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Abstract: The lack of high-quality, highly specialized labeled images, and the expensive annotation
cost are always critical issues in the image segmentation field. However, most of the present methods,
such as deep learning, generally require plenty of train cost and high-quality datasets. Therefore, an
optimizable image segmentation method (OISM) based on the simple linear iterative cluster (SLIC),
feature migration model, and random forest (RF) classifier, is proposed for solving the small sample
image segmentation problem. In the approach, the SLIC is used for extracting the image boundary
by clustering, the Unet feature migration model is used to obtain multidimensional superpixels
features, and the RF classifier is used for predicting and updating the image segmentation results. It is
demonstrated that the proposed OISM has acceptable accuracy, and it retains better target boundary
than improved Unet model. Furthermore, the OISM shows the potential for dealing with the fatigue
image identification of turbine blades, which can also be a promising method for the effective
image segmentation to reveal the microscopic damages and crack propagations of high-performance
structures for aeroengine components.

Keywords: semantic segmentation; small samples; SLIC; Unet; transfer learning; turbine blade
images

1. Introduction

With the rapid development of artificial intelligence and computer vision technolo-
gies, Image Recognition (IR) has been applied in many frontier fields, such as the liver
tumor segmentation and cell recognition in biomedicine, as well as the defect detection,
microstructural analysis of key components in the aerospace field [1–6]. Therefore, it is vital
to conduct high-precision target recognition for improving the measurement and statistics
of important characteristics. Meanwhile, the accurate and reliable target segmentation is
actually one of the major problems in the image recognition.

The current popular image segmentation methods can be roughly categorized into
two groups [7,8]: handcrafted features, and Deep Learning (DL) method. Generally, the
typical handcrafted feature methods mainly use the handcrafted low-level and middle-level
features for segmentation [9]. (1) The low-level features include the color [10], Gray-Level
Co-occurrence Matrix (GLCM) [11], Local Binary Patterns (LBP) [12], Gabor descriptors [13],
and Scale-Invariant Feature Transform (SIFT) [14], etc. Although these features are easy to
be comprehended and conducted, it is usually unable to accurately capture the high-level
image semantic information. Thence, the accuracy of the low-level features for image
segmentation is relatively low. (2) The middle-level features, which include the Spatial
Pyramid Matching (SPM) [15], Spatial Co-occurrence Kernel (SCK) [16], Probabilistic
Latent Semantic Analysis (PLSA) [17], and Fisher Kernel [18], etc., can be obtained by
encoding the low-level features. Meanwhile, compared with the low-level features, the
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middle-level features can have a higher accuracy. However, the methods using the middle-
level features generally require clever design features or specific constraints to increase
feature discrimination. Thus, many factors must be considered in feature design and their
generalization is poor, especially in constructing middle-level features.

The deep learning technology has been widely applied in the field of image seman-
tic segmentation [19]. For example, Shelhamer et al. [20] adopted the full convolutional
network (FCN) technology to solve the pixel-level segmentation task, but this method
is not ideal in the fine-grained segmentation, which is due to that the end-to-end single
pixel classification training made much information in model pooling operation lost. Ron-
neberger et al. [21] proposed the Unet model through combining the deconvolution with
feature layer by skip connections, and avoiding the image feature information lost in the
multi-layer convolution. The Unet model is widely applied due to the advantages of
simple frame, few parameters and strong optimizable ability. However, it is found that
Unet models usually have the problem of weak edge segmentation break. Zhu et al. [22]
combined the handcrafted features with high-level semantic features which are extracted
by the deep CNNs to improve the performance of scene classification, while this method
cannot be effectively trained and implemented in the end-to-end method. Contrast to the
traditional methods, training an existing deep learning method can achieve the outstand-
ing performance. Nevertheless, the deep learning image segmentation methods [23–25]
generally require large training datasets, which makes them difficult to have the universal
applicability in small samples.

Recently, some image segmentation algorithms began to regard pixels as the basic unit
of image analysis, but most of them have ignored the spatial relationship between pixels,
resulting in poor image boundary segmentation [26–28]. Meanwhile, the superpixels
algorithm can fit the boundary of generated hyperparameter region to the edge of the
object or background in the image, i.e., the segmentation effect of the target and the
background turns to be good. Among them, the simple linear iterative clustering (SLIC)
superpixels algorithm based on K-means has the advantages of fast convergence, stable
segmentation, and wide application range [29]. In addition, the fusing superpixel and deep
learning method also has been revealed to exhibit good image segmentation effects [30–32].
For instance, Kanezaki et al. [33] proposed an image segmentation method based on
unsupervised algorithm, which is not enough robust and difficult to be applied directly.
Lv et al. [34] put forward a method based on superpixels and the stacked contractive
autoencoder in synthetic aperture radar images. Xiong et al. [35] raised a rice panicle
segmentation algorithm based on the SLIC, CNN, and entropy rate superpixel optimization
methods. Farhat et al. [36] proposed the hierarchical framework based on two-dimensional
superpixels and deep learning algorithm. In general, the methods combined superpixels
and deep learning have obtained a good performance, but they are not suitable for the
small samples’ image segmentation, and not improvable according to the prior knowledge.

The Random Forest (RF) method, as one of the primary machine learning methods, can
overcome the over-fitting problem to obtain better prediction accuracy and generalization
ability owing to the high efficiency and explainability for datasets [37], which makes it fairly
promising in solving small sample classification problems [38–40]. Accordingly, to address
the problem of image segmentation with few training samples and strong specialization,
an optimizable image segmentation method (OISM) is proposed through uniting the Unet
feature migration technology, SLIC superpixel algorithm and RF model together. In the
method, the SLIC is used to deal with the spatial organization relationship of pixels, and to
make the boundary of superpixel region well fit to the edge of image object or background.
Furthermore, the improved Unet model is applied to extract the multi-dimensional feature
information of input images and expand the super-pixel features. Therefore, the method
can solve the problem with insufficient feature data in the superpixels algorithm. Then,
the RF method is applied for modeling, predicting and updating the superpixels feature
data, to improve the accuracy of image segmentation. In final, the proposed OISM is
verified to be feasible and effective by applying in solving the engineering problems. Under
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preserving the semantic information and boundaries, a single image can be segmented
quickly and accurately by using the OISM.

To sum up, the paper is structured as follows. Section 2 introduces the theory and
methods of OISM, which involves the image filtering process, superpixels partition, Unet
and SLIC superpixels feature extraction algorithm. In Section 3, the cell Kaggle dataset
is applied for verifying the tunable image segmentation method proposed in the paper.
Section 4 focuses on the application of the proposed method in the fatigue damage image
analysis of turbine blades. Furthermore, major conclusions are summarized at last.

2. Materials and Methods

The framework of the proposed OISM is displayed in Figure 1, which including
(I) image filter processing, (II) extracting superpixels features based on the Unet, and
(III) image recognition and updating according to the OISM.
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Figure 1. Framework of the proposed OISM with Unet feature migration model and SLIC superpixels.
(I) the filter processes and SLIC superpixels results of the original image; (II) the improved Unet
migration model and the multidimensional feature layers of input image; (III) the image segmentation
and iteration process of the OISM based on RF.

(I) In the image filter processes obtain the superpixels’ mask from the original image
using the Top-Hat, Median filter, and SLIC superpixels algorithms;

(II) In the extracting process of superpixels features, obtain multidimensional feature
layers of input images using the improved Unet model, then calculate the superpixels
feature data by combining the superpixels mask in (I);

(III) In the image recognition and updating process, the RF classifier is trained by
adding superpixels labels and feature datasets, then if the results are not good enough, the
segmentation accuracy will be improved by new superpixels labels based on OISM.
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2.1. Image Filter Processing and Superpixels Partition

As shown in Figure 1(a2,a3), the Top-Hat and Median filter are employed to preprocess
the original images for preparing the superpixels division [41,42]. The Top-Hat filter is
used to reduce the uneven illumination of the input image by the morphological opening
operation. The opening operation is one of the morphology enhancement algorithms for
gray image and often used to de-noise or smooth the image edges. It is defined as

FOB = FΘB⊕ B (1)

where O is the opening operator; Θ and ⊕ are dilation and erosion operations; F(x, y) is the
input gray image; B(x, y) is the structural element.

Figure 2c,d shows the results of dilation and erosion operations of the image (a) using
the circular structuring element (b). The Top-Hat operation has some characteristics of
high-pass filtering, which can subtract the dark background from original images to reduce
uneven lighting. It is defined as:

H = F− (FOB) (2)
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Figure 2. The description of dilation and erosion operations. (a) original image; (b) the structuring
element; (c) the processing result of dilation operation; (d) the processing result of erosion operation.

The Median filter is one of Sequential statistical filters, which can replace the target
pixel value with the median gray value of its neighborhood. It is applied to reduce the salt
and pepper noise of images and explained by Figure 3.
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Figure 3. The principle of the Median filter.⊗
is defined by

e′ = median{a, b, c, d, e, f , g, h, i} (3)

where a, b, . . . , i are the values of the pixel of the gray image; e’ is the Median filter result
of shape 3 × 3;
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In addition, the SLIC algorithm is used to obtain the superpixels mask according to the
color and spatial similarity of each pixel in the processed image. The distance, D, between
pixels and clustering center in SLIC algorithm is defined by

D =

√(
dc
Nc

)2
+
(

ds
Ns

)2

s.t.

 dc =
√(

li − lj
)2

+
(
mi −mj

)2
+
(
ni − nj

)2

ds =
√(

xi − xj
)2

+
(
yi − yj

)2

(4)

in which dc is color distance; ds is spatial distance; Nc is the maximum color distance within
[1, 40]; Ns is the maximum spatial distance; i is the ith pixel; j is the jth clustering center;
l, m, and n are the LAB color space values of pixels. After each iteration, the mean value
of all pixel values in the cluster is used to update the cluster center. Figure 1(a4) visually
shows the boundary and shape of superpixels.

2.2. Superpixels Feature Extraction Algorithm with Improved Unet and SLIC

After the image filtering and SLIC superpixels algorithm processing, the Unet feature
migration model is used to extract the superpixels feature dataset. As shown in Figure 4,
the improved Unet model is applied to extract the multi-dimensional feature information
of input images and enhance the super-pixel features. In the improved Unet model, we
change the stride and the kernel size of padding of Conv2d to make the input image and
output results to be the same in the Pytorch frame. The size of the input image is 4482 and
the number of the channels is 3. To obtain the multi-scale feature datasets, the same-level
layers’ features of encoding and decoding are combined in the skip connection. In addition,
we clip the final layer of the improved Unet model to retain the 64-dimensional pixel
feature matrix.
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Figure 5 shows the way of calculating the superpixels feature datasets in OISM. The
64-dimensional output feature data obtained by the improved Unet model is converted into
64 gray images, which have the same size as the original image. Through combining the
superpixels mask and 64 gray images, each superpixel has 64 gray regions. The superpixels’
features are defined by,

Sr,q =

n
∑

t=1
Pq,t

n
(5)

where Sr, q is the q-dimension feature of rth superpixel; n is the number of pixels contained in
rth superpixel; Pq, t is the t-dimension feature of qth pixel. Then, combining the superpixels’
feature data to obtain 64-dimensional superpixels feature datasets.



Aerospace 2022, 9, 465 6 of 15
Aerospace 2022, 9, x FOR PEER REVIEW 6 of 15 
 

 

 
Figure 5. Superpixel feature dataset with the improved Unet model and SLIC algorithm. 

2.3. Optimizable Image Segmentation Method 
After acquiring the superpixels feature datasets, the OISM based on RF is proposed 

in Figure 6. In the method, the image segmentation is completed by 
(1) Label the interest superpixels to add the category, such as cell superpixels and back-

ground superpixels, according to human’s prior knowledge;  
(2) The superpixels feature data and labeled data are divided into the train datasets (la-

beled superpixels) and the test datasets (non-labeled superpixels); 
(3) Train the RF classification model using the train datasets, and predict the category of 

the test datasets in the final trained model; 
(4) If the evaluation indicators of the image segmentation are good, output the final seg-

mentation map; Otherwise, return to Step (1) to add new superpixels labels. 
To describe the number of labeled superpixels clearly, the proportion of labeled su-

perpixels in the image, K is defined by 

1

n

r
r
A

K
A

==


 
(6)

where Ai is rth superpixel area; A is the total area of single image; n is the total number of 
superpixels. 

 
Figure 6. Flowchart of optimizable image semantic segmentation with RF classifier. (a1) and (a2) 
are the labeled cell and the background class superpixels of the image; (b1) and (b2) are the train 

Figure 5. Superpixel feature dataset with the improved Unet model and SLIC algorithm.

2.3. Optimizable Image Segmentation Method

After acquiring the superpixels feature datasets, the OISM based on RF is proposed in
Figure 6. In the method, the image segmentation is completed by
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Figure 6. Flowchart of optimizable image semantic segmentation with RF classifier. (a1) and (a2) are
the labeled cell and the background class superpixels of the image; (b1) and (b2) are the train data
of labeled superpixels and test data of non-labeled superpixels of the image; (c) is the superpixels
classifier based on the RF; (d) is the final segmentation image.

(1) Label the interest superpixels to add the category, such as cell superpixels and back-
ground superpixels, according to human’s prior knowledge;

(2) The superpixels feature data and labeled data are divided into the train datasets
(labeled superpixels) and the test datasets (non-labeled superpixels);

(3) Train the RF classification model using the train datasets, and predict the category of
the test datasets in the final trained model;

(4) If the evaluation indicators of the image segmentation are good, output the final
segmentation map; Otherwise, return to Step (1) to add new superpixels labels.

To describe the number of labeled superpixels clearly, the proportion of labeled super-
pixels in the image, K is defined by

K =

n
∑

r=1
Ar

A
(6)
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where Ai is rth superpixel area; A is the total area of single image; n is the total number of
superpixels.

To verify the effectiveness of the proposed OISM, the confusion matrix [43] is regarded
as the index to evaluate the relationship between the predicted figure and the class figure.
The confusion matrix is used to distinguish true positive (TP), true negative (TN), false
positive (FP) and false negative (FN) value (Among them, TP is correctly predicted target
pixels, TN is wrong predicted target pixels, FP is correctly predicted background pixels,
and FN is wrong predicted background pixels), which are specifically defined in Table 1
and Figure 7.

Table 1. The definition of TP, TN, FP, and FN in the confusion matrix.

Ground Truth
Prediction

Positive Negative

Positive Ture Positive False Negative
Negative False Positive Ture Negative
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Figure 7. The schematic diagram of TN, TP, FN, and FP in the analysis of image segmentation.

In the comparative test, four evaluation indexes [44–47], i.e., pixel accuracy (PA),
mean pixel accuracy (MPA), mean intersection union (MIoU), and frequency weighted
intersection over union (FWIoU), are selected to evaluate the performance of the proposed
method. The PA is the proportion of pixels with correct classification to the total pixels,
indicating the proportion of the correct prediction values to the total predicted values. The
PA in the confusion matrix is gained by,

PA =
TP + TN

TP + FP + FN + TN
(7)

The MPA is the mean proportion of the number of correctly-classified pixels for each
category to the number of predicted pixels for the same category. When n+1 is the total
number of categories, the MPA is,

MPA =
1

n + 1
TP

TP + FP
(8)

The MIoU is the standard measure of the accuracy of image segmentation algorithms.
The larger the MioU value is, the higher the segmentation accuracy is. The MioU is
computed by the average value of the ratios of the intersection between predicted region
and real region to the union of predicted region and real region, i.e.,

MlOU =
1

n + 1

n

∑
i=1

TP
TP + FP + FN

(9)
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The FWIoU is the improvement of the MioU, in which the weight each category is
selected by the frequency of its occurrence. The FWIoU is calculated by,

FMlOU =
TP + FN

TP + FP + TN + FN
TP

TP + FP + FN
(10)

3. Results and Discussion

To verify the feasibility and effectiveness of the proposed OISM, a comparative ex-
periment is conducted with respect to the 2018 Kaggle cell dataset [48]. Meanwhile, the
microscopic image identification of a fractured aeroengine turbine blade [49,50] is regarded
as an example to validate the applicability of the proposed method. The Kaggle dataset is
divided into two datasets, which contains 735 training and testing cell images, as shown in
Figure 8. Wherein, one dataset is Unet model training dataset (Figure 8a), which is used to
train and improve the Unet model. The other is the superpixels multi-dimensional feature
dataset which is obtained from the developed OISM (Figure 8b). In the validation, the Torch
API with Pytorch as the backend is adopted for the Unet training/testing. Furthermore, the
platform is configured with the CUDA 11.2 and cuDNN 8.1.0, which is equipped with the
Nvidia RTX3070 graphics card in Windows 11(Python = 3.8) and one i7-12700KF CPU/32
GB RAM as well.
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3.1. Method Validation

The proposed OISM is verified based on the Kaggle dataset in the paper, specific steps
of which are shown as follows:

(1) The Kaggle dataset is uniformly filtered, then it is used to train the improved Unet
to obtain the feature extraction model. The average evaluation indexes PA, MPA, MIoU,
and FWIoU of the model in the test dataset are, respectively, 0.853324, 0.823063, 0.782891,
and 0.834420.

(2) The prediction image is preprocessed by the same filtering and SLIC superpixels
algorithm, in order to acquire the 64-dimension superpixels feature dataset through com-
bining the improved Unet model and Equation (5). Then, add the category labels to the
training dataset and testing dataset with superpixels forms. Next, the training dataset is
applied to train the RF classifier (model). Furthermore, the built RF model is utilized for
predicting the unlabeled superpixels classification (testing dataset), and fusing the same
class superpixels to obtain the segmentation images. Lastly, the misclassified superpixels is
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corrected by adjusting the K value based on the Equation (6), then the accurate RF classifier
is retrained with the corrected superpixels.

(3) To compare the segmentation effects of the Unet and the proposed OISM methods,
the indexes in Equations (7)–(10) are used to evaluate images with different cell sizes,
morphologies, and aggregation states. The corresponding results are listed in Table 2, in
which the bold data indicate the best methods among different indicators. The segmentation
effects of the Unet and the OISM methods for 5 typical test images and their intersection
with the actual calibration data are illustrated in Figure 9.

Table 2. Comparison of the evaluation indexes between the Unet and the OISM methods with
typical samples.

NO. Method PA MPA MIoU FWIoU

a
Unet 0.834259 0.851848 0.679433 0.733431

OISM (K = 0.8%) 0.887360 0.902457 0.763478 0.808452
OISM (K = 5.0%) 0.957993 0.971772 0.899906 0.922028

b
Unet 0.838364 0.871663 0.673284 0.746117

OISM (K = 0.8%) 0.913635 0.943578 0.799415 0.852301
OISM (K = 5.0%) 0.951767 0.969375 0.876222 0.912522

c
Unet 0.762253 0.762783 0.576126 0.640748

OISM (K = 0.8%) 0.686020 0.776503 0.510159 0.548241
OISM (K = 5.0%) 0.941086 0.959623 0.865410 0.893312

d
Unet 0.834915 0.895797 0.617159 0.764119

OISM (K = 0.8%) 0.946335 0.964344 0.816673 0.908712
OISM (K = 5.0%) 0.979523 0.988267 0.917164 0.961958

e
Unet 0.806793 0.811859 0.632902 0.697995

OISM (K = 0.8%) 0.937119 0.958537 0.855316 0.887218
OISM (K = 5.0%) 0.957596 0.972039 0.897415 0.921520

In Table 2, most of the evaluation indexes with the OISM (K = 0.8%) are better than
those with the improved Unet, and the segmentation accuracy of the OISM is rising with
the increasing K.

The dashed black boxes in Figure 9c show the segmentation accuracy inside different
cells. For instance, compared with (6) in Figure 9c, there are some blue areas in (5), which
means that the cells’ features extracted from the improved Unet have the relatively poor
effect. However, the OISM using the SLIC has exhibited a much better performance.

In addition, the dashed red boxes in Figure 9d show the segmentation accuracy outside
the cells. Compared with (6) in Figure 9d, there are some pink areas in (5), which means
the relatively poor ability of the target edges of the improved Unet. Although, the figure
with OISM (K = 0.8%) in (6) appears the same problem, the accuracy of segmentation
is gradually improved as the increasing of K. It is because that the OISM can add some
new labeled superpixels to improve the segmentation results. Thence, the OISM method
developed in this paper can retain the segmentation boundary well and exhibits little
misclassification rate, which can largely improve the segmentation accuracy compared
with the Unet method.

Moreover, to analyze the proposed OISM more comprehensively, 20 images from the
test datasets of the cells are randomly selected and calculated with the PA, MPA, MIoU,
and FWIoU compared with the improved Unet. A box plot is presented with the statistical
results in Figure 10, which consists of the minimum (0th percentile, Q0), the maximum
(100th percentile, Q4), the median (50th percentile, Q2, F), first quartile (25th percentile,
Q1) and lower quartile (75th percentile, Q3). In addition, the interquartile range (IQR),
which is the distance between the upper and lower quartiles is defined by:

IQR = Q3 −Q1 (11)
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Figure 9. The results from the Unet and the OISM methods in typical samples: (1) (a–e) are five cell
images selected for semantic segmentation; (2) denotes five true labeled images; (3) indicates the
segmentation results of Unet; (4) is the segmentation results with the OISM at K = 0.8% and K = 5.0%;
(5) and (6) are the relationships among the true labeled images, Unet segmentation images, and the
OISM images; A is the area of dashed red box where compare the results of inside cells segmentation;
B is the area of dashed black box where compare the results of outside cells segmentation.

(1) Compared with the IQR values of PA, MPA, MIoU, and FWIoU, the data of the
improved Unet is smaller than that of the OISM (K = 0.8%), while it is bigger than that of
the OISM (K = 5.0%). Thus, it shows that the accuracy of the OISM is more concentrated
with the increasing of K value.

(2) Compared with the median values (50th percentile) of four segmentation accuracy
indicators of the improved Unet, the data of the OISM is relatively better except the MIoU.
Owing to the different areas of cells and background, the accuracy weight of the background
pixels is higher than the cells. Therefore, the FWIoU value calculated by the frequency
weight of the occurrence is more reasonable than that of the MIoU.

(3) The PA of the OISM is concentrated between the median and the lower quartile,
while the PA of the improved Unet is concentrated around the median. The MPA of the
OISM is concentrated around the median, while the MPA of the improved Unet is concen-
trated between the median and the lower quartile. The larger weight of the background
class impacts more on the MPA of the OISM. It shows that the background class prediction
accuracy of the OISM is poor than the cell class, which makes the MPA non-concentrated
on the lower quartile.
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3.2. Engineering Application in Turbine Blade Image Analysis

In Figure 11(1), the microscopic damage image analysis of the aeroengine turbine
blades is conducted as well to verify the applicability and application potential of the
proposed OISM. In the research, the cracks, voids, and microstructures of different turbine
blades are recognized and tested, respectively. The corresponding results are shown in
Figure 11 and Table 3. It is demonstrated that the proposed OISM can obtain the excellent
segmentation results at a small K value for single image, and the segmentation accuracy
increases with the increasing K value.
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Figure 11. The identification of fatigue cracks, voids, and carbides in the turbine blades with the
OISM. (a–c) are the images of crack, voids, and microstructure; (1) and (2) are the original images and
the segmentation target mask of the fatigue test.

Table 3. Evaluation indexes of the image segmentation in different turbine blades with the OISM.

Type K Value (%) PA MPA MIoU FWIoU

Crack
K = 0.8 0.874330 0.865002 0.762658 0.778716
K = 1.6 0.875681 0.856561 0.761054 0.779182
K = 5.0 0.947255 0.954521 0.894341 0.901013

Void
K = 0.8 0.942570 0.945785 0.862369 0.895216
K = 1.6 0.932300 0.951606 0.844659 0.879264
K = 5.0 0.981622 0.985598 0.952157 0.964483

Microstructure
K = 0.8 0.944552 0.899092 0.646619 0.922001
K = 1.6 0.979505 0.893149 0.778808 0.964833
K = 5.0 0.992388 0.971998 0.903307 0.985876

4. Conclusions

The paper is aimed to propose an optimizable image segmentation method (OISM) to
improve the accuracy of image segmentation in structural health monitoring with small
dataset and strong specialization, by integrating simple linear iterative cluster (SLIC)
superpixels algorithm with K-means, improved Unet feature migration technology and
the random forest (RF) classification method. The SLIC is to well fit the boundary of the
superpixel region to the image edge of the object or background, by handling the spatial
organization relationship of pixels. The improved Unet model is used for extracting the
multidimensional features of superpixels by feature migration technology. The RF method
is employed to build the model based on the superpixels feature data and update the model
for image recognition, to improve the accuracy of image segmentation. The effectiveness
and practicability of the proposed OISM are verified by two cases. Main conclusions are
listed as follows:
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(1) Through introducing the SLIC superpixels algorithm, the proposed OISM can
preserve edge information and can address the problems of unclear boundary and misclas-
sification of Unet segmentations;

(2) Compared with the Unet model, the proposed method has relatively higher seg-
mentation accuracy as K = 0.8%, and the accuracy gradually improves with the increase of
K value;

(3) In light of the fatigue test image analysis of turbine blades, the developed OISM
shows a good segmentation effect when K = 5.0%, which further demonstrates the applica-
bility and engineering application potential of the proposed method.

The efforts of this study provide a promising method for accurate image segmenta-
tion with small dataset and strong specialization, and develops a useful technology for
the damage and crack propagation identification of aeroengine components in structural
health monitoring. In the future work, the OISM will be applied in the fatigue and frac-
ture performance research of aviation structural parts, which is quantitatively analyzed
from multiple-scales by image segmentation technologies. Furthermore, unsupervised
algorithms will be used to improve the efficiency of the OISM.
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13. Risojević, V.; Momić, S.; Babić, Z. Gabor descriptors for aerial image classification. In Proceedings of the International Conference
on Adaptive and Natural Computing Algorithms, Ljubljana, Slovenia, 14–16 April 2011; Springer: Berlin/Heidelberg, Germany,
2011; pp. 51–60.

14. Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [CrossRef]
15. Lazebnik, S.; Schmid, C.; Ponce, J. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York,
NY, USA, 17–22 June 2006; Volume 2, pp. 2169–2178.

16. Yang, Y.; Newsam, S. Spatial pyramid co-occurrence for image classification. In Proceedings of the 2011 International Conference
on Computer Vision, Washington, DC, USA, 6–13 November 2011; pp. 1465–1472.

17. Zhong, Y.; Cui, M.; Zhu, Q.; Zhang, L. Scene classification based on multifeature probabilistic latent semantic analysis for high
spatial resolution remote sensing images. J. Appl. Remote Sens. 2015, 9, 095064. [CrossRef]

18. Zhao, B.; Zhong, Y.; Zhang, L.; Huang, B. The Fisher Kernel Coding Framework for High Spatial Resolution Scene Classification.
Remote Sens. 2016, 8, 157. [CrossRef]

19. Minaee, S.; Boykov, Y.Y.; Porikli, F.; Plaza, A.; Kehtarnavaz, N.; Terzopoulos, D. Image segmentation using deep learning: A
survey. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 3523–3542. [CrossRef]

20. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

21. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the
International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October
2015; Springer: Cham, Switzerland, 2015; pp. 234–241.

22. Zhu, Q.; Zhong, Y.; Liu, Y.; Zhang, L.; Li, D. A Deep-Local-Global Feature Fusion Framework for High Spatial Resolution Imagery
Scene Classification. Remote Sens. 2018, 10, 568. [CrossRef]

23. Lu, Y.; Chen, Y.; Zhao, D.; Chen, J. Graph-FCN for image semantic segmentation. In International Symposium on Neural Networks;
Springer: Cham, Switzerland, 2019.

24. Yan, W.; Wang, Y.; Gu, S.; Huang, L.; Yan, F.; Xia, L.; Tao, Q. The domain shift problem of medical image segmentation and vendor-
adaptation by Unet-GAN. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted
Intervention, Shenzhen, China, 13–17 October 2019; Springer: Cham, Switzerland, 2019.

25. Cao, H.; Wang, Y.; Chen, J.; Jiang, D.; Zhang, X.; Tian, Q.; Wang, M. Swin-unet: Unet-like pure transformer for medical image
segmentation. arXiv 2021, arXiv:2105.05537.

26. Ahmad, P.; Jin, H.; Alroobaea, R.; Qamar, S.; Zheng, R.; Alnajjar, F.; Aboudi, F. MH UNet: A multi-scale hierarchical based
architecture for medical image segmentation. IEEE Access 2021, 9, 148384–148408. [CrossRef]

27. Shuvo, M.B.; Ahommed, R.; Reza, S.; Hashem, M.M.A. CNL-UNet: A novel lightweight deep learning architecture for multimodal
biomedical image segmentation with false output suppression. Biomed. Signal Process. Control 2021, 70, 102959. [CrossRef]

28. Kaymak, Ç.; Uçar, A. Semantic image segmentation for autonomous driving using fully convolutional networks. In Proceedings
of the 2019 International Artificial Intelligence and Data Processing Symposium (IDAP), Malatya, Turkey, 21–22 September 2019;
pp. 1–8.

29. Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC superpixels compared to state-of-the-art superpixel
methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [CrossRef]

30. Sornapudi, S.; Stanley, R.J.; Stoecker, W.V.; Almubarak, H.; Long, R.; Antani, S.; Thoma, G.; Zuna, R.; Frazier, S.R. Deep learning
nuclei detection in digitized histology images by superpixels. J. Pathol. Inform. 2018, 9, 5. [CrossRef]

31. Yang, F.; Ma, Z.; Xie, M. Image classification with superpixels and feature fusion method. J. Electron. Sci. Technol. 2021, 19, 100096.
[CrossRef]

32. Cai, L.; Xu, X.; Liew, J.H.; Foo, C.S. Revisiting superpixels for active learning in semantic segmentation with realistic annotation
costs. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 25 June
2021; pp. 10988–10997.

33. Kanezaki, A. Unsupervised image segmentation by backpropagation. In Proceedings of the 2018 IEEE international conference
on acoustics, speech and signal processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 1543–1547.

34. Lv, N.; Chen, C.; Qiu, T.; Sangaiah, A.K. Deep learning and superpixel feature extraction based on contractive autoencoder for
change detection in SAR images. IEEE Trans. Ind. Inform. 2018, 14, 5530–5538. [CrossRef]

35. Xiong, X.; Duan, L.; Liu, L.; Tu, H.; Yang, P.; Wu, D.; Chen, G.; Xiong, L.; Yang, W.; Liu, Q. Panicle-SEG: A robust image
segmentation method for rice panicles in the field based on deep learning and superpixel optimization. Plant Methods 2017,
13, 1–15. [CrossRef] [PubMed]

36. Afza, F.; Sharif, M.; Mittal, M.; Khan, M.A.; Hemanth, J. A hierarchical three-step superpixels and deep learning framework for
skin lesion classification. Methods 2022, 202, 88–102. [CrossRef] [PubMed]

37. Ali, J.; Khan, R.; Ahmad, N.; Maqsood, I. Random forests and decision trees. Int. J. Comput. Sci. Issues (IJCSI) 2012, 9, 272.

http://doi.org/10.1109/TSMC.1973.4309314
http://doi.org/10.1109/TGRS.2006.881741
http://doi.org/10.1023/B:VISI.0000029664.99615.94
http://doi.org/10.1117/1.JRS.9.095064
http://doi.org/10.3390/rs8020157
http://doi.org/10.1109/TPAMI.2021.3059968
http://doi.org/10.3390/rs10040568
http://doi.org/10.1109/ACCESS.2021.3122543
http://doi.org/10.1016/j.bspc.2021.102959
http://doi.org/10.1109/TPAMI.2012.120
http://doi.org/10.4103/jpi.jpi_74_17
http://doi.org/10.1016/j.jnlest.2021.100096
http://doi.org/10.1109/TII.2018.2873492
http://doi.org/10.1186/s13007-017-0254-7
http://www.ncbi.nlm.nih.gov/pubmed/29209408
http://doi.org/10.1016/j.ymeth.2021.02.013
http://www.ncbi.nlm.nih.gov/pubmed/33610692


Aerospace 2022, 9, 465 15 of 15

38. Liu, B.; Guo, W.; Chen, X.; Gao, K.; Zuo, X.; Wang, R.; Yu, A. Morphological attribute profile cube and deep random forest for
small sample classification of hyperspectral image. IEEE Access 2020, 8, 117096–117108. [CrossRef]

39. Kong, Y.; Yu, T. A deep neural network model using random forest to extract feature representation for gene expression data
classification. Sci. Rep. 2018, 8, 1–9. [CrossRef] [PubMed]

40. Luan, J.; Zhang, C.; Xu, B.; Xue, Y.; Ren, Y. The predictive performances of random forest models with limited sample size and
different species traits. Fish. Res. 2020, 227, 105534. [CrossRef]

41. Zeng, M.; Li, J.; Peng, Z. The design of top-hat morphological filter and application to infrared target detection. Infrared Phys.
Technol. 2006, 48, 67–76. [CrossRef]

42. Brownrigg, D.R.K. The weighted median filter. Commun. ACM 1984, 27, 807–818. [CrossRef]
43. Townsend, J.T. Theoretical analysis of an alphabetic confusion matrix. Percept. Psychophys. 1971, 9, 40–50. [CrossRef]
44. Li, S.; Zhao, X.; Zhou, G. Automatic pixel-level multiple damage detection of concrete structure using fully convolutional network.

Comput.-Aided Civ. Infrastruct. Eng. 2019, 34, 616–634. [CrossRef]
45. Pan, Y.; Zhang, L. Dual attention deep learning network for automatic steel surface defect segmentation. Comput.-Aided Civ.

Infrastruct. Eng. 2022, 37, 1468–1487. [CrossRef]
46. Shi, J.; Dang, J.; Cui, M.; Zuo, R.; Shimizu, K.; Tsunoda, A.; Suzuki, Y. Improvement of Damage Segmentation Based on Pixel-Level

Data Balance Using VGG-Unet. Appl. Sci. 2021, 11, 518. [CrossRef]
47. Ye, S.; Wu, K.; Zhou, M.; Yang, Y.; Tan, S.; Xu, K.; Song, J.; Bao, C.; Ma, K. Light-weight calibrator: A separable component for

unsupervised domain adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Seattle, WA, USA, 13–19 June 2020; pp. 13736–13745.

48. Caicedo, J.C.; Goodman, A.; Karhohs, K.W.; Cimini, B.A.; Ackerman, J.; Haghighi, M.; Heng, C.K.; Becker, T.; Doan, M.;
McQuin, C.; et al. Nucleus segmentation across imaging experiments: The 2018 Data Science Bowl. Nat. Methods 2019,
16, 1247–1253. [CrossRef]

49. Han, L.; Li, P.Y.; Yu, S.J.; Chen, C.; Fei, C.W.; Lu, C. Creep/fatigue accelerated failure of Ni-based superalloy turbine blade:
Microscopic characteristics and void migration mechanism. Int. J. Fatigue 2022, 154, 106558. [CrossRef]

50. Li, X.Q.; Song, L.K.; Bai, G.C. Deep learning regression-based stratified probabilistic combined cycle fatigue damage evaluation
for turbine bladed disks. Int. J. Fatigue 2022, 159, 106812. [CrossRef]

http://doi.org/10.1109/ACCESS.2020.3004968
http://doi.org/10.1038/s41598-018-34833-6
http://www.ncbi.nlm.nih.gov/pubmed/30405137
http://doi.org/10.1016/j.fishres.2020.105534
http://doi.org/10.1016/j.infrared.2005.04.006
http://doi.org/10.1145/358198.358222
http://doi.org/10.3758/BF03213026
http://doi.org/10.1111/mice.12433
http://doi.org/10.1111/mice.12792
http://doi.org/10.3390/app11020518
http://doi.org/10.1038/s41592-019-0612-7
http://doi.org/10.1016/j.ijfatigue.2021.106558
http://doi.org/10.1016/j.ijfatigue.2022.106812

	Introduction 
	Materials and Methods 
	Image Filter Processing and Superpixels Partition 
	Superpixels Feature Extraction Algorithm with Improved Unet and SLIC 
	Optimizable Image Segmentation Method 

	Results and Discussion 
	Method Validation 
	Engineering Application in Turbine Blade Image Analysis 

	Conclusions 
	References

