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Abstract: Good state and wind estimation is a requirement for the development of guidance and
control techniques for airships. However, usually this information is not directly available from the
airship sensors. The typical solution applies filtering, estimation and sensor fusion methods. This
paper presents a comparative study, evaluating three solutions for the state estimation of NOAMAY
airship. We also present alternative versions for the crucial estimation of the wind velocity, combining
Kalman filters with a data-driven Neural Network. Finally, we present special solutions to usual
problems encountered in filtering implementation as the mitigation of delays caused by second-
order filters. The sensors set considered is composed of a global positioning system, an inertial
measurement unit and a one-dimensional Pitot probe. Comparative simulation results are presented
with the use of a realistic nonlinear model of the airship.

Keywords: wind estimation; guidance; kalman filter; neural network

1. Introduction

Airships with autonomous operation capability are in the focus of worldwide inves-
tigation. Airships are particularly suited to scenarios that demand long endurance, high
payload and low operational risk, such as surveillance and environmental monitoring [1].

Airship control is a big challenge for the control systems designers as they are under-
actuated vehicles with strong nonlinear undamped dynamics [2]. Further, many nonlinear
control approaches like sliding mode, backstepping and incremental dynamic inversion
require the knowledge of vehicle velocities and accelerations, that may not be available
from sensors [3]. Thus, an accurate estimation of the state and its derivatives is fundamental
to the design of efficient control and guidance techniques.

Another crucial point is the wind estimation, which is particularly important for
lighter-than-air vehicles [4,5]. The work of [6] showed that a good wind knowledge can
result in more accurate geolocation of a ground target. Additionally, the crab-angle between
ground track and heading, obtained from estimating the wind conditions, can improve
the control performance of an airship in trajectory following. Finally, when the objective is
ground-hover at constant altitude, the blimp must align itself against the wind and use its
forward propulsion to balance the aerodynamic drag [7]. Therefore, by knowing the wind
speed and direction control performance can be improved.

For both state and wind estimation, the solution relies on filtering, estimation and
fusion of the sensory data. Common approaches are the Extended Kalman Filter (EKF) and
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the Unscented Kalman Filter (UKF). As an example, in [8], it is proposed an approach for
estimating the angle of attack and sideslip angle by the kinematic equations of motion of an
aerobatic UAV. Meanwhile, with the same kinematic equations, in [6] an extended Kalman
flter (EKF) is proposed for estimating the wind heading and velocity using an aircraft with
a single GPS and Pitot tube. In [9], a wind velocity observer also based on the kinematics is
proposed for small UAVs with experimental results. Similarly, in [10] is also proposed an
EKF for wind velocity estimation, however applied to a stationary stratospheric airship in
simulation environment. Then in [11] are presented four model-based solutions considering
an aircraft with four diferent possible configurations of sensors, as is shown in Figure 1.

Figure 1. NOAMAY Airship.

This work is placed in the context of project InSAC https://www2.eesc.usp.br/insac
accessed on 25 May 2022. The project aims to develop an autonomous airship for perform-
ing environmental monitoring tasks in remote Amazon rain forest areas. Such tasks include
aerodynamic flights and ground-hover (i.e., keep a stationary position with respect to a
ground target).

Firstly, the paper presents a comparative study evaluating different different solutions
for the state/derivatives estimation of NOAMAY airship, which is instrumented with a
pitot tube and an Inertial Measurement Unit (IMU) including: accelerometer, gyroscopes,
GPS, barometer and thermometer.

In a second moment, for the wind estimation, this work presents an alternative version
of a model based on wind velocity estimator using the EKF combined with a data-driven
approach of estimation using a Neural Network (NN). The main tool to validate the
proposed estimation approaches is a dynamical realistic nonlinear model of an airship in
Simulink/MATLAB. This tool is a result of the research group efforts since the seminal
project AURORA, which was improved during the projects DIVA and DRONI [12].

Finally, we present possible solutions to mitigate common problems arriving in filter-
ing implementation like the control input redundancy and the delays caused by second-
order filters [3]. For the input redundancy, related to an overactuated control system,
we propose filtering the less important commanded input, an approach that is known
as Washout Filter (WOF) [13]. Another critical point is the drawback that appears in the
second-order filters used to estimate state derivatives. The natural dynamics delay pro-
duced by these filters may harm the control system feedback. One possible solution to
mitigate this delay is the so called Input Scaling Gain (ISG), that was first proposed by our
research group in 2015 as a scalar factor gain [14]. In this paper, we generalize the input
scale gain to the MIMO case. To illustrate these two design solutions we present briefly
the concept of incremental controllers, that are used to show the benefits of these filtering
techiques, although not limited to these kind of controllers.

https://www2.eesc.usp.br/insac
https://www2.eesc.usp.br/insac
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2. Airship Model

The main tool to validate the proposed control approach is a dynamical realistic non-
linear model of a robotic airship, which can be expressed in a state-space form as following:

ξ̇ = g(ξ, x, d), (1a)

ẋ = f (ξ, x, d, u), (1b)

where:

• the kinematic states ξ = [PT ΦT]T include the cartesian position P = [PN PE PD]
T

and angular position Φ = [φ θ ψ]T in the North-East-Down (NED) frame (SI units);
• the dynamic states x = [V T ΩT]T include the linear speed V = [u v w]T and angular

speed Ω = [p q r]T in the body frame (SI units);
• the input vector u = [δe δa δr δ0 δq µ0]

T includes: δe, δa and δr which are elevator,
aileron and rudder deflections; δ0 as the normalized thrusters voltage; δq as the
differential voltage between the front-back thrusters; µ0 as the common vectoring
angle of the thrusters;

• and, finally, the disturbance vector d that includes wind velocities and gust variables
(SI units), as is shown in Figure 2.

CB/CVq
v

p u

r

w

Tail
Surfaces

Propeller

Pitot tube

Gondola

µ0

µ0

µ0

µ0

Figure 2. NOAMAY airship body diagram.

The dynamics are based on Newton-Euler equations considering the body frame
centered in the Center of Buoyancy (CB), which is approximately equivalent to the Center
of Volume (CV) [12]. Further, some nonlinear effects are included in the simulation, such
as: atmospheric pressure variation, temperature variation, lifting gas pressure variation,
Coriolis effect and actuator nonlinearities [7].

Finally, the linear and angular positions are updated through kinematic equations
as follows:

g(ξ, x) =
[

ST
Φ 03×3

03×3 RT
Φ

][
Vg
Ω

]
, (2)

where 03×3 is a null matrix of 3th order, SΦ ∈ R3×3 is the rotational matrix from airship
body to NED frame, and RΦ ∈ R3×3 is the angular transformation matrix, both given
by [7]:

SΦ =

 cψcθ sψcθ −sθ

cψsθsφ − sψcφ sψsθsφ + cψcφ cθsφ

cψsθcφ + sψsφ sψsθcφ − cψsφ cθcφ

,
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RΦ =

1 sφtθ cφtθ

0 cφ −sφ

0 sφ/cθ cφ/cθ

,

where cx = cos(x), sx = sin(x) and tx = tan(x).

3. Sensors Modeling

In this section, a summary of the sensors modeling is presented, including manufac-
turer specifications, such as bias and sample frequency. The NOAMAY robotic airship
is instrumented with a set of sensors including a Pitot Tube, responsible for measuring
the airspeed (Vpitot) and a multi-sensor Xsens Mti-G 700 which provides the following
information [15]:

• absolute position PNED [m] measured by GPS;
• absolute orientation in the world Φ [rad], as result of a sensor fusion between Gyro-

scope and Magnetometer;
• inertial linear velocity (Vg) in three-axis [m/s], estimated by the GPS;
• inertial angular velocity (Ω) in three-axis [rad/s], estimated by the IMU;
• inertial acceleration in three-axis (a = [ax ay az]T) [m/s2], measured by the Accelerom-

eter;
• atmospheric pressure Ph [hPa], by the barometer;
• and temperature Th [K], measured by the thermometer.

The sample frequency of the sensors are shown in the Table 1. Further, a first order
model for the Gauss Markov error of each sensor is given as [16]:

y = ŷ + b + wy (3a)

ḃ = − 1
τ

b + wb (3b)

where b is the sensor bias with Gaussian noise wb, wy is a Gaussian noise for the measure
as shown in Table 2, ŷ is the true simulated value and y is the corresponding sensor
output. For the sensors presenting bias, the parameter σRMS (The noise power is given by
(σRMS)

2/(sample frequency)) is specified in Table 3. In the case of Accelerometer, Barometer
and Thermometer there are some special parameters shown below.

Table 1. Sample frequency specification.

Sensor Frequency [Hz] Sampled data

IMU 100 Φ, Ω, a
GPS 4.00 Vg, PNED

Barometer 50.0 Ph
Thermometer 1.00 Th

Table 2. Sensor noise specification (wy).

Data σRMS Data σRMS
φ, θ [rad] 0.00520 a [m/s2] 0.0040
ψ [rad] 0.10000 PN , PE [m] 2.5000
PD [m] 5.00000 Vpitot [m/s] 0.0020

Ω [rad/s] 0.00035 Vg [m/s] 0.4000
Ph [hPa] 0.01000 Th [K] 1.0000
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Table 3. Sensor bias specification (wb).

Sensor σRMS

Gyroscope [◦/s] 1.3·10−4

Accelerometer [m/s2] 2.3·10−5

Barometer [hPa] 1.4·10−5

For the case of pose measurement a coordinate transformation is applied to the data
(with translational and rotational components). The GPS output is modeled as following:

Pgpsk
= Sxsens(PNEDk + Pxsens) +ϕposk

, (4)

where: Sxsens is the rotational matrix from the CB angular pose to the Xsens angular pose;
and Pxsens is the Xsens position in the body frame; ϕposk

is a position Gaussian noise vector
at instant k; and Pgpsk

is the sampled position given by the GPS at instant k.
The orientation output is modeled as following:

Φimuk = Φxsens + Φk +ϕorik
, (5)

where: Φk is the orientation given in simulation at instant k; Φxsens is the Xsens angular
pose in the body frame; ϕorik

is an orientation Gaussian noise vector at instant k; and Φimuk
is the sampled angular position given by IMU at instant k.

For the velocity measurement, we apply the coordinate transformation to the data
(with rotational components).

The resulting linear velocity output is as follows:

Vgpsk
= Sxsens(Vgk + Ωk × Õxsens) +ϕvelk

, (6)

where: Ωk is the angular velocity given in simulation at instant k; Õxsens is the position
vector from the CB to the Xsens position; Sxsens is the rotational matrix from the CB angular
pose to the Xsens angular pose; and Pxsens is the Xsens position in the body frame; ϕvelk

is
a position Gaussian noise vector at instant k; and Pgpsk

is the sampled position given by
the GPS at instant k.

The angular velocity output is modeled as following:

Ωimuk = SxsensΩk +ϕratek
, (7)

where: ϕratek
is an angular velocity Gaussian noise vector at instant k; and Ωimuk is the

sampled angular velocity given by the IMU at instant k.
The accelerometer signal includes the additional components of centripetal accelera-

tion (ac) and gravitational acceleration (ag), as:

a = V̇g + Ω̇× Õxsens − SΦag + ac, (8)

where Õxsens is the vector from the CB to the sensor location, SΦ is the rotation matrix from
the body frame to the North-East-Down frame and ac = Ω× (Ω× Õxsens).

In the case of the static pressure at a given altitude, we use the International Standard
Atmosphere (ISA):

Ph = P0

(
Th

Th − 0.0065PD

)5.257

, (9)

where Ph is the static pressure, Th is temperature in Kelvin, PD is the negative of the altitude
(in meters) in the inertial frame and P0 is the pressure at zero altitude (at the sea level
P0 = 101.325 hPa).

The temperature is given by the classical model, as linearly varying with the altitude:

Th = T0 + 0.0065PD, (10)
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where T0 is the temperature at zero altitude, recalling that PD is negative in our model.

4. Filtering and Estimation

We present here three possible solutions for the estimation of the state variables of
an airship, with particular analysis for the NOAMAY airship. The first one is the classical
second-order filter, and the other two are Kalman Filters (EKF and UKF). The performances
of the three approaches are then analyzed and compared. The algorithms developed in
C/C++ using the Robotic Operating System (ROS) [17], are available for consulting.

4.1. Low-Pass Filter

The first estimator is the classical second-order Low-pass filter (LPF), defined as:

χ(s)
Y(s)

=
ω2

f

s2 + 2ω f ζs + ω2
f
, (11)

where χ(s) is the estimated state, Y(s) is the sensor measure, ω f is the cut-off frequency
and ζ is the damping coefficient. For each estimated state and corresponding sensor, the
filter parameters used here are given in the Table 4. These values were chosen during
simulation by manual tuning.

Table 4. Configuration for Low-pass filter.

State Sensor ω f [rad/s] ζ

PNED, Vg GPS 3.33 0.96
Φ, Ω IMU 10 0.96

4.2. Extended Kalman Filter

The EKF algorithm is probably the most popular estimator used in the literature. In
this work we use the EKF ROS package (Available https://wiki.ros.org/robot_localization
accessed on 25 May 2022) known as robot_localization) [18]. This package is related
to the configuration of a generic 6DOF mobile robot with 6-DOF, yielding the filtered
estimation of positions, velocities and accelerations, both linear and angular.

We want to estimate here the complete airship state vector (PNED, Φ, Vg, Ω, a). Thus,
the measurement update stage uses the sensors output, as described in Table 5, where 1
indicates the presence of the sensor in the corresponding measured variable while 0 is
the opposite.

Table 5. Configuration for measurement update stage.

Data\Sensor GPS IMU Barometer
PNED 1 0 0

Φ 0 1 0
u, v 1 0 0
w 1 0 1
Ω 0 1 0
a 0 1 0

One important feature of robot_localization package is the sensor-based frame
reference in the East-North-Upper (ENU) frame, while we use the Norht-East-Down (NED)
frame, requiring a conversion. Further, regarding the acceleration signal, we implement a
cascaded approach in order to remove the centripetal acceleration component, as:

ˆ̇Vg = a− Ω̂0 × (Ω̂0 × Õxsens), (12)

The weights of the diagonal covariance matrix (15× 15) of the process are shown in
Table 6. The gains were chosen empirically, considering that the vehicle has slow dynamics
and that the airship can be assumed to be a rigid body. The hypothesis of enough stiffness

https://wiki.ros.org/robot_localization
https://wiki.ros.org/robot_localization
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of the hull is true if we consider that the envelope is under full operational volume and
pressure [19–21]. The rigidity assumption of a conventional airship is broken for extremely
high speeds or if the envelope is made of thin films to reduce the weight [22,23], which is
not the case of the NOAMAY airship.

Table 6. Process covariance matrix.

State Weight State Weight
Φ [rad] 0.010 a [m/s2] 0.100

Ω [rad/s] 0.100 u, v[m/s] 0.050
PN [m] 0.001 PE [m] 0.001
PD [m] 0.010 w [m/s] 0.001

4.3. State Estimation Results

We show here the simulation results comparing the three approaches, for the state
estimation in a trajectory tracking control case, as developed in [3]. The sampling rate of
the estimators is 32 Hz and the wind is blowing from the North. A visualization of the
estimation results, made in Simulink/Matlab, are available in youtu.be/VL5dvCyOZwY
(EKF) and youtu.be/B26xaKtAyWo (UKF) accessed on 25 May 2022.

Figure 3(above) shows the estimated trajectories for the different estimators, from
which we can see that EKF appears to be smoother and with less errors. The signals of the
longitudinal (u), vertical (w) and angular velocity in z-axis (r) appear in Figure 3(down).
We can see that the classical LPF provides good filtering, but with a significant delay, while
UKF is faster though with a bigger error. The EKF filter has a time response similar to the
UKF case, while displaying lower errors.

Thus, for the airship model considered here, the EKF showed a better performance in
comparison to UKF and LPF. For further details, including the RMS values of the position
errors, please refer to [3]. These results show the natural compromise between noise
attenuation versus estimation delay, found in an estimator design.

http://youtu.be/VL5dvCyOZwY
youtu.be/VL5dvCyOZwY
http://youtu.be/B26xaKtAyWo
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Figure 3. Estimated trajectory (above); Estimated vertical velocity (w), longitudinal velocity (u) and
angular velocity (r) (down).

5. Wind Velocity Estimators

This section addresses the problem of wind velocity estimation. Firstly, we detail the
equations related to the wind (Vw) and inertial airship velocities (Vg), as well as the airship
orientation (Φ), which are related to the Pitot probe sensor.

Let us define the airship’s relative velocity (Va), or airspeed, as:

Va = Vg −Vw, (13)

Whose modulus is called true airspeed (Vt) and is given by:

Vt = ||V a||2 =
√

u2
a + v2

a + w2
a . (14)

Let us recall also the aerodynamic angles, the sideslip β and the angle of attack α, as
shown in Figure 4, defined by:

β = sin−1 va

Vt
, (15)
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α = tan−1 wa

ua
. (16)

Or, equivalently:

wa = ua
sin α

cos α
and va = Vt sin β. (17)

Finally, we obtain:

Vt =
ua

cos α cos β
. (18)

X
Z

Y

Va

α

β

CB

Figure 4. Sideslip angle (β) and angle of attack (α).

The Pitot tube is located at the airship nose (see Figure 2). Also, the airship has a
pressure sensor connected to the Pitot Tube. Thus, as the airship moves forward, the
longitudinal dynamic pressure ∆P will be measured by the pressure sensor. The relation
between the measured pressure and the airship longitudinal airspeed can be derived from
Bernoulli’s equation as shown by [6], which can be rewritten as below:

∆P = η
(
ua
)2, (19)

where η is the calibrating factor related to the air density and pitot efficiency. Now, if we
use the variable transformation below:

Vpitot =
√

∆P, (20)

And using the statements (18) and (20), we can rewrite (19) as below:

Vt =
Vpitot√

η cos α cos β
. (21)

The unknown parameters in η together with the inaccurate angle values α and β are
then estimated together in a single variable, or scale factor c f , given by:

c f =
√

η cos α cos β, (22)

And thus (21) is now given by:

Vt =
1
c f

Vpitot. (23)

Now, recalling that Vg is written in the body, as well as Va, if we take these vectors
written in the inertial frame (NED), we can write the relative velocity equation (13) using
the rotational matrix SΦ from airship body to NED frame, we have:

VNEDa = VNED −VNEDw = ST
ΦVa. (24)
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As the rotational operation does not change the vector modulus, and assuming a wind
speed in the North-East plane, we have:

V2
pitot = c2

f
(
(VN −VNw)

2 + (VE −VEw)
2 + (VD)

2). (25)

Assuming initial conditions of α ≈ β ≈ 0, we have ua = Vt and va = wa = 0, and in
the global frame we have:

VNa = ua cos ψ cos θ, (26)

where ψ and θ are the yaw and pitch angles, respectively, which together with (13) give:

VEa = ua sin ψ cos θ, (27)

VN =
Vpitot

c f
cos ψ cos θ + VNw , (28)

VE =
Vpitot

c f
sin ψ cos θ + VEw . (29)

The measures of Vpitot, VN and VE come from the Pitot tube plus the GPS. In the
same way, the Euler angles (φ, θ and ψ) are obtained from the IMU. Therefore (25), (28)
and (29) can be used as observation equations, while c f , VNw and VEw are the estimated
states in the EKF Kalman Filter. Although these equations are linear dependent, we are
introducing redundant information of different sensors by adding IMU combined with
GPS measurements, which may lead to faster convergence and better filtering of noise.

5.1. Extended Kalman Filter

In this section we propose an EKF filter to estimate the wind speed in the airship
body. Supposing that the wind is blowing in the North-East plane, the objective here is
to estimate the wind velocity in the horizontal plane as well as the Pitot scale factor. By
introducing both (28) and (29) in the measurement update stage, we expect to improve the
results, in contrast when using just (25), as in the aproach of [6].

We consider here that the wind is constant with an additional Gaussian variance
component. In addition, as the uncertain and time varying factor c f is estimated at the
same time, we have the following model:

χk+1 = Fχk + νk, (30a)

zk = h(χk) + υk (30b)

where: χk = [VNwk VEwk c f k]
T is the state vector in the instant t = kts; zk = [V2

pitotk
VNk VEk ]

T

is the system output in the instant t = kts; ts is the sample time in seconds; h(χk) is the
output function, computed through (25), (28) and (29), and from which the Jacobian matrix
is derived. Further, F = I3, is the identity matrix, νk ∼ N(0, Q) is the process noise with
Gaussian distribution and covariance Q; and, finally, υk ∼ N(0, R) is the measurement
noise also with Gaussian distribution and covariance R. Given the model described in
(30a), we can use the traditional EKF algorithm, as presented in [3].

5.2. Neural Network

This section presents the design of a Neural Network (NN) algorithm for the estimation
of the wind speed and angle, supposing an horizontal wind profile. One of the advantages
of the use of a Neural Network is that it is trained by measured data, and it is thus able
to detect abrupt variations in the wind velocity. However, in contrast, it is usually more
sensitive to measurement errors. We will show that combining NN with the classical
estimators, using Kalman filters, we can benefit of the advantages of both.
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As presented above in equations (30a)–(30b), the wind model output is composed
by (25), (28) and (29), which are nonlinear equations in the model states, vehicle velocity,
orientation and Pitot pressure. To obtain an easier and more tractable model, the measured
data vector is transformed into 8 inputs given by:

znn =



V2
pitot
V2

D
VN
VE
V2

E
V2

N
Vpitot cos ψ cos θ

Vpitot sin ψ cos θ


.

Meanwhile, the output vector χnn of the Neural Network contains the estimated wind
speed components and the scale factor c f as:

χnn =

VNw

VEw

c f

.

The proposed Neural Network consists of a three-layer fitting NN, which has three
nonlinear hidden layers containing 24 neurons each and three linear outputs. The activation
function of the nonlinear neurons is sigmoidal. It was designed with the help of the
MATLAB Neural Network ToolboxTM. For more details, the reader is referred to [3].

5.3. Hybrid Estimator

Following the developments in [3], we propose now a hybrid estimator that is a
combination of both estimators, the EKF designed in Section 5.1 and the Neural Network
designed in Section 5.2. The idea is to change the measure update stage of the EKF
approach, when the output of the NN χnn is added to the measurement vector of the EKF
as a redundant measure. Thus, resulting in the new measurement vector zhk , updating
function hhk(χk) and its respective Jacobian Hhk given below:

zhk =

[
zk

χnn

]
, hhk(χk) =

[
h(χk)

χk

]
and Hhk =

[
H
I3

]
,

where I3 is the identity matrix. Then the EKF standard algorithm is used by updating the
matrices Ck, Kk and R, as shown in [3].

5.4. Wind Estimation Results

In this section, we run a simulation to evaluate the three approaches presented, estab-
lishing a comparison with the traditional model-based approach proposed by [6]. The sen-
sors models in the simulation environment use sample frequency as follows: IMU (100 Hz),
GPS (4 Hz) and Pitot tube (18 Hz). An online repository (https://github.com/leve-fem/
airship_estimatoraccessed on 25 May 2022) is available containing all the approaches.

As shown in Figure 5, the simulation considers wind with absolute value |~Vw| = 2m/s
and heading ψw = π

2 rad (blowing from East to West). Then in the instant t = 160s the wind
is intensified to |~Vw| = 3m/s and its heading is changed to ψw = π (blowing from South to
North). In the same Figure we highlighted five special moments with gray background in
order to establish further comparisons with the results in Figure 6. Moreover, we introduced
results using the estimator proposed by [6] as “Cho2011” for comparison.

From Figure 6, we can see that under an abrupt wind variation, as in instant (III), the
classical estimators (EKF and UKF) do not converge immediately as they are model-based
estimators depending directly on the Pitot information. Meanwhile the NN clearly, which is
data driven, shows an instantaneous wind correction in this situation, although exhibiting

https://github.com/leve-fem/airship_estimator
https://github.com/leve-fem/airship_estimator
https://github.com/leve-fem/airship_estimator
https://github.com/leve-fem/airship_estimator
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a biased value. The hybrid approach was also able to yield a correct estimation of the wind
speed before the instants (IV) and (V), when the Model-based estimators finally converges
for the acceptable values.
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Figure 5. Simulation trajectory for wind estimation.
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Figure 6. Simulation using the airship nonlinear model with realistic sensor noise: estimated wind
velocity components in NE frame.

In conclusion, we can observe that the NN had a better estimation of VEw in comparison
to the Model-based approaches. However, for the component VNw , the Model-based
approaches presented a better performance. Meanwhile the “Hybrid” approach had the
best performance in the estimation of VEw and an acceptable estimation for VNw .

6. Mitigating Filtering Design Issues

In this section, we present possible solutions to mitigate two common problems
arriving in filtering implementation that are the control input redundancy and the delay
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appearing in second-order filters. Input redundancy is related to an overactuated control
system. A common issue is that the redundant inputs can cancel each other when the
system achieves a stationary state condition which results in more energy consumption.
One solution for this problem is to perform a filtering in the commanded redundant input
which is less important for maintaining the equilibrium point, which is known as Washout
Filter (WOF) [13].

Another critical point is the drawback that appears in the second-order filters used
to estimate state derivatives. The natural dynamics delay produced by these filters may
impose serious problems to the control system feedback. One possible solution to mitigate
this delay is the so called Input Scaling Gain (ISG), that was first proposed by our research
group as a scalar factor gain [14]. In this section, we generalize the input scale gain to
the MIMO case. To illustrate these two design solutions we present briefly the concept
of Incremental Controllers, that are used to show the benefits of these filtering techiques,
although not limited to these kind of controllers.

6.1. Incremental Controllers

In order to illustrate the application of these two design techniques (WOF and ISG),
we present first the concept of incremental dynamics (ID) and incremental controllers.

In the last two decades, researchers have studied the classical Nonlinear Dynamics
Inversion (NDI), also known as feedback linearization, as a promising approach to unify
the control scheme of an Unmanned Aerial Vehicles (UAV) during the different phases of a
standard flight plan [24–26].

To cancel model nonlinearites, NDI controllers require a complete and precise model
of the system. However, in real-world systems, realistic dynamic models with accurate
parameters are almost impossible to be obtained. Firstly presented in [27], the incremen-
tal controlleres (ID) was used for designing a simplified version of Nonlinear Dynamic
Inversion. Later this strategy was named as Incremental Nonlinear Dynamic Inversion
(INDI) [28]. Since then, several works use Incremental Dynamics (ID) for designing nonlin-
ear control laws. As some examples, in [29], the authors use ID for designing Incremental
Backstepping (IBKS). In [30], ID is used for design the Incremental Sliding-Mode (ISM)
control law.

As a first step, let us present the concept of incremental dynamics [28]. Consider a
control affine nonlinear system in state space representation:

ẋ = f (x) + g(x)u, (31a)

y = h(x). (31b)

where x ∈ Rn is the vector of state variables, u ∈ Rm is the vector of control inputs, y ∈ Rl

is the output vector, and f , g, h are real analytic Lipschitz continuous functions.
The system dynamics (31a) can be approximated by its Taylor series expansion around

x = x0 and u = u0:

ẋ = ẋ0 + A0(x− x0) + B0(u− u0) +O((t− t0)
2), (32)

where (x, ẋ, u) and (x0, ẋ0, u0) are respectively the state, the state derivative, and input at
current time t and some previous time t0 < t, O((t− t0)

2) includes the higher order terms
of the Taylor expansion, and

A0 =
∂

∂x
[ f (x) + g(x)u0]

∣∣∣∣∣
x0

, B0 = g(x0), (33)

are state-dependent matrices that capture the linear system dynamics relationship with the
state and input variables, respectively.
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One of the key points in incremental controllers is that we assume that the time interval
ts = t− t0 elapsed between x0 and x is sufficiently small, such that we can suppose x0 ≈ x,
and thus the system dynamics (32) can be approximated by the so-called incremental
dynamics formulation:

ẋ ≈ ẋ0 + B0(u− u0), (34)

yielding the current state derivative from the knowledge of its value at the previous time
step and the input increment ∆u = u− u0.

Incremental controllers such as IBKS [29], ISM [30] and INDI [14] are sensor-based con-
trollers, taking advantage of the simplified dynamics (34), where the use of state dependent
dynamics is replaced by the measurement of the previous time derivative ẋ0.

INDI is the equivalent of the well known NDI control applied to the incremental
dynamics (34).

Let us impose a desired dynamics ν ∈ Rn. Then, the incremental dynamic inversion
results in the following control law:

u = u0 + B+
0 (ν− ẋ0), (35)

where B0B+
0 = In is the identity matrix of order n.

Note that if the matrix inversion is perfect then, replacing the control law in the
incremental dynamic equation gives

ẋ ≈ ẋ0 + B0∆u = ẋ0 + B0B+
0 (ν− ẋ0) = ν (36)

which shows that:

• the system modes are decoupled, allowing the design of independent linear controllers
for each of them.

• the state derivative tracks the dynamics imposed by ν;
• the previous state derivatives, and consequently their nonlinearities, are canceled (DI

is also called feedback linearization);

Taking advantage of the above, we can define ν as a pseudo-control signal, which is
usually taken as a linear state feedback. Imposing a linear dynamics, the feedback gain
places the closed loop poles, designing the desired response. As it is common sense in
cascade control, a Time Scale Separation Principle (TSSP) must be respected, and the INDI
loop must converge faster than the linear control loop. In addition, the implementation of
incremental controller considers the following assumptions:

A6.1 The system is output controllable (34), and any internal dynamics are intrinsically
stable in closed-loop.

A6.2 States are sampled at a sufficiently high frequency when compared with system dy-
namics.

A6.3 Fast control action in comparison to the system modes.
A6.4 The control signals and state references are measurable, continuous and bounded.

Additionally, accurate information on the state derivatives and actuator variables
is available.

A6.5 The input matrix B0 has known coefficient signals, and it is non-singular around
the region of interest.

Since all assumptions of Incremental controllers are satisfied we can define the INDI
control law (35) for the system in (31a). Figure 7 shows a typical block diagram of a sensor
based INDI control, where z−1 represents a delay of one sample time.
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Figure 7. INDI closed loop block diagram.

One of the most important advantages of using incremental controllers, which makes
it a successfull candidate for real applications, is the great robustness to model parameters.
The most common control approaches are said to be model based, for their design being
strongly dependent on the system dynamics model. This aspect requires the definition of
an accurate mathematical representation, as well as a careful system identification process.
Nevertheless, the resulting model will still be subject to noise, disturbances and remaining
model uncertainties.

The approach based on the incremental dynamics on its hand requires only the identifi-
cation of the input matrix, neglecting the parameters that depend exclusively on the internal
states and it is expected to be robust to model uncertainties. Furthermore, the incremental
formulation is very simple and intuitive, supported on well established mathematical
fundamentals, with only a few parameters to set-up.

On the other hand, restrictions on the use of incremental controllers arise out of
assumptions A6.1 to A6.5. Initially, as a consequence of the model simplifications, all the
needed information about the system states is obtained from measurements. Thus, to
ensure quality in the measurements, the feedback states and state derivatives are to be
updated at a sufficiently high sampling rate, with good quality sensors. Furthermore, A6.3
implies that input control signal must have dominance on the system dynamics, demanding
fast actuation when compared with system modes. These assumptions are satisfied in the
most of UAVs since the control actuation has the greater influence over the dynamics.

In the following subsections we present and analyze the two techniques (WOF and
ISG) proposed to mitigate the filtering design problems of input redundancy and second-
order filtering delay. The results are illustrated through numerical examples considering
an application for the INDI control.

6.2. Input Redundancy Treatment

If we consider that the input matrix B0 from (35) may not be square, we can expect
an input redundancy to occur. Therefore, there are various possible solutions of inputs ue
that achieve a given equilibrium point xe. A common issue is that the redundant inputs
can cancel each other when the system achieves a stationary state condition, resulting in
more energy consumption.

As an example, consider a simplified vehicle dynamics with a single state variable x
given by the longitudinal velocity and two inputs u1 and u2. This system dynamics can be
represented by the following mathematical modeling:

ẋ = f (x) + g1(x)u1 + g2(x)u2. (37)

Both control inputs u1 and u2 have influence over the vehicle velocity dynamics. Now
consider an equilibrium point xe > 0, thus ẋe = 0 and the following can be stated:

[
b1 −b2

][u1
u2

]
= − f (xe), (38)

where b1 = g1(xe) and b2 = −g2(xe) are positive constants.
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In this case, there are many choices for u1 and u2 resulting in the same constant
longitudinal velocity xe. However, this choice will impact in the energy consumption. The
ideal solution is to use the minimal control effort in order to save energy.

One solution for this problem is to perform a filtering in the commanded redundant
input which is less important for maintaining the equilibrium point. As a result we obtain
a system dynamics described in the following form:

ẋ = f (x) + g1(x)u1 + g2(x)û2, (39a)

˙̂u2 =
−1
τ

û2 + u2. (39b)

where û2 is the filtered commanded input for the brake. By imposing this dynamics, u2 will
naturally converge to zero and u1 will also reduce, once u2 is no longer canceling it. Note
that u2 is still useful for the transient state condition when the vehicle needs to slowdown
fast. This strategy is commonly referenced in the literature as Washout Filter (WOF) [13].

The solution can be extended for systems with Multiple Inputs and Multiple Outputs
(MIMO). Consider the following generalized MIMO system dynamics:

ẋ = f (x) + g(x)u, (40)

where x ∈ Rn, u ∈ Rm and m ≥ n.
Thus, applying the WOF to the redundant inputs we obtain the following extended dy-

namics: [
ẋ
˙̂us

]
=

[
In gs(x)

0l×n Ts

][
f (x)
ûs

]
+

[
gm(x) 0n×l
0l×n Il

][
um
us

]
(41)

where: l = m− n, x ∈ Rn is the vector of states; um ∈ Rn is the vector of main actuators;
us ∈ Rl is the vector of secondary (or redundant) actuators; ûs ∈ Rl is the vector of filtered
input signals, f (x) is the function of state dynamics; gm(x) is a function which describes
the influence of um in the state dynamics; gs(x) is a function which describes the influence
of us in the state dynamics; Tr = diag([−1/τ1; −1/τ2; −1/τ3; · · · ; −1/τl ]) is a diagonal
matrix with positive constants τ1, · · · , τl chosen by the designer; In is the identity matrix of
order n; and 0n×l is a matrix full of zeros with n lines and l columns.

The vector of redundant actuators can be chosen by analyzing the input function g(x)
through a systematic procedure. First, the designer must linearize g(x) in a chosen point
x0, obtaining the following:

B0 =
∂

∂x
g(x)

∣∣∣
x0

. (42)

By analyzing the matrix B0 ∈ Rn×m, the designer must identify the linearly dependent
columns, which indicates the redundant inputs. After identifying the redundant actuators,
the designer must choose and separate between main (um) and secondary (us) actuators,
by also defining the functions gm(x) and gs(x). Then the extended dynamics (41) can be
applied. This solution can be represented by a block diagram in a cascaded form as shown
in Figure 8, where û = [um ûs]T and g(x) = [gm(x) gs(x)].

Numerical Example

As an example consider the following linear system with two redundant inputs:

ẋ = x + 0.2u1 − 0.8u2 (43)

where x is the state, u1 is the first input and u2 is the second input.
By applying INDI, we obtain the following control law:

u = u0 + B+
0 (ν− ẋ0) (44)
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where u = [u1 u2]
T , B0 = [0.2 − 0.8], u0 is the previous input and ν = k(xd − x) is a

desired dynamics of first order. The block diagram in Figure 8 illustrates the closed loop
system, where z−1 represents a delay of one sample time ts = 0.01 seconds, û = [u1 û2]

T is
the control signal filtered by the WOF, k = 20s−1 is a linear gain and τ = 5 seconds is the
time constant of the WOF. We suppose the presence of actuator saturation (−0.5 ≤ u1 ≤ 0.5
and −0.5 ≤ u2 ≤ 0.5,) which is treated with an anti-windup strategy [3].

Figures 9 and 10 show the results for a step in xd using WOF denominated case (a) (or
“INDI+WOF”) and without WOF denominated case (b) (or “INDI”). For sake of comparison
consider the following quadratic cost function:

Ju =
∫ t f

0
u2

1(t) + u2
2(t)dt (45)

where t f = 15 seconds is the final time of simulation.

Figure 8. Numerical Example: Block diagram of the closed loop system of INDI+WOF.

Figure 9. Numerical example: comparison of tracking performance between INDI+WOF and INDI

Figure 10. Numerical example: comparison of input signals between INDI+WOF and INDI

From the figures, we see that the tracking performance is similar for both cases,
which does not happen for the control effort. In Figure 10, the saturation is achieved
in both control inputs for both cases (a) and (b). In case (b) the commanded signals u1
and u2 converge to values different from zero after the transient state (t > 6 seconds).
Consequently the system has higher energy consumption in case (b) with Ju = 17.85. In



Aerospace 2022, 9, 470 18 of 24

case (a) the energy consumption is reduced to Ju = 5.74. Therefore, the WOF appears as
a simple and advantageous solution for systems with redundant actuation with actuator
saturation, such as aerial vehicles i.e. multirotor drones, aircrafts and airships.

6.3. The Second-Order Differentiator and the Estimation of Derivatives

One important problem in control design, not limited to incremental controllers, is the
need for the derivative of a given state. They may be difficult to obtain or even impossible,
as is the case of the derivative of angular rates. Further, direct numerical differentiation of
the output signal may lead to noise amplification and abrupt variations.

A common solution to this problem is the use a Second-Order Differentiator (SOD) to
obtain the derivative of the state. The SOD works as a low-pass filter for the state yielding
a filtered output of the measure y. While providing an estimation of the state derivative,
the SOD simultaneously attenuates the high-frequency noise in the measure signal.

If we call the state derivative vector as w = ẋ, the estimation of the derivative ŵ, using
the second-order-derivative (SOD), is given by:

ŵ(s) =
[

ω2
ns

s2 + 2ζωns + ω2
n

]
y(s) . (46)

In the design procedure, the filter parameters like the natural frequency ωn and the
damping ratio ζ are used to adjust the passband mid-frequency, as well as the passband size.

6.4. Input Scaling Gain

A drawback that comes with the SOD filter is the natural delay produced by the
second order dynamics, which may harm the control system feedback. Thus, it is important
to mitigate this delayed estimation in order to robustify the controller.

One possible solution to this issue is the so called Input Scaling Gain (ISG), that was
first proposed by our research group in 2015 [14], as a scalar factor. In this paper, we
propose the generalization of the scale gain to MIMO systems, using a diagonal matrix
Λ ∈ Rn×n. In the case of the incremental controller design, the ISG is used to scale down
the difference (ν − ẋ0) in (35), reducing the bandwidth of the closed-loop system. The
matrix diagonal elements λii are real numbers in the interval ]0, 1], such that the modified
INDI control law is now given as:

u = u0 + B+
0 Λ(ν− ẋ0) , (47)

Note that with Λ = In we have the traditional INDI control law (35).
Substituting (47) in the closed loop Incremental Dynamics (34) results in:

ẋ = ẋ0 + Λ(ν− ẋ0) . (48)

Considering the discrete implementation, where the time interval between t0 and t is
∆t = Ts, we can rewrite (48) as:

∆ẋ
∆t

=
∆ẋ
Ts

=
1
Ts

Λ(ν− ẋ0) , (49)

Assuming a fast sampling rate (small ∆t), and denoting ẋ as w, (49) approximates to:

ẇ ' 1
Ts

Λ(ν−w0) . (50)

Considering t0 = t− Ts, (50) can be rewritten as:

ẇ(t) =
1
Ts

Λ[ν(t)−w(t− Ts)] . (51)
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Applying Laplace transform to (51), provides the transfer function between the state
derivative and the pseudo-control as:

L
{

ẇ(t) +
1
Ts

Λw(t− Ts)

}
=

1
Ts

ΛL{ν(t)} ⇔

⇔ TsΛ−1sw(s) + e−sTs w(s) = ν(s)⇔

⇔ w(s) =
(

TsΛ−1s + e−sTs I
)−1

ν(s) = diag

{
1

Ts
λii

s + e−sTs

}
ν(s) . (52)

Some important points to be remarked are:

• each component of νi of pseudo-control ν has an independent time constant Ts
λii

, as the
scale matrix Λ is a diagonal matrix.

• Under fast sampling, we can assume e−sTs ' 1 implying that (52) simplifies to a
simple first order low-pass filter, attenuating high-frequency perturbations in the
pseudo-control ν;

• as a possible drawback, the ISG reduces the bandwidth of the closed-loop dynamics,
eventually decreasing the overall performance;

6.5. Combining ISG and SOD: Closed-Loop Analysis

In order to investigate the stability properties as well as the performance improvements
against delays in the closed-loop system, we analyze here the proposed SOD+ISG solution
for a first-order SISO system, as shown in Figure 11.

Although illustrated here for a SISO system, the approach can be extended to multiple-
input-multiple-output (MIMO) systems as the diagonal structure of the ISG yields indepen-
dent components zi of the INDI-loop error z = ν−w0, and the SOD is also independent
for each state xi.

Figure 11. Block diagram of INDI controller applied to a first-order plant.

Firstly, to consider continuous systems, the discrete sample delays z−1 of INDI (see
Figure 7) are substituted by time delay components e−sTs . Further, to simulate the discrete
feature of INDI we add a Zero-Order Hold (ZOH) in the control loop, as well as an extra
transport delay d to investigate the effects of additional unmodeled delays in the loop.

6.5.1. Analytical Formulation

The system to be controlled is defined as:{
ẋ = ẋ0 + g(x0)∆u
y = x , (53)

where its dynamics is described using ID formulation (34), and its output is the state itself.
In this section we only analyze the local behavior of the system, where the control

effectiveness function g(x0) is approximated by a constant g0.
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The transfer function H1(s) relating the state derivative w with the input increment
∆u is given (34) by:

H1(s) =
w(s)

∆u(s)
= g0

(
1

1− e−sTs

)
, (54)

and, thus, the transfer function H2(s) is given (53) by:

H2(s) =
y(s)

∆u(s)
=

1
s

H1(s) . (55)

One important feature of the INDI controller, as shown in (36), is that the state deriva-
tive w should follow a given pseudo-control ν. Therefore, it is important to analyze the
transfer function from ν to w, denoted here as H3(s), shown in the block diagram of
Figure 11, and given by:

H3(s) =
w(s)
ν(s)

=
g−1

0 λZ(s)H1(s)

1 + g−1
0 λZ(s)H2(s)

ω2
ns

s2+2ζωns+ω2
n

e−s(Ts+d)

=
g−1

0 λZ(s)H1(s)
(
s2 + 2ζωns + ω2

n
)

s2 + 2ζωns + ω2
n + g−1

0 λω2
ne−s(Ts+d)Z(s)H2(s)s

, (56)

where Z(s) = 1−e−sTs
sTs

is the zero-order-holder.
Substituting (54), (55), and Z(s) into (56), we finally come to the transfer function from

ν to w as:

H3(s) =
λ
Ts

(
s2 + 2ζωns + ω2

n
)

s3 + 2ζωns2 + ω2
ns + λ

Ts
ω2

ne−s(Ts+d)
. (57)

Note that (57) is a delayed system where the delay appears in the constant term of the
characteristic equation, such that the simple first-order Padé approximation

e−sT ≈ 1− sT/2
1 + sT/2

. (58)

can be used to investigate the stability analysis of the closed-loop system.
The resulting transfer function H3(s) is finally approximated to:

H3(s) =
λ
Ts

(
1 + s (Ts+d)

2

)(
s2 + 2ζωns + ω2

n
)

(Ts+d)
2 s4 + (ζωn(Ts + d) + 1)s3 +

(
2ζωn +

(Ts+d)
2 ω2

n

)
s2 +

(
(2−λ)Ts−λd

2Ts
ω2

n

)
s + λ

Ts
ω2

n

. (59)

From which we can conclude that:

• As desired in the INDI approach, w will follow a pseudo control ν, due to the fact that
the transfer function has unitary dc-gain;

• Considering the Routh–Hurwitz criterion, H3(s) will be stable for positive coefficients
in the characteristic polynomial, which implies that (2− λ)Ts − λd > 0;

• Further, the ISG is also effective to mitigate the effects of additional delays in the
closed-loop. For example, without the use of ISG (λ = 1), the extra delay should never
be greater than the sample time Ts.

6.5.2. Numerical Example

A numerical example is presented here to investigate the effect of the ISG gain and
the SOD differentiator approach in the control loop. To investigate the role of the delay in
the INDI control, let us analyze the scenario in which there is an extra delay d > Ts in the
INDI feedback loop. Figure 12 shows the results for the step inputs applied to H3(s) and
the corresponding Bode plots, assuming a sampling frequency of 50 Hertz.
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The simulations were done for three diferent conditions: a) Varying ISG scale gains for
a given measured state derivative (note that lower λ implies lower natural frequency and
bigger damping ratio); b) Varying ISG scale gains for a differentiator with a given natural
frequency of 15

Ts
; and c) Varying the natural frequencies of the differentiators for a fixed ISG

gain equal to 0.5.
The step response plots, without using the ISG (equivalent to λ = 1), shows that the

system is unstable for this plant that has an extra delay d larger than the sample time Ts.
However, the system becomes stable if a lower value of λ is considered. For the case where
the bandwidth of the differentiator satisfies the relation ωnTs = 15, the extra delay d added
by the filter destabilizes the system even if we use an ISG gain of 0.8, while an ISG gain of
0.5 is sufficient to make it stable for different SOD frequencies.

From these results, we conclude that the combined approach SOD + ISG yields a
useful and practical derivative estimator, since the ISG can mitigate the effects of the delay
generated by the second-order differentiator. Additionally, we remark that it can even
mitigate other possible delays appearing in the feedback loop.

Figure 12. Step responses and bode plots of the INDI loop with exta loop delay d = 1.1Ts (22ms),
comparing: (a) ISG values with ideal state feedback; (b) ISG values with ωnTs = 15 in the SOD;
(c) SOD frequencies with ISG of λ = 0.5.

7. Conclusions

In this paper we presented a comparative study evaluating different solutions for the
state estimation of a robotic airship as well as its derivatives. For the state estimation we
used a second order filter, an Extended Kalman Filter and an Unscented Kalman Filter.
We performed all simulations using a high-fidelity airship dynamic model for Simulink
platform. For the state estimation, the EKF showed a better performance when compared
to the other estimation techniques.

In a second moment, we presented a Model-based (EKF) and a Data-driven (Neural
Network) approaches for the estimation of the wind velocity. Also, we proposed a novel
Hybrid approach, by performing a fusion between the designed Model-based and Data-
driven approaches in a cascaded structure. While the NN approach alone tends to estimate
the wind speed with an offset (bias), the EKF estimation has long delays for sudden wind
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changes. However, the Hybrid approach tends to yield a faster response with small bias for
the estimated wind components.

Finally, we presented possible solutions to mitigate two common problems arriving in
control implementation that are the control input redundancy and the delay introduced by
second-order filters. The first one is solved with the use of the Wash Out Filter (WOF). The
second one is mitigated with the use of the Input Scaling Gain (ISG) which is generalized
here for the MIMO case. To illustrate the design solutions we applied the techniques for
the design of incremental controllers, although they can be used also for other nonlinear
control approaches in the same situation.
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EKF Extended Kalman Filter
ENU East-North-Upper
ID Incremental Dynamics
INDI Incremental Nonlinear Dynamic Inversion
ISG Input Scale Gain
GPS Global Positioning System
IMU Inertial measurement unit
InSAC National Institute of Science and Technology for Cooperative Autonomous Systems
LPF Low-pass filter
NDI Nonlinear Dynamic Inversion
NED North-East-Down
NN Neural Network
ROS Robotic Operating System
SOD Second-Order Differentiator
UAV Unmanned Aerial Vehicle
UKF Unscented Kalman Filter
WOF Wash Out Filter
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