoming flow with 3 different
angles: 4◦, 0◦, and −4◦. Figure 3 shows the snapshots which plot surrounding flow curve
reflected by the luminescent mini-tufts on the 3D model. As it is shown, there are 96 mini-
tufts on the front surface of the cylinder. The mini-tufts used in this study were prepared
by our experimental center, using bright silk as the base material.
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Figure 3. Snapshot example. (a) θa = 4◦; (b) θa = 0◦; (c) θa = −4◦.

Due to the structure of the irregular cylinder model, as shown in Figure 3, the bright-
ness of each luminescent mini-tuft in one image is not the same. The brightness of each
image is also not the same because of the minor change in the environment. Furthermore,
the real situation of fluorescent mini-tufts cannot be fully recovered by the highlighted
pixels on the image because the area of light is larger than that of fluorescent mini-tufts.
The above situations bring great difficulties to the flow analysis using the fluorescent
mini-tufts method.

3. Data Processing Method

As mentioned above, with the snapshots of the luminescent mini-tufts, the flow
characteristics can be analyzed quantitatively. The first step is to recognize the mini-tufts
correctly. In this section, an image processing approach is proposed that can transfer
luminescent mini-tufts from snapshots to a digital matrix. The coding process flow is
shown in Figure 4.
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Figure 4 illustrates the processing of a sequence of images. For each image, all mini-
tufts are recognized one by one, and each mini-tuft is recognized individually. The detailed
process of each single luminescent mini-tuft recognition is described below.

The main idea of the recognition process is to recognize the luminescent mini-tufts
by finding the brightest points in the photos. As it is shown in Figure 4, the first step is to
transfer RGB image to grey image. The RGB image in digital span is a 2D matrix whose
size is equal to the size of image pixels and every entry has three parameters describing
colors, while every entry of the digital matrix of grey image needs only one parameter to
describe the brightness. The only brightness parameter of the grey image pixels can be
more easily compared in order to recognize the points where mini-tufts locate and expand.

Since the brightness of these 20 photos is not the same, the brightness of different
photos should be normalized. In the digital matrix of a grey image, the brighter the point
is, lager the entry value will be. In the absolute dark area, the entry values are 0. Find the
largest entry in the total 20 grey images which are taken from the experiment:

A = max(max(B1), max(B2), . . . , max(BN_pic), . . . , max(B20)) (1)

where BN_pic is the matrix of the number N_pic grey image.
The largest entry in the 20 grey images is 230. The normalized grey image can be

obtained as below.

Bnormalized
N_pic =

A × BN_pic

max(BN_pic)
(2)
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All the mini-tufts in one image are recognized one by one from left to right according
to the location of every mini-tuft’s fixed-end. The fixed-end is the leftmost point of a
mini-tuft. A brightness threshold with the value of 20 is carried out to distinguish the
points on the luminescent mini-tufts with other puzzling points.

Figure 5 is an example of a recognized single, luminescent mini-tuft. There is a thick
luminous stripe in the grey image. As mentioned above, since the diameter of a real
luminescent mini-tuft is less than 0.1 mm, it is hard to be digitalized directly. In this paper,
the brightest points in the thick luminous stripe are presumed to be the actual locations of
this luminescent mini-tuft. According to this principle, the fixed-end of the first mini-tuft is
confirmed by finding the first point (leftmost) that is larger than the brightness threshold.
Then the second point is found by “drawing” a semicircle whose center is 1 pixel right
from the previous recognized point with the radius of 5 pixels. The brightest point on this
frame that is larger than the brightness threshold value is defined as the next recognized
point. The reason for choosing this frame is to prevent duplicate selections. In most cases,
the distance from one point to the next one is almost the same.
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The x-axis array of the semicircle is:

Xi = [xc
i−1 + 1, xc

i−1 + 2, . . . , xc
i−1 + 5,

xc
i−1 + 1, xc

i−1 + 2, . . . , xc
i−1 + 5]

(3)

where xc
i−1 is the center of the previous recognized point; i is the sequence number of the

recognized points.
The y-axis array of the semicircle is:

Yi = [yi
1, yi

2, . . . , yi
j, . . . , yi

10] (4)

where

yi
j =


round

[√
52 − (xi

j − xc
i−1)

2
+ yc

i−1

]
, j = 1, 2, . . . , 5

−round
[√

52 − (xi
j − xc

i−1)
2
+ yc

i−1

]
, j = 6, 7, . . . , 10

(5)

where yi
j is the jth element in the ith y-axis array which is to find the ith recognized point;

xi
j is the jth element in the ith x-axis array which is to find the ith recognized point.

When any point on the semicircle is out of image or all of the points on the semicircle
are less than the brightness threshold, the code breaks out. In this case, the previous
recognized point is the last point (rightmost) of this luminescent mini-tuft. When all the
locations of one luminescent mini-tuft are found, the information is saved in an excel
document. After that, the entries corresponding to the area where 10 pixels surrounding
the recognized luminescent mini-tuft are set to 0 in order to “delete” this luminescent
mini-tuft which is already recognized so that the identification of the next luminescent
mini-tuft is not affected.
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All the luminescent mini-tufts in one image can be recognized one by one until all the
points in this image are less than the brightness threshold. Luminescent mini-tufts in the
next images are recognized in the same way until all the images are checked over.

When the stripes of all luminescent mini-tufts are identified, they have to be checked
and the problematic ones need to be corrected. There are two main errors whose root causes
are both related to this 3D model. One is that due to the brightness not being uniform in
one image, the brightness of the middle part of some luminescent mini-tufts is below the
threshold. It results in that part of the mini-tuft not being identified directly. The strip of
one luminescent mini-tuft will be identified as two different strips. The correction method
is to compare the distance between adjacent mini-tufts with a reasonable distance threshold.
If the distance is less than the threshold, the two adjacent mini-tufts are considered to
be one. The other error is that due to the reflected light at the bottom of the structure, a
single bright spot often appears at the bottom right of the right-end of some luminescent
mini-tuft stripes, resulting in abnormal tails of these recognized digital mini-tufts. The
correction method is to check the brightness of the points between the right-end with the
previous recognized point. If there was a brightness value below the brightness threshold,
this right-end recognized point is considered to be a fake recognized point and left out.

4. Analysis Processing

The inclination angle and transient oscillation area of luminescent mini-tufts are
analyzed in this study to research the flow following condition and transient oscillation
condition in different parts of the irregular cylinder model. The inclination angle of the
mini-tuft is defined as the angle between the connected line of recognized point and the
fixed-end with the transversal center line of the model, as shown in Figure 6.
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As shown in Figure 7, the luminescent mini-tufts on the model are divided into
20 groups according to the structure of the model and the state of the luminescent mini-
tufts. Five spatial regions along the longitudinal direction and four spatial regions along
the transversal direction are divided in order to analyze the flow characteristics of different
parts of the model clearly. The four transversal regions are named as ‘Zone 1–4’.

The time-average of each digital mini-tuft is calculated for analyzing the time-averaged
flow behavior. Then the mean digital mini-tufts of each spatial group are calculated for more
intuitive observation. The inclination angle of these mean digital mini-tufts is analyzed in
the next section.

Transient oscillation is analyzed by dividing the area of transient luminescent mini-
tuft (A) with a reference area (Aref) (normalized area). The reference area is obtained by
calculating the averaged tuft area in the present image.
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5. Results and Discussion

The mean mini-tuft inclination angle (θt) dividing the angle of attack (θa) varies at
different positions of luminescent mini-tuft (p). The illustration of this fact for different θa
is given in Figure 8. Since the angle of attack 0◦ cannot be divide, the y-axis in Figure 8b
directly represents the mean mini-tuft inclination angle. In Figure 8, different colors mean
different zones, and different mini-tuft length (r) is distinguished by different markers.
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A trend can be seen in Figure 8 that the tuft angle becomes closer to the attack angle at
the latter segment of the tuft. In Figure 8a,c, at the end of most tufts, the mean values of
θt/θa are around 1. In Figure 8b, at the end of the tufts, θt is around 0. This phenomenon
shows that the tufts follow the inflow well. In Figure 8a,b or Figure 8c, there is a pink line
with triangle or square markers separating the other lines, which is from the last group in
zone 4 with the tuft length of 40–45 mm. From around 20 mm until the end of the tuft, the
behavior is different with the other tufts.

The transient oscillation of the tuft is evaluated along the single dimension on the
target model. The x-axis in Figure 9 is the transversal position of the tuft on the model,
which is defined as the transverse distance from the fixed-end of a mini-tuft to the left edge
of the model. Results obtained with a different angle of attack are illustrated in different
figures in Figure 9. Mini-tufts with different lengths are distinguished with different makers
and different colors. The mean values of A/Aref with different tuft length are listed in
Table 1. The maximum values of mean A/Aref when θa = 4◦ are from mini-tufts with length
of [55, +∞) mm. The maximum values of mean A/Aref when θa = 0◦ and θa = −4◦ are
from mini-tufts with length of [45, 55) mm, and the minimum values of mean A/Aref when
θa = 4◦, 0◦, and −4◦ are from mini-tufts with a length of (0, 35) mm. Regardless of tuft
length, the mean A/Aref values with different θa are all equal to 0.98. It indicates that the
angle of attack does not affect the instantaneous oscillation intensity.
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Figure 9. Transient oscillation of luminescent mini-tuft variations with their transversal position on
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Table 1. Mean values of A/Aref with different tuft lengths.

Tuft Length θa = 4◦ θa = 0◦ θa = −4◦

r < 35 0.65 0.67 0.69
35 ≤ r < 45 1.12 0.97 0.98
45 ≤ r < 55 1.10 1.13 1.12

r ≥ 55 1.17 1.06 1.00
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In order to investigate the instantaneous oscillation of mini-tufts at different locations
on the model, the mean and square deviation of A/Aref of the different zones are calculated,
as shown in Figure 6 and in Tables 2–4.

Table 2. Mean and square deviation of A/Aref of different zones of model with θa = 4◦.

Zone Number Mean Square Deviation

1 0.89 0.23
2 1.02 0.17
3 1.02 0.20
4 0.96 0.22

Table 3. Mean and square deviation of A/Aref of different zones of model with θa = 0◦.

Zone Number Mean Square Deviation

1 0.97 0.25
2 1.03 0.16
3 0.99 0.19
4 0.91 0.22

Table 4. Mean and square deviation of A/Aref of different zones of model with θa = −4◦.

Zone Number Mean Square Deviation

1 0.96 0.22
2 1.04 0.17
3 0.99 0.20
4 0.92 0.28

As shown in Table 2 to Table 4, the mean A/Aref values in zone 2 and zone 3 are larger
than that in zone 1 and 4, which indicates that the transient fluid oscillates more intensively
on middle part than on both ends of the model. The square deviation at different zones
shows that the oscillation intensity on both ends is more dispersed than the middle part of
the model.

6. Conclusions

This study focuses on the recognition and digitalization of high-speed flow surround-
ing an irregular cylinder part from aircraft engine. The luminescent mini-tufts method is
used to digitize the flow. The mini-tufts are the target object in the recognition process.
A detailed coding process flow of the recognition process is presented. The correction
approach for potential fault recognition result is given as well. In the experiment, obser-
vations and results are obtained for three different angles of attack: 4◦, 0◦, and −4◦. After
the application of the recognition method proposed in this paper, the flow characteristics
reflected by tuft inclination angle and transient oscillation are analyzed. According to the
experimental results, the conclusions are as follows:

(1) The time-averaged digital mini-tufts are calculated for analyzing the time-averaged
flow behavior. For more intuitive observation of features, the mean digital mini-tufts
of each group of the time-averaged digital mini-tufts are calculated. The current
method proposed is realized well for the digitalization of mini-tufts.

(2) With regard to the target model in the experiment, though the angle of attack varies,
the latter segment (after around 20 mm) of almost all tufts follow the inflow direction
on the model surface well.

(3) The mean tuft transient oscillation under the same flow surrounding the same model
is not impacted by the angle of attack.

(4) According to the mean values of A/Aref, the tufts on the middle part of the model
are larger than those on the two terminals, which indicates that the transient fluid is
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oscillating more intensively on the middle part of the irregularity cylinder than on the
two terminals of the model.
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