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Abstract: The exploration of celestial bodies such as the Moon, Mars, or even smaller ones such
as comets and asteroids, is the next frontier of space exploration. One of the most interesting and
attractive purposes from the scientific point of view in this field, is the capability for a spacecraft
to land on such bodies. Monocular cameras are widely adopted to perform this task due to their
low cost and system complexity. Nevertheless, image-based algorithms for motion estimation range
across different scales of complexities and computational loads. In this paper, a method to perform
relative (or local) terrain navigation using frame-to-frame features correspondences and altimeter
measurements is presented. The proposed image-based approach relies on the implementation of
the implicit extended Kalman filter, which works using nonlinear dynamic models and corrections
from measurements that are implicit functions of the state variables. In particular, here, the epipolar
constraint, which is a geometric relationship between the feature point position vectors and the
camera translation vector, is employed as the implicit measurement fused with altimeter updates. In
realistic applications, the image processing routines require a certain amount of time to be executed.
For this reason, the presented navigation system entails a fast cycle using altimeter measurements
and a slow cycle with image-based updates. Moreover, the intrinsic delay of the feature matching
execution is taken into account using a modified extrapolation method.

Keywords: optical navigation; epipolar constraints; Kalman filter; relative terrain navigation;
features-based method; visual odometry; implicit constraints

1. Introduction and Background

Vision-based navigation is becoming the most prominent solution for autonomous
navigation for different scenarios [1–5]. Moreover, activities linked to the Lunar Gateway
and Lunar villages have created a deep interest in the lunar environment [6–8]. Numerous
future missions will entail landing operations to deploy technological systems on the
surface of the Moon. The driving precision landing requirement for the autonomous
landing is to land within ∼100 m of a predetermined location on the lunar surface, or
any other planetary surface [9]. Traditional lunar landing approaches based on inertial
sensing do not have the navigational precision to meet this requirement. The purpose
of terrain navigation is to augment inertial navigation by providing position or bearing
measurements relative to known surface landmarks, if available, or local motion estimate in
unseen environments. From these measurements, the navigational precision can be reduced
to a level that meets the ∼100 requirement. According to [9], there are mainly two different
navigation functions: global position estimation, here referred as absolute navigation and
local position estimation, here referred as relative navigation. These functions can be
achieved with active range sensing or passive imaging. Among all the different alternatives
presented in the comprehensive review paper in [9], we can point out the following high-
level clusters of approaches depending on the availability of a landmark/feature database:
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• Available database: we refer to a database when a set of known landmarks or features
of the viewed terrain is cataloged, reporting their absolute location with respect to a
planetocentric reference frame, e.g., ME lunar frame. The easiest example is the crater
matching approach, in which known lunar craters are cataloged with their latitude
and longitude with respect to a Lunar fixed frame. The detection and matching of
one of the cataloged landmarks (or computer-based database features) yield a bearing
measurement that can be processed to establish the global position of the spacecraft.
This approach is robust and accurate but it requires at least a partial knowledge of the
terrain before the spacecraft sees it.

• Unavailable database: whenever the spacecraft is flying across unknown terrains, it
is impossible to establish its global position from images only. Nevertheless, local (or
relative) position, is still possible using frame-to-frame methods, which generally falls
into the visual odometry domain in terrestrial robotics. Methods that fall within this
classification differ between each other for increasing complexity level, along with
increasing computational effort. In particular, the retrieval of a three dimensional
description of the scene, e.g., the creation of a map in structure-from-motion-like
methods, represent one of the major trade-off to be performed when assessing the
feasibility of on-board implementation. These methods solve the motion estimation
task by generating a 3D sparse map. A set of 2D-to-2D correspondences is obtained,
relative pose between the frames is calculated and a sparse map of 3D points is initial-
ized exploiting triangulation. The 2D features are then tracked for each subsequent
frame and correlated to the 3D map: this way a set of 3D to 2D correspondences
is obtained and used to solve the perspective-n-point problem, which along with a
RANSAC routine set to delete incoming outliers (wrong match between target image
and map), gives as a result a first estimate of the relative position of the camera.

In this paper, relative terrain navigation relies on frame-to-frame (2D-2D) motion
estimation that works with extracted features from a pair of images, without creating
any maps of the surrounding environment, coupled with an altimeter measurement. The
reader is suggested to refer to [10] to deepen the knowledge on multi-view geometry and
motion reconstruction. Once the features are tracked, a set of correspondences is available
between the two frames. Feature correspondences are related by epipolar geometry [10],
which completely describes the structure of the two consecutive camera poses and of the
world points seen by them. This description is enclosed inside the essential matrix E
for calibrated cameras, while fundamental matrix F holds for uncalibrated ones. Once
one of these two matrices is available, motion can be retrieved up to scale by a simple
algebraic decomposition. For particular cases in which the viewed scene is planar, feature
correspondences may be also related by an homography matrix H, from which motion
can be again extrapolated up to scale. Among the frame-to-frame alternatives that can be
employed for on-board applications in relatively low-power devices [11], two alternatives
represent the state-of-the-art in the literature.

1.1. Normalized 8-Point Algorithm

The normalized 8-point algorithm developed by Richard Hartley [10] is one of the
simplest and widely diffused method to obtain a fundamental matrix F from a set of
8 features correspondences without knowing the intrinsic parameters of the camera. The
algorithm simply involves the construction and least square solution of a set of linear
equations, and uses normalized input data for better conditioning of the problem and
stability of the result. The suggested normalization is a translation and scaling of each
image so that the centroid of the reference points is at the origin of the coordinates and
the RMS distance of the points from the origin is equal to

√
2. It is known [10] that for

the fundamental matrix F the following constraint is always valid: This gives rise to a set
of linear equations of the form A f = 0. If A has rank 8, then it is possible to solve for f
up to scale, and this is the classical way of implementing the 8-point algorithm. In the
case where the matrix A has rank seven, it is still possible to solve for the fundamental
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matrix by making use of the singularity constraint. The matrix F found by solving the
set of linear equations will not in general have rank 2 (i.e., will not be exactly singular
due to presence of noise in the extracted features xk−1, xk), consequently, steps to enforce
this constraint are taken. The most convenient way to do this is to correct the matrix F
found by the SVD solution from A. Matrix F is replaced by the matrix F′ that minimizes the
Frobenius norm subject to the condition det(F′) = 0. In the normalized 8-point algorithm
singularity constraint is enforced solving directly for F′ using SVD, which is simple and
rapid. Exact matrix F is then finally retrieved denormalizing matrix F′ obtained from
the normalized data. This method is direct and efficient to compute, but has anyway a
major drawback, which is associated to F matrix itself. Independently from the method
used in fact, fundamental matrix suffers from the so called “planar structure degeneracy”.
If the observed points from the camera lies on a plane (as it could be the case during a
landing phase, where surface is seen from far away and appears to be flat) F is determined
only up to three degree of freedom, which leads to a three-parameter family of possible
fundamental matrices F (one of the parameters accounts for scaling the matrix so there is
only a two-parameter family of homogeneous matrices). This ambiguity is not solvable
and is a consequence of the fact that the camera intrinsic (K matrix) are not included in F.

1.2. 5-Point Algorithm

Given a set of 2D feature correspondences, the most efficient solution to estimate
the essential matrix E is represented by the five-point algorithm [10,12]. The problem
is to find the possible solutions for relative camera pose between two calibrated views
given five corresponding points. The algorithm consists of computing the coefficients of a
tenth degree polynomial in closed form and subsequently finding its roots. Only relative
positions of the points and cameras can be recovered, overall scale of the configuration
represents an ambiguity and can never be extrapolated solely from images. Image points
are represented by homogeneous 3-vectors in the first and second view, respectively. World
points are represented as homogeneous 4-vectors X. This algorithm is thought to be used
in conjunction with pre-emptive RANSAC in order to be more robust to the presence of
outliers (i.e., false matches, wrong tracking) between the features. A number of random
samples are taken, each containing five points. Five-point algorithm is applied to each
sample and thus a number of hypotheses are generated. The best hypothesis is then chosen
according to a robust measure over all the tracks and is in the end iteratively refined.
One of the most important features of the five-point algorithm is that it works for any
kind of configuration of the features considered, avoiding the planar structure degeneracy.
This algorithm results to be efficient both in terms of accuracy and speed. In comparison
to other state-of-the-art methods, despite being weaker for determining rotations, five-
point works optimally for sideways motion and similarly for forward motion, although
slightly worse when baseline between the two cameras is very small. Using the essential
matrix also removes the projective ambiguity, which arises using fundamental matrix F,
and provides a metric (or singular) reconstruction, which means the 3D points are true
up to scaling alone, and not up to a projective transformation. Ideally, the output of the
correspondent locations ~mk−1, ~mk and the essential matrix is enough for a navigation filter
to perform state estimation. As the number of feature grows, it may be convenient to
pre-process such information to recover relative rotation and translation directly in the
image processing block.

In principle the above algorithms delivers a relative pose of consecutive views of the
camera, in the form of essential matrix for instance. In this way, direct relative translational
vector would be input to the filter.

In this paper, the implicit extended Kalman filter (IEKF) receives a set of normalized
Euclidean correspondences and the essential matrix. This vision-based approach is realized
via an implementation of the IEKF, which is a variation of the classical Kalman filter that
allows incorporating implicit functions as measurement constraints of the state variables.
The epipolar constraint, which is a geometric relationship between the feature point position
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vectors and the camera translation vector, is employed as the implicit measurement in
the Kalman filter. Basically, the algorithm is based on the epipolar constraint, which is
manipulated by matrix decomposition to obtain relative translation and rotation. The core
of this paper is to develop an algorithm that can be deployed on-board. The problem
of deterministic delay due to the image processing time is taken into account using a
customized extrapolation method that can fuse the high-frequency altimeter measurements
with the low-frequency optical information, with an intrinsic delay of 1 s (Figure 1).

Figure 1. Schematics of the required pre-processing steps to interface with the navigation filter.
The figure shows the different possibilities for interfacing the feature-based image processing with
the navigation filter with unknown landmarks and no 3D-map generation. In particular, the main
difference is whether the essential matrix is reconstructed externally (e.g., 5-point algorithm) and
used to retrieve the relative pose or it is embedded in the filter as the implicit measurement function.

2. Navigation Algorithm Description

The relative navigation reconstructs the relative state with respect to the defined
ground reference system (GRS). The idea is to detect salient features, which may not be
part of a database, and track them in subsequent frames as outlined in Figure 2.

Figure 2. Relative terrain navigation algorithm. The figure relates to Figure 1 showing the adopted
baseline for this work in terms of IP-navigation interfaces.
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3. Feature Detection & Matching

The pinhole camera model is adopted in this paper. Given the location of a detected
feature ρ f ,B in the camera frame, which is equal to the body frame Bb1,b2,b3 |k for simplicity:

~ρ f =

x
y
z


B

∈ R3 (1)

the pinhole camera model expresses the location of the feature point in the focal plane as:

~m =

u
v
1

 (2)

where:
u =

x
z

, v =
y
z

(3)

The ORB-descriptors are employed to make the matching more robust. ORB descrip-
tors assign an orientation to each feature such as left or right facing depending on how the
levels of intensity change around that feature. For detecting intensity change, ORB uses
intensity centroid. Given the assumption that a corner’s intensity is offset from its center,
the intensity centroid may be used to impute an orientation. To prevent the descriptor from
being sensitive to high-frequency noise, BRIEF method smooths image using a Gaussian
kernel. Subsequently, a pair of pixels is selected in a defined neighborhood around that
feature. The defined neighborhood around pixel is known as a patch, which is a square of
some pixel width and height.

4. Relative Navigation Filter

Algorithm 1 reports the most relevant steps of the EKF procedure in a pseudo-code
format. The extended Kalman filter in Algorithm 1 represents the basis for the implemen-
tation of the algorithm; nevertheless, strong modifications have been made in the update
step and the asynchronous measurement integration, described in Sections 4.2 and 4.4.

Algorithm 1 Extended Kalman Filter

1: ~̂x−k =
∫ tk

tk−1
f (~x(τ))dτ, ~xk−1 = ~̂xk−1, ~̂x+

0 = ~x0 . Prediction step

2: Fk =
∂f
∂~x

∣∣∣∣
x̂k−1

, Hk =
∂h
∂~x

∣∣∣∣
x̂k

. State and measurement Jacobian matrices

3: Φ(tk , tk−1) = I6×6 + Fk∆t . State Transition Matrix
4: P−k = Φ(tk , tk−1)P+

k−1ΦT(tk , tk−1) + Q, P+
0 = P0 . State Covariance matrix propagation

5: Kk = P−k HT
k (HkP−k HT

k + Rk)
−1 . Kalman gain matrix computation

6: ~̂x+
k = ~̂x−k + Kk(~yk − h(~̂x−k )) . Correction step

7: P+
k = (I−KkHk)P−k (I−KkHk)

T + KkRKT
k . State Covariance matrix correction

4.1. Prediction Step

The prediction step of the implicit Kalman filter follows the classical formulation of
Algorithm 1. It is important to remark that the distinction between absolute and relative
navigation is the reference frame in which the state is reconstructed. In the absolute
navigation, the state of the spacecraft is reconstructed with respect to the lunar fixed frame.
The lunar fixed frame considered is the mean Earth/polar axis (ME) reference system, as
shown in Figure 3, described in details in [13,14].
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Figure 3. Lunar fixed frame mean Earth/polar axis. Figure Credits [13].

It defines the z-axis as the mean rotational pole. The prime meridian (0 degrees
Longitude) is defined by the mean Earth direction. The intersection of the lunar equator
and prime meridian occurs at what can be called the Moon’s “mean sub-Earth point”. The
concept of a lunar “sub-Earth point” derives from the fact that the Moon’s rotation is tidally
locked to the Earth. The actual sub-Earth point on the Moon varies slightly due to orbital
eccentricity, inclination, and other factors. So, a “mean sub-Earth point” is used to define
the point on the lunar surface where Longitude equals 0 degrees. This point does not
coincide with any prominent crater or other lunar surface feature. During these phases,
orbital mechanics equations govern the motion. In case of relative navigation, the ground
reference system (GRS) is used, depicted in Figure 4.

Figure 4. Ground Reference System [15].

In the case of a close approach during landing, distances, for both downrange and
altitude, are small compared to the planet’s radius; thus, the assumption of a constant
gravity field with flat ground is appropriate. This assumption is widely used and accepted
in the literature (see [16]). The translational dynamics of the spacecraft are expressed in
a ground reference system (GRS), where z-axis is the altitude, x-axis downrange in the
direction of flight and the consequent y-axis cross-range. The dynamics during the power
descent phase is described by the equations:

~̇r = ~v

~̇v =
~T
m +~g

ṁ = − T
Ispg0

(4)

where T is the thrust vector delivered by the on-board propulsion, whose specific impulse
is Isp. In synthesis, the filter state can be written as:

~x =

[
~r
~v

]
(5)

The dynamical model is linear, hence the linearization is not required to compute the
covariance propagation as:

P−k = Φ(tk, tk−1)P
+
k−1Φᵀ(tk, tk−1) + Q, P+

0 = P0 (6)
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where the state transition matrix can easily be written as:

Φ(tk, tk−1) = I6×6 +

[
03×3 I3×3
03×3 03×3

]
· (tk − tk−1) (7)

This paper does not investigate thoroughly the influence of the dynamical model on
the performance of the relative terrain estimation. The novelty lies on the processing of the
frame-to-frame matched features. Regarding the dynamics to be employed, more accurate
environmental representation can be used, such as the one described in reference [1].
A more accurate dynamical model would certainly be beneficial for the filter accuracy,
nevertheless literature mostly reports applications in which constant gravity field is used
for planetary landing [17]. The introduction of the intrinsic formulation coming from the
epipolar constraint allows the filter to be directly fed with the frame-to-frame matching
without the need for an additional pre-processing step to retrieve relative translation from
sequential images (e.g., using the 5-points algorithm and essential matrix decomposition).
The increase in time for propagating the a priori state with a more complex dynamics is
negligible with respect to the above-mentioned pre-processing step.

4.2. Implicit Measurement Function: The Epipolar Constraint

The core of this paper is the development of an estimation algorithm that incorporates
matched features directly, without augmenting the internal states of the filter. The state of
the filter ~̂x is the estimate of the relative position~̂r and velocity ~̂v vectors. The filter receives
two elements for each matched features as measurement. Indeed, the locations of the n f
matched features in the two successive camera frames (k− 1 and k) are stored in stacked
variables, ~mk−1 and ~mk, whose columns:

• ~mk−1,i = [uk−1 vk−1 1]ᵀi : location of the matched feature i in camera frame at time
instant k− 1;

• ~mk, i = [uk vk 1]ᵀi : location of the matched feature i in camera frame at time instant k.

The frame-to-frame matched features represent the measurements at each time step.
Nevertheless, it is not trivial to obtain a measurement function that links the filter states~̂r
and ~̂v to the matched features between two consecutive frames k− 1 and k. In principle, one
would need an explicit function in the form of ~mk−1(~̂xk−1), ~mk(~̂xk). Each of these features
are related by the epipolar constraint given by Equation (8).

0 = ~mᵀ
k,iE~mk−1,i (8)

where
E = R[~t ]× (9)

in which R is the rotation matrix between the camera poses in two successive frames,
namely from step k− 1 to k and~t is the translation between the camera origin between
two successive frames, expressed in the camera frame at step k, which is equal to the
body frame Bb1,b2,b3 |k for simplicity. Typical space applications require the attitude to be
reconstructed with respect to one inertial frame or, at least, a planetocentric reference frame.
As mentioned, this paper investigates only relative position and velocity estimation from
optical measurement; thus, it is assumed that an internal knowledge of the system attitude
with respect to an inertial frame Ii,j,k is known. The reference frames, relevant for visual
odometry, are described in Figure 5. With reference to Figure 5, one can write the epipolar
constraint as:

R = [BRI,k][BRI,k−1]
ᵀ (10)

~t = (~rk −~rk−1)|k (11)

where it is important to note that the translation between two camera frames is expressed
in the body frame Bb1,b2,b3 |k, at time instant k.
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Figure 5. Frame-to-frame visual odometry reference frames.

With the above definitions, following the development of [18,19], we can rearrange
the epipolar constraint in Equation (8), recalling that we have n f epipolar constraints, each
one following Equation (8). Thus, rearranging:

0 = Ck−1,k~e (12)

where Ck−1,k ∈ Rn f×9 is a matrix, whose rows correspond to the following vector referred
to a given matched feature:

Ck−1,k =

 ~c1
...
~cn f

→ ~ci = [ukuk−1 vkuk−1 uk−1 ukvk−1 vkvk−1 vk−1 uk vk 1] (13)

and ~e = [e11 e21 e31 e12 e22 e32 e13 e23 e33]
ᵀ is a vector of stacked columns of the epipolar

matrix E. From the definition of the feature matrix C and the epipolar matrix E, it is
straightforward to note the variable dependencies of such matrices. In other words, one
can write:

Ck−1,k = C(~mk−1, ~mk) (14)

E = E(~r,~q) (15)

where ~q is the quaternion state, which is typically the attitude representation available
on-board. By recalling that the filter state ~̂x = [~̂r, ~̂v] we can explicitly write the implicit
measurement as a function of the filter state. Using the above derivation, we can finally
express the measurement that will be processed in the implicit Kalman filter:

~̂yk = h(~̂xk, ~mk−1, ~mk) = Ck−1,k(~mk−1, ~mk) ·~e(~̂rk,~qk) (16)

It is important to note that the true value of Equation (16) is always ~yk = 0 because it
is a geometric constraint that is always satisfied. Using the estimated state to compute the
essential matrix yields an innovation term that is defined as the difference between the true
value ~yk =~0 and the implicit measurement ~̂yk.
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4.3. Correction Step

The implicit measurement derived in Section 4.2 is used in the correction step of the
relative terrain navigation filter. In particular, with reference to Algorithm 1, the correction
steps entails the implicit measurement ~̂yk calculated using the current state estimate ~̂xk and
the set of matched features ~mk−1 and ~mk:

~̂yk = h(~̂xk, ~mk−1, ~mk) = Ck−1,k(~mk−1, ~mk) ·~e(~̂xk,~qk) (17)

The measurement update in the correction step of Algorithm 1 can be written as:

~̂x+k = ~̂x−k + Kk(~yk − h(~̂x−k , ~mk−1, ~mk)) (18)

= ~̂x−k −Kkh(~̂x−k , ~mk−1, ~mk) (19)

= ~̂x−k −Kk(Ck−1,k(~mk−1, ~mk) ·~e(~̂xk,~qk)) (20)

The Kalman gain in Equation (20) is calculated through the standard formula using the
measurement covariance matrix first order approximation R̃k. This is needed due to the
implicit form of the measurement function, which derives from the noise covariance matrix
of the measured feature localization Rk. In particular the Kalman gain can be written:

Kk = P−k HT
k (HkP−k HT

k + R̃k)
−1 (21)

where the first-order approximation of the measurement covariance matrix is derived:

R̃k = DkRkDᵀ
k (22)

in which the diagonal matrix:

Dk =
∂~yk

∂~̃Yk

=
∂Ck−1,k(~mk−1, ~mk)

∂~̃Yk

·~e(~̂xk,~qk) (23)

where the vector ~̃Yk = [u1,k−1 v1,k−1 u1,k v1,k . . . un f ,k−1 vn f ,k−1 un f ,k vn f ,k]
ᵀ combines the

locations of all the n f matched features at two consecutive steps. In order to complete the
calculation of the Kalman gain in Equation (21), the Jacobian matrix of the measurement
function h needs to be computed as:

Hk =
∂hk
∂~xk
|~̂x−k = Ck−1,k(~mk−1, ~mk)

∂~e(~̂xk,~qk)

∂~xk
|~̂x−k (24)

The core correction step is represented by the optical measurements described so far.
Nevertheless, landing navigation often uses high frequency altimeter measurements fused
in the navigation filter. As mentioned, the altimeter frequency is eight times the optical
one, namely falt = 8 Hz. This means that the filter updates every talt = 125 ms with
altimeter measurements only and every topt = 1 s with a major correction steps including
the optical images. For the selected filter state, the measurement matrix for the altimeter
measurements is fairly simple, because the vertical distance with respect to the terrain is
equal to the z component of the position:

~halt = [0 0 1 0 0 0] (25)

that represents the measurement vector to be used in the Kalman update. Such vector is
used alone during the fast cycles, and appended to the matrix Hk of Equation (24) when the
major slow cycle occurs. The issue with asynchronous updates due to the image processing
computational time is explored in the next Section 4.4.
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4.4. Delayed Measurements Integration

The navigation algorithm heavily relies on optical measurements. The information
content is extracted from the images through the feature extraction and matching algorithms
and the intermediate post-processing. Such process takes a finite amount of time that needs
to be taken into account when fusing the measurements in the IEKF, especially for real-time
applications. Indeed, when delayed measurements are present, at instant k the system
receives a delayed measurement corresponding to time instant s (s = k − N, where N
number of delay samples). There are various methods to consider the measurements delays
in the navigation filter [1]:

• Filter recalculation method: it consists of coupling two filters running at fast and slow
rate [20]. The former incorporates the high-frequency measurements, whereas the
latter is activated every time a delayed (e.g., slow and less frequent) measurement
arrives. The method computes the entire trajectory of the state until the current step.
Using this method, optimality is guaranteed at the cost of computational burden.

• Alexander method: it consists of updating the covariance matrices at time s as if the
delayed measurement arrived. Then, once measurements Ys are inserted at time k, the
update is simply the standard Kalman filter one with a correction matrix term [21].

• Larsen extrapolation method: The method described in [21] requires the measurement
matrix Hs and the noise distribution matrix Rs at time s. In the presented scenario,
this is not valid: the measurement matrix depends on the relative positioning of the
camera and craters. Larsen developed a measurement extrapolation method that does
not require knowledge about the two matrices until time k [22]. This method is taken
as a reference to implement a modified version suitable for the analyzed scenario.

The adaptation of the Larsen method for the measurement fusion is hereby described.
For details on the derivation, the reader is suggested to refer to the original reference [22].
Several modifications were needed to solve two shortcomings of the original method: the
incorporation of high-frequency altimeter and the extension to the nonlinear extended
Kalman filter. For the former, the filter firstly computes the gain and the updates as in
Algorithm 1 fusing fast altimeter measurements. For what concerns the delayed measure-
ments, let us call the measurements coming from the time instant s = k−N as~ys, which are
incorporated at time instant k. The Larsen method consists of calculating an extrapolated
measurements from ~ys to be integrated at time k, called ~yext

k,s :

~yext
k,s = ~ys + h(~̂x−k )− h(~̂x+s ) (26)

where ~ys = ~0 because it represents a geometric epipolar constraint at any time. At each
intermediate step between s and k a correction term M is calculated as:

Mk =

[ k−s−1

∏
i=0

(I−Kk−iHk−i)Φ(tk−i, tk−i−1)

]
Ps (27)

where the Kalman gain and measurement sensitivity matrix Hk−i at step k− i does not
reflect any update coming from the delayed measurement Ys. Then, the updates of the
correction term are calculated as follows, modifying the correction equations in Algorithm 1:

Kk,s = MkHT
k,s[Hk,sPsHT

k,s + Rs]
−1 (28)

~̂x+k = ~̂x−k + Kk,s(~yext
k,s − h(~̂x−k )) (29)

P+
k = (I−Kk,sHk,sMT

k P−1
k )P−k (I−Kk,sHk,sMT

k P−1
k )T + Kk,sRsKT

k,s (30)

The covariance update is a modified version of the Joseph formula adapted to the
original Larsen method. This is performed to ensure that the covariance matrix remains
positive semi-definite. As seen in Equations (26) and (27), the extrapolation method always
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requires only two matrix multiplications at each time instant and the storage of two
variables any time an image is acquired.

5. Numerical Results

The following section provides preliminary insights on the algorithm performance
during a sample landing trajectory.

5.1. Scenario Description

The considered mission scenario consists of the spacecraft descent on the lunar South
Pole from an altitude of 100 km down to 3 km. The landing area, within the South
Pole, is defined during the mission. A 2D planar Moon landing is taken as reference,
nevertheless the approach is easily applicable to a 3D scenario (including cross-range
direction). Spacecraft trajectories are generated executing optimal guidance algorithm
depending on the target location and thrust constraints. Moreover, due to the given
landing location, it is critical to take into account illumination and shadowing condition.
In particular, previous studies have highlighted that for the landing site selection it is
fundamental to consider the South Pole regions that present areas in sunlight. Since the
angle between the Moon rotation axis and the ecliptic is about 90 degrees, in the Polar
Regions the topography plays a crucial role for the illumination conditions. In fact, areas
at relatively high altitude can experience continuous periods of illumination (of several
months), whereas some crater bottoms are always in shadow. The Moon landing mission
scenario shall aim at landing sites (LS) with such characteristics. In such scenario, the
navigation system can encounter highly varying illumination conditions, with low Sun
elevation angle in the South Pole region and large shadow areas in the image. Figure 6
shows the assumed nominal phases for a Lunar landing mission.

Figure 6. Nominal lunar landing phases and navigation modes. Distances and times are not in scale.
The time scale takes the PDI as origin, while downrange is assumed to be 0 at the landing site [1].

It can be seen how on-board navigation operates in two modes, absolute navigation
mode [1,14] and relative navigation mode, discussed in this paper. In the following, the
landing phases are detailed:

• Parking orbit (PO): the spacecraft is in its orbital motion around the Moon and per-
forms absolute navigation with respect to the lunar fixed frame. The parking orbit is
assumed to be a circular orbit with constant altitude between 250 and 100 km. The
altitude 100 km is the value assumed in the paper for the lunar pinpoint landing
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scenario. Absolute navigation is performed. In traditional algorithms, lunar maps and
craters catalog are used to determine position and velocity.

• Maneuver (DM): the spacecraft performs a tangential burn to lower the orbit perigee,
inserting itself into an elliptical orbit. The lower the perigee, the lower the overall
amount of fuel required for the landing maneuver. At the same time, the terrain topog-
raphy pose a safety requirement on the minimum altitude of the perigee. Moreover,
15 km is a generally accepted value and is adopted as nominal value in this study.

• Coasting phase: the spacecraft follows the 100× 15 km elliptical transfer orbit in
ballistic flight. This phase ends after half orbit at the perigee. The spacecraft performs
absolute navigation.

• Powered descent initiation (PDI): the coasting phase terminates at the transfer orbit
perigee, nominally at 15 km altitude. At this point, the main thrusters are turned on
and the powered descent starts. In the following, the main states of the spacecraft at
PDI are listed:

– Downrange: [–550, –450] km
– Altitude: 15 km
– Velocity: ∼1700 m/s
– Time to touchdown: [–600, –500] s

• Main brake phase: in this phase, the spacecraft drops most of its horizontal velocity.
The thrust magnitude is constant and close to the maximum. The thrust vector pointing
profile is optimized and remains close to the local horizon. During most of this phase
the navigation is absolute, while in the last part relative navigation is initialized, for it
is required to be running as the landing site comes into the camera field of view. At
the end of the maneuver, the spacecraft is in the following state:

– Downrange: [–15,000, –1500] m
– Altitude: [7000, 2000] m
– Velocity: [100, 60] m/s
– Time to touchdown: [–100, –70] s

• Final approach phase: at the end of the main brake, the nominal landing site comes
into the field of view of the navigation system. The constant thrust constraint is
released and the spacecraft performs a pitch maneuver (PM) to point the thrust vector
mainly toward ground. In this phase relative navigation is performed; the landing
area is scanned and large diversions to the landing trajectory can be commanded to
cope with errors. The state of the spacecraft at the end of the final approach is in the
following ranges:

– Downrange: [–800, –450] m
– Altitude: [1500, 500] m
– Velocity: [50, 20] m/s
– Time to touchdown: [–40, –20] s

• Fine trajectory correction and hazard avoidance: below 1500 m of altitude, fine trajec-
tory corrections (in the maximum order of magnitude of hundreds of meters) can be
ordered to perform the hazard avoidance task. This phase ends on the vertical of the
selected landing site at a certain altitude (tens of meters), with null horizontal velocity
to ensure a vertical touch down.

• Terminal descent: powered vertical descent at constant velocity till the touchdown.

In an inertial reference frame, at the touchdown of the lander, horizontal velocity is
required to match the velocity of the terrain due to the rotation of the Moon around its
axis. Assuming a landing at the South Pole, the inertial tangential velocity of the lunar
surface at the landing site can be neglected, in first approximation, and the overall landing
trajectory is assumed to be planar (in the inertial reference frame). There are several
strategies in the selection of sensors suite for relative and absolute navigation. The landing
is performed using a camera with 40◦ field of view, a 1024× 1024 pixel sensor, and an
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altimeter. As summary, the nominal trajectory used for testing the navigation system is
shown in Figures 7 and 8.
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Figure 7. Altitude and velocity profile (horizontal and vertical) for the nominal landing trajectory
(powered descent and final approach only). Same testing trajectory as [1]. (a) Altitude. (b) Horizontal
velocity. (c) Vertical velocity.

0 100 200 300 400 500 600 700

Time [s]

-100

-80

-60

-40

-20

0

P
it
c
h
 a

n
g
le

 [
d
e
g
]

Main brake

Approach

(a)

0 100 200 300 400 500 600 700

Time [s]

500

1000

1500

2000

2500

3000

3500

4000

T
h
ru

s
t 
[N

]
Main brake

Approach

(b)

0 100 200 300 400 500 600 700

Time [s]

0

20

40

60

80

100

V
ie

w
 a

n
g
le

 [
d
e
g
]

Main brake

Approach

(c)
Figure 8. Thrust profile (orientation and magnitude) and pitch angle profile for the nominal landing
trajectory (powered descent and final approach only). Same testing trajectory as [1]. (a) Thrust angle.
(b) Thrust magnitude. (c) View angle over landing site.

The generation of synthetic images was performed using a custom rendering pipeline
based on PANGU software, as shown in Figure 9 [23,24].

Figure 9. Synthetic images generation tool for relative terrain navigation testing.

5.2. Feature Detection and Matching

This paper does not focus on the features detection and matching pipeline, as a robust
and common method is used to retrieve these elements from the images. The ORB detector
implemented in OpenCV [25] is used to process images, while a brute-force matching
approach based on Hamming distance is used to perform the frame-to-frame features
matching. A sample frame-to-frame matching is shown in Figure 10. The feature extraction
and description procedure implements the following:
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Figure 8. Thrust profile (orientation and magnitude) and pitch angle profile for the nominal landing
trajectory (powered descent and final approach only). Same testing trajectory as [1]. (a) Thrust angle.
(b) Thrust magnitude. (c) View angle over landing site.

The generation of synthetic images was performed using a custom rendering pipeline
based on PANGU software, as shown in Figure 9 [22,23].

Figure 9. Synthetic images generation tool for relative terrain navigation testing.

5.2. Feature Detection and Matching

This paper does not focus on the features detection and matching pipeline, as a robust
and common method is used to retrieve these elements from the images. The ORB detector
implemented in OpenCV [24] is used to process images, while a brute-force matching
approach based on Hamming distance is used to perform the frame-to-frame features
matching. A sample frame-to-frame matching is shown in Figure 10. The feature extraction
and description procedure implements the following:

## Feature extraction
#--------------------
kpkm1 = orb.detect(imgOrbkm1 , None)
kpk = orb.detect(imgOrbk , None)

# compute descriptors
kpkm1 , deskm1 = orb.compute(imgOrbkm1 , kpkm1)
kpk , desk = orb.compute(imgOrbk , kpk)
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Once features are extracted from two consecutive images, the brute-force matcher
object yields a set of corresponding features between the two consecutive frames. The set
of matched features is ordered based on their Hamming distances, meaning that the most
confident matches are ranked higher than less reliable ones. In coding, the instructions are
as follows:
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The average number of tracked features in consecutive images is roughly 500. Nev-
ertheless, the number of features influences the computational complexity of the filter.
In particular, the size of the epipolar constraint in Equation (16) scales linearly with the
number of features, as demonstrated by Equation (13). For the sake of limiting the compu-
tational burden, a maximum number of matched features has been set for the presented
simulation tests. In particular, two cases have been run with n f = 20 and n f = 100,
alternatively. The reader is suggested to refer to OpenCV documentation for the details of
the implementation [24].

5.3. Trajectory Estimation

The navigation algorithm has been implemented in Matlab-Simulink software. A
python interface is used to link the output of the image processing to the input of the
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The average number of tracked features in consecutive images is roughly 500. Nev-
ertheless, the number of features influences the computational complexity of the filter.
In particular, the size of the epipolar constraint in Equation (16) scales linearly with the
number of features, as demonstrated by Equation (13). For the sake of limiting the compu-
tational burden, a maximum number of matched features has been set for the presented
simulation tests. In particular, two cases have been run with n f = 20 and n f = 100,
alternatively. The reader is suggested to refer to OpenCV documentation for the details of
the implementation [25].

5.3. Trajectory Estimation

The navigation algorithm has been implemented in Matlab-Simulink software. A
python interface is used to link the output of the image processing to the input of the
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navigation module. The sample trajectory used for testing is the one described in Section 5.1.
The proposed navigation system provides an estimate of the translation states only, as
in [1], but relies on attitude determination to identify the camera pointing direction: then,
attitude estimation errors could have an impact on navigation performances. The spacecraft
rotational dynamics are not simulated: the navigation camera is assumed to maintain
a nominal nadir pointing, while a Gaussian noise with standard deviation σ = 1° is
added on the three Euler angles to represent attitude determination errors. The altimeter
measurements are synthetically generated by randomly perturbing the vertical groundtruth
position with a Gaussian noise. A standard deviation of 1 % of the current altitude is
assumed, reflecting the actual behavior of the laser altimeter technology. The whole model
is implemented in a Matlab-Simulink environment, with altitude measurements generated
at frequency 8 Hz. The navigation filter parameters are listed in Table 1. The initial
condition is given as a perturbed state with respect to the groundtruth with a Gaussian
noise with variance σ2 = 104 m2, which represents a potential initialization error when
the navigation switches from absolute to relative mode. The estimation error remains
bounded with a mean horizontal error and vertical error of less than 200 and 100 m,
respectively, representing less than the 0.5% of the position vector magnitude. As showed
in Figure 11, the number of matched features pairs that is processed by the algorithm has
an impact only on the estimated covariance. In other words, this means that the number of
features mainly influences the robustness of the filter without strongly affecting the accuracy
of the estimation. This is partially expected, as each epipolar equation is a standalone
geometric constraint. In principle, a minimum number of correspondences is needed for
static (i.e., without navigation filters) pose estimation, as discussed in Sections 1.1 and 1.2;
nevertheless, increasing the number of matches affects the covariance estimate at the cost
of higher computational burden.

Table 1. Simulation parameters.

Parameter Value Description

n f ,max=20, 100 50 Maximum number of processed matched features
P0 diag(104I3×3, 100I3×3) Initial Covariance Matrix

Rk,elem 100I2×2 Elementary crater localization error covariance
Rk,alt 102 Elementary altimeter error variance

Figure 11. Numerical results for a sample landing trajectory with different maximum number of
processed features.

5.4. Monte Carlo Analysis

To analyze the robustness of the algorithm, a Monte Carlo analysis is performed to
explore the uncertainties that typically affect the landing scenario and the filter tuning. In
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particular, the uncertainties distribution around the nominal values (cfr. Table 1) of the
analyzed variables are reported in Table 2. The analyzed variables are deemed to be the
most uncertain in a realistic deployment. They consist of the position and velocity initial
conditions ~x0 = [~r0,~v0]

ᵀ, initial covariance matrix P0, and the elementary measurement
covariance matrix Rk for features localization and altimeter.

Table 2. Monte Carlo variables distribution assumptions around nominal values. For the matrices,
each component is perturbed with the same random distribution.

Parameter σ Distribution

~r0 100 m Gaussian
~v0 0.1 m/s Gaussian
P0 diag(103I3×3, 10−1I3×3) Gaussian

Rk,elem 10−1I2×2 Gaussian
Rk,alt 101 Gaussian

The aim of the Monte Carlo analysis is twofold:

1. Objective 1: to analyze global results in terms of the landing trajectory mean error to
estimate product confidence levels.

2. Objective 2: to analyze the estimation error throughout the trajectory to evaluate filter
robustness and convergence.

The number of runs of the statistical analysis is selected to represent the global response
of the system to the assumed uncertainties, according to Hanson [26]. The goal of the
analysis is to estimate the mean estimation error value through the landing trajectory.
Therefore, in terms of statistical analysis, the goal is to estimate the mean estimation error
bound within a box at ∼99.73% of probability. It is important to note that, in the order
statistics approach (Objective 1), the necessary number of samples does not depend on how
many uncertain variables are varied. The standard error of the mean is used to assess the
accuracy of the Monte Carlo analysis. The standard error of the mean is calculated using
the sample standard deviation:

SEē ≈
σe√

n
. (31)

The standard error of the sample mean is an estimate of how far the sample mean is
likely to be from the population mean, whereas the standard deviation of the sample is the
degree to which individuals within the sample differ from the sample mean. As reported
in Table 3, the standard error of the mean is lower than 1 m using 100 samples, which is
considered as acceptable. Table 3 reports the mean and the ∼99.73% probability with 3σ
bound for the filter performance.

Table 3. Monte Carlo results for landing trajectory mean estimation error.

Metric µe 3σe [m] SEē [m]

horizontal error 193.9 27.3 0.9
vertical error 97.8 23.6 0.8

For Objective 2, the Monte Carlo runs are visualized in Figures 12 and 13. The 3σ
bound derived from the filter covariance estimation is compared with the 3σ bound at
each time step of the Monte Carlo population. The filter covariance estimate is larger than
the Monte Carlo variance, meaning that the filter is being conservative in its performance.
Furthermore, the variables taken into account in the Monte Carlo analysis are a subset of the
uncertainties that the filter is experiencing in the simulated scenario (e.g., variable altimeter
measurements errors as a function of the altitude). The conservative behavior is favorable
for the robustness of the filter. The vertical error shows an estimated covariance lower than
the Monte Carlo bound for a limited portion of the trajectory. This may be due to the selected
nominal case to which the filter covariance estimation refers to. Nevertheless, in Figure 13b,
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one can see that the filter covariance estimation still bounds correctly the estimation error
of the whole Monte Carlo samples except for few error spikes. Figures 12b and 13b show a
zoom of the overall plot to highlight the behavior of the different Monte Carlo samples.

(a) (b)
Figure 12. Monte Carlo runs for the landing trajectory. At each time step, the horizontal estimation
error for each Monte Carlo sample is reported. The 3σ bound derived from the filter covariance esti-
mation is compared with the 3σ bound at each time step of the Monte Carlo population. (a) Horizontal
error—Monte Carlo runs. (b) Horizontal error—Monte Carlo runs: zoom.

(a) (b)
Figure 13. Monte Carlo runs for the landing trajectory. At each time step, the vertical estimation
error for each Monte Carlo sample is reported. The 3σ bound derived from the filter covariance
estimation is compared with the 3σ bound at each time step of the Monte Carlo population. (a) Vertical
error—Monte Carlo runs. (b) Vertical error—Monte Carlo runs: zoom.

5.5. Computational Time: Comparison with Essential Matrix Pose Recovery

This work presents a filter formulation that uses the feature correspondences directly
in the update step; as depicted in Figure 1, a valid alternative is to pre-process the matched
features to retrieve the pose from perspective geometry relationships. In particular, as
discussed in Section 1.2, the 5-point algorithm can be used to find the essential matrix
from a set of features correspondences. Once the essential matrix is determined, it can be
decomposed using SVD decomposition. In general, four possible poses exists for a given E.
Thus, the algorithm requires to verify possible pose hypotheses by performing the chirality
check. The chirality check consists of the verification that the triangulated 3D points have
positive depth [27]. By decomposing E, one only obtains the direction of the translation, so
the function returns the translation unit vector. The altimeter measurement is used to scale
the pose estimation.

To be consistent in the comparison, taking as reference Figure 1, only the relevant steps
need to be timed. They consist of:

• IEKF:

– Implicit epipolar constraint (Section 4.2);
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– Correction step (Section 4.3): this step would be executed in all the presented
methods, but its execution time is influenced by the size of the Kalman gain
matrix, measurement matrix, and measurement covariance matrix. Hence, it is
reasonable to maintain its contribution in the required computational time for the
IEKF where the sizes of those matrices are not negligible.

• 5-point + SVD decomposition:

– 5-point algorithm solver [27], including RANSAC for outlier rejection;
– SVD decomposition of the essential matrix;
– Chirality check [27];
– Measurement scaling.

The summary results for the computational times are reported in Table 4. The algo-
rithms have been run in a Intel© Core™ i7-6500U CPU @ 2.50 GHz, thus the numbers in
Table 4 are only for relative comparison and they are not representative of any on-board
implementation. The histogram for the elapsed times for the 5-point + SVD decomposition
method is reported in Figure 14. It can be noted that the distribution is quite spread with
a significant standard deviation (cfr. Table 4) due to the preemptive RANSAC iterative
algorithm. On average, the decrease in computational time using IEKF is roughly 75%.

Figure 14. Distribution of execution times for the 5-point algorithm and pose recovery through SVD
decomposition of the essential matrix and chirality check.

Table 4. Execution times for different approaches: IEKF (this work) and 5-point + SVD decompo-
sition. The IEKF elapsed time refers to the computation of the implicit constraint and the relevant
covariance matrices.

Algorithm Mean [s] σ [s]

IEKF-correction 0.0012 0.0006
5-point + SVD 0.0047 0.0015

6. Conclusions

This paper presented a method to perform relative (or local) terrain navigation using
frame-to-frame features correspondences and altimeter measurements. In summary, the
proposed image-based approach relies on the implementation of the implicit extended
Kalman filter, which uses the epipolar constraint as the implicit measurement function. The
navigation system relies also on a fast cycle with altimeter updates. This method allows to
feed the navigation filter with the features coordinates directly to be fused with the altimeter
measurements, without employing the pre-processing algorithms to retrieve the relative
pose from features correspondences. For testing purposes, the altimeter acquisition was
set to falt = 8 Hz, whereas the images acquisition fopt = 1 Hz. Moreover, an extrapolation
method has been developed to incorporate the intrinsic delay of the image processing
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routine, which was set to 1 s. The algorithm has been tested on a sample landing trajectory
delivering good results in terms of position estimation with respect to the pinpoint landing
location. A systematic numerical testing campaign is foreseen to assess the robustness of
the navigation approach.
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