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Abstract: In the past few years, distant retrograde orbits (DROs) have become increasingly popular
due to their conspicuous stability. Nevertheless, it is this characteristic that results in the challenge to
the design of transfer orbits into/out of DROs. This paper investigates the DROs around Ganymede
in order to utilize their dynamical characteristics for Jupiter system exploration. In particular, the
DRO family is calculated by numerical integration and numerical continuation, higher-period orbits
near the DROs are detected using bifurcation theory, and characteristics including orbital stability
and invariant manifolds of these orbits are investigated through stability indices and manifold theory.
The stability of DROs and the higher-period orbits are first investigated in the circular restricted
three-body problem and are then verified in a third-body gravitation perturbation model. The results
show that the strong stability of DROs makes it possible to observe the Galilean moons for long
periods and that the higher-period orbits that bifurcate from the DROs offer additional insight into
the motion of probes approaching/departing from the vicinities of the DROs. Further investigation of
the invariant manifolds around higher-period orbits reveals the feasibility of utilizing the DRO family
and the nearby unstable structures for multi-target exploration and low-energy transfer between the
Galilean moons.

Keywords: distant retrograde orbit (DRO); orbital stability; bifurcation; invariant manifold

1. Introduction

Distant retrograde orbits (DROs) were originally studied by Hénon in his extensive
exploration of the whole solution of the planar restricted three-body problem [1]. These
orbits are becoming an increasingly popular target for deep space exploration with the
Asteroid Redirect Robotic Mission proposed by NASA, which plans to capture an asteroid
and then redirect it into a stable orbit, perhaps a DRO around the Moon, as a testbed for
potential exploration [2,3]. As deep space exploration increases, several near-time missions
have taken the Jupiter system as their target. The Europa Clipper Mission and the Jupiter
Icy Moons Explorer (JUICE) mission are expected to be launched no later than 2025 by
NASA and ESA, respectively [4,5]. The JAXA’s MMX mission will collect observations
of Phobos from stable retrograde relative trajectories and aims to reveal the origin of the
Martian moons, enhance our comprehension of the Martian system, and pave the way for
the human exploration of Mars [6,7]. In order to investigate the application of DROs to
Jupiter system exploration, this work will be carried out on the Jupiter–Ganymede system.

The study of the characteristics of DROs began in the 1960s. Hénon first showed
that DROs, classified as the family f in his paper, are stable in Hill’s problem and have
no true upper limit on size [1,8]. At around the same time, Broucke studied periodic
orbits, including DROs, called family C in his paper, in the Earth–Moon restricted three-
body problem [9]. Based on the f family found by Hénon, Benest explored the stability
of retrograde satellites in the circular plane-restricted problem with varying mass ratios
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in the mid-1970s [10–12]. At that time, Hénon studied the stability of planar periodic
orbits with respect to the perturbations perpendicular to the plane in Hill’s limiting case
of the restricted three-body problem, and reached the conclusion that the orbits of family
f are always stable [13,14]. Since then, several researchers have researched the evolution
of DROs in full ephemeris or higher-fidelity dynamical models for different three-body
systems [15,16]. This new interest in the study of DROs also motivates researchers to
dig further into the possibilities offered by the analytical approach. Lara proposed a
perturbation approach to the Hill problem that allows us to provide a very simple low-
order analytical solution via trigonometric functions and to compute higher orders of the
solution while still depending on special functions [17].

In addition to the characteristics of DROs, the transfer to/from DROs is also a hot
research topic. A direct transfer from a low Earth orbit (LEO) to a DRO was studied, both
in the circular restricted three-body problem (CR3BP) and in a high-fidelity model of the
solar system [18]. For the similar LEO-to-DRO transfer problem, Demeyer et al. examined
the possibility of using the hyperbolic network associated with the horizontal Lyapunov
orbits around the L1 point in the Sun–Earth system and found that it can provide transfer
orbits to a wider range of DROs with lower budgets of ∆V and/or travel times [19]. Based
on the mission of redirecting the captured asteroid to a DRO around the Earth, strategies
for DRO transfer design were proposed in the Sun–Earth system [20,21]. In the Jupiter
system, some DROs around Europa were explored and a DRO-type capture method was
proposed for the transfers to and captures from Europa [22,23]. Recently, McCarthy et al.
expanded the DROs to the lunar synodic resonant quasi-DROs, considering natural eclipse
avoidance [24].

Due to the interest in long-term space exploration activities, the DRO family, which is
linearly stable, offers potential utilizations. However, this stability will pose a challenge
to transfer design. In particular, stable and unstable invariant manifolds, typically lever-
aged for initial guess generation to support transfer design in the CR3BP, are nonexistent.
Alternatively, unstable structures that exist in the vicinity of DROs may be available for ap-
proaching and departing from those DROs with low energy. To detect the nearby periodic
orbit families that may offer useful orbital flows across the region, an in-depth investigation
of the dynamical structures in the vicinity of DROs is imperative. The framework for this
investigation is based on the identification and exploration of the bifurcations of DROs
around Ganymede. We chose Ganymede for our study for two main reasons. First, the mis-
sion scenario considered in this paper is one where the probe explores one of the Galilean
moons for a set period of time and then transfers to the other Galilean moons to continue
the mission. Ganymede lies between Europa and Callisto; thus, the probe can transfer
from or to Ganymede, either outward or inward, to achieve multi-target exploration in
the Jupiter system. DROs at higher altitudes can be regarded as not being captured by
the small body but as being of a higher energy level and with a certain ability of orbital
maneuver. Second, the space around Ganymede is less affected by Jupiter’s magnetic field
and radiation because of its larger distance from Jupiter than Io and Europa, meeting a
prerequisite for long-term detection. Meanwhile, Ganymede is the most massive moon in
the Jupiter system, and the DRO in the three-body system of Ganymede and Jupiter is less
affected by gravitational perturbations from other moons.

The paper is organized as follows. Section 2 introduces the dynamical models and
numerical methods that are to be used to compute the periodic orbits and some useful
dynamical behavior concerning stability, bifurcations, and invariant manifolds. In Section 3,
the Ganymede DRO family and bifurcating periodic orbits in the CR3BP and their linear
stability are first presented. The results of exploring bifurcations motivate a further inves-
tigation to exploit the invariant manifold structures for a transfer design. In addition, a
perturbation model is employed to verify the feasibility and accuracy of solutions in the
CR3BP. In the last section, our conclusions are presented.
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2. Dynamical Model, Numerical Methods, and Dynamical Theories

This section introduces the dynamical model used in this work, the numerical methods
employed to compute the families of periodic solutions in the CR3BP, and the dynamical
theories applied to investigate the bifurcation of orbits, the linear stability of periodic orbits,
and invariant manifold structures around unstable orbits.

2.1. The Circular Restricted Three-Body Problem

Ganymede has an orbital eccentricity of 0.0013, which is very small; this means that
the CR3BP can be used to provide an approximation of Jupiter–Ganymede dynamics. The
dynamical model in the CR3BP consists of three bodies, with masses m1, m2, and m3. The
third body m3 is massless compared to the two primaries, m1 and m2, without the loss of
generality, assuming m1 > m2. The CR3BP assumes that two primary bodies are moving
in a circular orbit about their common barycenter and that the motion of m3 is dominated
by the gravitational attractions of them. Conventionally, the system is normalized, such
that both the distance between m1 and m2, LU, and the mean motion of the primaries, WU,
are constant and equal to unity, which means that the orbital period of m2 is 2π time units.
In addition, let µ denote the ratio of the mass of the secondary body to the total mass, so
that the first and secondary primaries’ masses are nondimensional and equal to 1 − µ
and µ, respectively. The motion of the third body is then described using a normalized
dimensionless synodic system. The synodic system is a rotating coordinate system, with its
origin at the barycenter of the primaries, an x-axis directed from the origin in a direction
away from the primary, a y-axis aligned with the direction of the velocity vector of the
secondary, and a z-axis completing the right-handed coordinate system, as depicted in
Figure 1. In this rotating frame, the equations of motion for the third body are written thus,
as seen in [25]: 

..
x− 2

.
y = ∂U

∂x
..
y + 2

.
x = ∂U

∂y
..
z = ∂U

∂z

(1)

where U denotes the pseudo-potential expressed thus, as seen in [25]:

U =
x2 + y2

2
+

1− µ

r1
+

µ

r2
(2)

with r1 and r2 defined thus, as seen in [25]:

r1 =

√
(x + µ)2 + y2 + z2 r2 =

√
(x− 1 + µ)2 + y2 + z2. (3)

Equation (1) admits an energy-like integral of the motion, called the Jacobi constant, which
serves to characterize the families of trajectories and is written thus, as seen in [25]:

J = x2 + y2 +
2(1− µ)

r1
+

2µ

r2
+ µ(1− µ)−

(
v2

x + v2
y + v2

z

)
. (4)

To describe the simplified Jupiter–Ganymede system, µ = 7.8063× 10−5, LU = 1.0704× 106 km
and WU = 1.0164 × 10−5 rad/s are used in this work.
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Figure 1. Dimensionless synodic frame.

2.2. Numerical Methods

Solutions that are symmetric about the x-axis and the x–z plane are evident from
the symmetry in Equation (1). For the application of the periodicity theorem proposed
by Roy and Ovenden [26] for the CR3BP, it is immediately obvious that a trajectory that
perpendicularly crosses the x–z plane or the x-axis twice is a closed periodic orbit. Therefore,
there are actually three possible types of symmetric periodic solutions in the CR3BP: an
axis-symmetric (AS) orbit, which has two perpendicular crossings of the x-axis, a plane-
symmetric (PS) orbit, which has two perpendicular crossings of the x–z plane, and a doubly
symmetric (DS) orbit, which satisfies an AS configuration and a PS configuration [27–29].
In this work, DROs, which belong to the AS orbits in the planar CR3BP, are investigated.

Let [x0, 0, 0, 0, vy0, 0]T denote the initial state of a DRO, where y0 = 0, z0 = 0, vx0 = 0,
and vz0 = 0 indicate that the planar orbit perpendicularly crosses the plane y = 0 at the
initial time. To obtain a periodic, symmetric, and planar orbit, this initial state will be
propagated forward in time for half a period, when this orbit should perpendicularly cross
the plane y = 0 once again. In this work, the MATLAB function, ODE45, is employed
to solve the dynamical differential equations of DR3BP. Specifically, we set both the ab-
solute and relative error tolerance of 10−10 and use the “Events” option to specify that
the integration terminates at a zero where the event function is increasing. The steps of
numerical computation that are used to achieve a family of symmetric periodic orbits are
summarized as follows. First, given the initial position x0, the initial velocity vy0 can be
calculated in the two-body system; thus, we have the initial guess for a starting point. Next,
dichotomy or differential correction can be used to correct vy0, such that the orbit will pass
perpendicularly through the plane y = 0; thus, the first orbit is found. Then, by means of
numerical continuation with respect to x0, a family of orbits can be obtained.

2.2.1. Dichotomy

Since only one variable needs to be adjusted, we can use dichotomy to establish a suffi-
ciently precise initial value. Generally, we choose 0.1 or 0.01 as the length of the dichotomy
interval for the dimensionless variable vy0 after normalization. Unless otherwise stated, the
following calculations and drawings are carried out in the normalized coordinate system.
Qualitatively, when the probe passes through the plane y = 0, the centripetal or centrifugal
trend of the probe can be determined by judging the direction of the velocity vector (or
the direction of vx), as shown in Figure 2, where the middle orbital is perpendicular to the
x-axis, the left orbital has vx < 0, and the right orbital has vx > 0. Then, the initial velocity
value is corrected by dichotomy. This method has a high convergence speed for calculating
two-dimensional periodic orbits with good symmetry, but its disadvantages are that the
convergence range is small, the input guess initial value cannot differ too much from the
“exact value”, and the length of the dichotomy interval cannot be too large. When the
problem is extended to three dimensions, the dichotomy method fails. At that time, a
shooting correction method for the state transition matrix is still needed.
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2.2.2. Differential Correction

The state transition matrix (STM), the product of which, with the state vector at an initial
time t0, gives the state vector at a later time t, is denoted by Φ(t, t0) here. Considering the
three-dimensional orbits that are symmetric about the plane y = 0, let [x0, 0, z0, 0, vy0, 0]T

denote the initial state of the orbit. If correction is not performed, the state when the probe
passes through the plane y = 0 can be expressed as [x, 0, z, vx, vy, vz]T. When fix z0 and
correct x0 and vy0, the first-order relationship between the free variables and the boundary
values at half a period can be expressed thus, as seen in [30]:

[
δvx,T/2
δvz,T/2

]
=

ϕ41 −
.
vx ϕ21.

y
ϕ45 −

.
vx ϕ25.

y

ϕ61 −
.
vz ϕ21.

y
ϕ65 −

.
vz ϕ25.

y

[ δx0
δvy0

]
(5)

where ϕij denotes the element in the ith row and the jth column of Φ(T/2, t0). Based on this
relationship, the initial condition of a periodic orbit is calculated when vx,T/2 and vz,T/2 are
reduced to a defined small value by several iterations. If the problem is a two-dimensional
one, Equation (5) can be simplified as:

δvx,T/2 =

(
ϕ45 −

.
vx ϕ25

.
y

)
δvy0. (6)

2.3. Orbital Stability

The monodromy matrix is the STM evaluated after one period along a periodic so-
lution, written as M = Φ(t0 + T, t0). For more details of the monodromy matrix, readers
are referred to Ref. [31]. In the CR3BP, the second-order system possesses three degrees of
freedom and, thus, M is defined in terms of six eigenvalues. First, because the monodromy
matrix is a symplectic map, if λi is an eigenvalue of the matrix M, then 1/λi is also an
eigenvalue. Second, because the monodromy matrix is associated with a periodic solution,
at least one unity eigenvalue will always exist. Furthermore, the fact that eigenvalues of
matrix M must come in reciprocal pairs results in at least two unity eigenvalues. Thus,
the set of eigenvalues from the monodromy matrix for a particular periodic orbit occurs
in the form (λ1, 1/λ1, λ2, 1/λ2, λ3, 1/λ3), where λi represents the eigenvalue of M and
λ1 = 1/λ1 = 1. The eigenvalues of matrix M are used to assess the stability characteristics
of a periodic orbit in a linear sense. The eigenvalue with a magnitude greater than one
indicates instability, while the eigenvalue with a magnitude equal to one reflects orbit peri-
odicity, and the eigenvalue with a magnitude less than one indicates stability. Accordingly,
the linear stability of an orbit can be described by stability indices, which are defined thus,
as seen in [9,32,33]:

νi =
1
2

(
‖λi‖+

1
‖λi‖

)
, i = 1, 2, 3. (7)
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If all the stability indices are equal to unity, the orbit is said to be linearly stable and
possesses neither stable nor unstable manifolds; if any stability index is greater than unity,
the orbit is considered unstable, and invariant manifolds that approach and depart from
the periodic orbit will exist. Evidently, the stability index that corresponds to the two unity
eigenvalues is always equal to unity. Therefore, merely considering the other two indices,
in the case where they are both equal to unity, the linear instability of the orbit is order
zero; in cases where they are both greater than unity, the linear instability of the orbit is
order two; otherwise, the linear instability of the orbit is order one. That is to say, the linear
instability in this system can be of orders zero, one, or two. The order of orbital instability
yields the linear stability level of the orbits. A periodic orbit with instability order zero is
the most stable orbit, in a linear sense.

2.4. Bifurcations

In dynamical systems, a change in the stability of the periodic orbits results in a
bifurcation. There are three distinct ways in which the stability can change, denoted
by a tangent bifurcation, period-doubling bifurcation, and secondary Hopf bifurcation,
respectively. In addition, other types of bifurcation occur along the original solution
without a change in the order of instability, such as period-multiplying bifurcations and a
modified secondary Hopf bifurcation. For more details on bifurcations, readers are referred
to Ref. [34]. The stability of a periodic orbit reflects the behavior of nearby trajectories; thus,
monitoring the eigenvalues of the monodromy matrix corresponding to each periodic orbit
in a family is a good method by which to detect and characterize the local bifurcations.

In 1969, Broucke [35] introduced an alternative method to discuss stability, based on
two stability coefficients of the orbit, α and β:

α = −
(

λ2 +
1

λ2
+ λ3 +

1
λ3

)
= 2− Tr(M)

β = 1
2

[
α2 −

(
λ2

2 + 1
λ2

2 + λ3
2 + 1

λ3
2

)]
= 1

2
[
α2 + 2− Tr(M2)

] (8)

In this technique, four nontrivial eigenvalues of the monodromy matrix for each
family member are fully defined by the scalars α and β. The Broucke stability diagram
in Figure 3a offers insight into the orbital stability in the α-β plane. A more informative
stability diagram [34], based on the Broucke stability diagram, is constructed as shown in
Figure 3b. Each periodic orbit may be represented by a point in Figure 3b; thus, a curve
that illustrates a family of periodic orbits can be drawn. Bifurcations occur when this curve
intersects those in Figure 3b and bifurcation points, namely, intersections are found. In
Table 1, bifurcation types are described with the equations of curves in Figure 3b.
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Table 1. Classification of bifurcations, based on the stability diagram.

Bifurcation Type Equation of Curve Representing Bifurcation

Tangent β + 2 = −2α
Period-doubling β + 2 = 2α
Period-tripling β = α + 1

Period-quadrupling β = 2

Period-quintupling β = 1/(2cos(4π/5)) α − (cos(8π/5) + 1)/cos(4π/5)
β = 1/(2cos(8π/5)) α − (cos(16π/5) + 1)/cos(8π/5)

Secondary Hopf β = α2/4 + 1, −4 < α < 4

2.5. Invariant Manifolds

Invariant stable and unstable manifolds are considered in this work. If the probe
moves on the stable manifolds of a periodic orbit, it will asymptotically approach that orbit
without providing external energy; if it moves on unstable manifolds, it will asymptotically
depart from that orbit without providing external energy. Accordingly, invariant manifolds
can be leveraged to design low-energy orbital transfer. Consider a periodic orbit that
possesses one pair of stable and unstable eigenvalues, indicated by |λs| < 1 and |λu| > 1.
Correspondingly, there is a pair of stable and unstable eigenvectors, indicated by es and
eu. The invariant manifolds corresponding to the propagations of es and −es are stable
manifolds, while those corresponding to the propagations of eu and −eu are unstable
manifolds. For a point of an unstable orbit, xo, we introduce a small disturbance in the
direction of the corresponding eigenvectors, thereby producing initial conditions for the
stable and unstable manifolds, xs,0 and xu,0, respectively:

xs,0 = xo ± εes xu,0 = xo ± εeu (9)

where ε is a sufficiently small real-valued number. The stable and unstable manifolds at this
point can be computed by propagating the initial conditions forward and backward in time,
respectively. Note that when dissipative forces are considered, the manifold obtained above
needs to be modified in the initial value, or halfway, to achieve the transfer orbit between
the target bodies. If we discretize the orbit into numerous points and repeat the steps above,
then the stable and unstable manifold structures are obtained [36,37]. For orbits that have
complex geometric configurations, such as period-multiplying orbits, drawing manifolds
directly is detrimental to subsequent analysis; therefore, a Poincaré section is employed to
delineate the manifold structures in this case.

3. The Ganymede DRO Family and Its Bifurcations
3.1. The DRO Family and Its Linear Stability

A resonant DRO (2:1) and its direction of motion in the synodic frame and in the
Jupiter-centered inertial frame are shown in red in subgraphs (a) and (b) of Figure 4,
respectively. It is evident that the DRO around the secondary body is in a direction opposite
to the direction of the secondary body orbiting around the barycenter when viewed in
the rotating frame, and orbits in a prograde direction following the secondary body when
viewed in the inertial frame; hence, it is called a distant retrograde orbit (DRO).

Considering the positions and perturbations of the other three Galilean moons, the
DRO family whose initial position x0 covers from 0.9 to 0.995 with an interval of 0.0005 is
calculated, as shown in Figure 5. Each color of orbit indicates each Jacobi constant value,
as specified by the color bar on the right. Jupiter and the four Galilean moons’ orbits
around Jupiter are drawn to real proportion. It is apparent that the DROs orbiting closer
to Ganymede possess higher Jacobin constant values, which can be as high as the Jacobin
constant values for L1 and L2. Figure 6 shows that the three stability indices of DROs are
equal to unity; namely, all the orbits of this family are linearly stable.
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3.2. Bifurcations of DROs

As indicated by the stability indices, DROs cannot be targeted with a low-energy
transfer along stable and unstable manifolds, as with unstable orbits in the CR3BP. There-
fore, alternative strategies are necessary to understand and exploit the natural flows in the
vicinity of the DROs. In dynamical systems, a bifurcation may result in a new family of
periodic orbits intersecting with the current family, and it is in this new family that useful
stable and unstable manifold structures may arise. Bifurcation theory is applied to give
a further investigation of the dynamical structures in the DRO vicinity, providing insight
into the complex trajectory behavior in this region.

3.2.1. DRO Stability Diagram

In Figure 7, a colorful curve is plotted on the stability diagram that corresponds
to the DRO family. The color of each point indicates the Jacobi constant value for this
orbit. In this figure, colored asterisks reflect the bifurcation points that correspond to
bifurcations with the same color. Evidently, period-tripling, period-quadrupling, and
period-quintupling bifurcations occur. To easily recognize these bifurcating orbits and
the corresponding families to which they belong, a naming convention [33] for these new
families is necessary. For period-multiplying bifurcations, the naming format is defined
as follows: “PmDROn”, where “Pm” refers to the order of the period-multiplication (e.g.,
period-tripling is reflected as m = 3), and “n” denotes a sub-family identifier (i.e., for
multiple bifurcations of the same type, the first family, in order of increasing initial position
x0, is labeled n = 1, the second family is labeled n = 2, etc.). Accordingly, new families
originating from period-tripling bifurcation are named P3DRO1, P3DRO2, and P3DRO3;
new families originating from period-quadrupling bifurcation are named P4DRO1 and
P4DRO2; new planar families originating from period-quintupling bifurcation are named
P5DRO1 and P5DRO2. Employing the numerical methods stated in the previous section, all
the new families of periodic orbits originating at each of these bifurcations are computed.
In Sections 3.2.2–3.2.4, the bifurcating orbits and their stability are investigated to find the
underlying unstable manifold structures for low-energy transfer design between DROs.
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3.2.2. Period-Tripling Bifurcation

The P3DRO families and their linear stability are studied in this subsection. The
characteristics of orbits in the P3DRO1, P3DRO2, and P3DRO3 families are illustrated in
Figures 8a, 9a and 10a, respectively. In Figures 8b, 9b and 10b, a member from each of these
new families is computed and plotted in the synodic system to illustrate their complex
multi-revolution geometries, along with their unique and distinct characteristics. In each of



Aerospace 2022, 9, 454 10 of 21

these figures, an orbit of new periodic families is plotted in green, along with a DRO of the
same initial position x0 in black, while Ganymede appears as a blue sphere, and the initial
point along each trajectory is marked with an asterisk.
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Figure 9. Orbits plotted in the Jupiter–Ganymede rotating frame: (a) P3DRO2 family and (b) P3DRO2

(X0 = [0.9700, 0, 0, 0, 0.09365, 0]T) and DRO (X0 = [0.9700, 0, 0, 0, 0.09062, 0]T) at x0 = 0.9700.

The families of period-tripling bifurcating orbits possess periods that are approxi-
mately three times the period of the DROs, and the periods decrease as the orbits approach
Ganymede. Each family possesses different levels of Jacobi energy and different geometries.
The P3DRO1 family possesses a Jacobi energy of less than 2.9972. Orbits in this family are
a long distance from Ganymede, even though they propagate from a position far from
Ganymede to a closer one. The P3DRO2 family with a Jacobi energy from 2.9972 to 2.9998
closely approximates a DRO-like motion, albeit periodic, with three Ganymede passes
instead of one. The P3DRO3 family possesses a Jacobi energy greater than 2.9998. Some
of the larger members of this family offer positions close enough to Ganymede; note that,
with a further extension of this family, the members with higher Jacobi energy will pass
inside Ganymede’s radius. This property may prove useful in landing or impact missions.
Figure 11 presents the stability information of period-tripling bifurcating orbits. Apparently,
only the orbits at the bifurcation points are linearly stable, while the other orbits are linearly
unstable, with a maximum index from 1 to 35. Accordingly, the unstable P3DRO families
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can be taken into consideration when designing low-energy trajectories in the vicinity of
the DROs.
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3.2.3. Period-Quadrupling Bifurcation

The P4DRO families and their linear stability are studied in this subsection. The
P4DRO1 and P4DRO2 families appear in Figures 12 and 13, following the same convention
as the period-tripling bifurcation, respectively. Orbits in the P4DRO1 family possess a
Jacobi energy of less than 2.9951, while orbits in the P4DRO2 family possess a Jacobi energy
larger than 3.0013. In contrast to the P4DRO1 family, the P4DRO2 family has a smaller size
and exists in the vicinity of Ganymede. A range of orbits in the P4DRO2 family can reach
within the radius of Ganymede (not pictured here), while the portion plotted here offers a
fully low altitude. These new families of periodic orbits that are calculated here are linearly
stable or nearly stable, as delineated in Figure 14, which means that there is no manifold
structure available by which to design low-energy transfer orbits.
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Figure 12. Orbits plotted in the Jupiter–Ganymede rotating frame: (a) P4DRO1 family and
(b) P4DRO1 (X0 = [0.9100, 0, 0, 0, 0.18361, 0]T) and DRO (X0 = [0.9100, 0, 0, 0, 0.18905, 0]T) at
x0 = 0.9100.
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multi-revolution geometries may exist while sharing the same Jacobi energy. Figures 15–
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(b) P4DRO2 (X0 = [0.9720, 0, 0, 0, 0.07323, 0]T) and DRO (X0 = [0.9720, 0, 0, 0, 0.08917, 0]T) at
x0 = 0.9720.
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3.2.4. Period-Quintupling Bifurcation

The P5DRO families and their linear stability are studied in this subsection. According
to the stability diagram for DROs, two planar families and two three-dimensional families
of period-quintupling bifurcating orbits are identified. In this investigation, only two planar
families of period-quintupling bifurcating orbits, namely, P5DRO1 with a Jacobi energy of
less than 2.9931 and P5DRO2, with a Jacobi energy larger than 3.0023, are discussed. Note
that, for the P5DRO2 family, two trajectories of different multi-revolution geometries may
exist while sharing the same Jacobi energy. Figures 15–17 illustrate the family P5DRO1 and
two sub-P5DRO2 families with different structures, respectively. The P5DRO1 family is
far from Ganymede, has a larger size, and possesses a low level of Jacobi energy, while the
P5DRO2 family has a smaller size, where the orbit sometimes moves very close to Ganymede.
A remarkable distinction between the two sub-P5DRO2 is that in the synodic system, the third
body orbits Ganymede inward and outward, as shown in Figures 16 and 17, respectively. As
indicated in Figure 18, the planar families of period-quintupling bifurcating orbits are
linearly stable or nearly stable.

Aerospace 2022, 9, x FOR PEER REVIEW 14 of 22 
 

 

    
(a)       (b) 

Figure 15. Orbits plotted in the Jupiter–Ganymede rotating frame: (a) P5DRO1 family and (b) 

P5DRO1 (X0 = [0.9100, 0, 0, 0, 0.18625, 0]T) and DRO (X0 = [0.9100, 0, 0, 0, 0.18905, 0]T) at x0 = 0.9100. 

 

 

 
(a)      (b) 

Figure 16. Orbits plotted in the Jupiter–Ganymede rotating frame: (a) one sub-P5DRO2 family and 

(b)P5DRO2 (X0 = [0.9740, 0, 0, 0, 0.06440, 0]T) and DRO (X0 = [0.9740, 0, 0, 0, 0.08800, 0]T) at x0 = 0.9740. 

    

(a)         (b) 

Figure 17. Orbits plotted in the Jupiter–Ganymede rotating frame: (a) the other sub-P5DRO2 family 

and (b)P5DRO2 (X0 = [0.9900, 0, 0, 0, 0.11387, 0]T) and DRO (X0 = [0.9900, 0, 0, 0, 0.09956, 0]T) at x0 = 
0.9900. 
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(b) P5DRO1 (X0 = [0.9100, 0, 0, 0, 0.18625, 0]T) and DRO (X0 = [0.9100, 0, 0, 0, 0.18905, 0]T) at
x0 = 0.9100.
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x0 = 0.9740.
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and (b) P5DRO2 (X0 = [0.9900, 0, 0, 0, 0.11387, 0]T) and DRO (X0 = [0.9900, 0, 0, 0, 0.09956, 0]T) at
x0 = 0.9900.
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3.3. Analysis of Perturbations

Previous research [38] focuses on the perturbations of the low orbit of Europa (100~400 km
of altitude). At this altitude, Europa’s gravitational influence is dominant, while the
gravitational influence of other moons is not obvious. The DROs around Ganymede that
we are studying are at higher altitudes of more than 3000 km, even reaching 100,000 km.
The DROs are also dominated by the gravitational influence of Jupiter and Ganymede. The
higher orbits would increase the gravitational influence of Europa or Callisto, especially
for the unstable bifurcation orbits of DROs, while the gravitational perturbations of other
moons will disrupt the structure of the bifurcation orbits.

In the Jupiter–Ganymede CR3BP system without any perturbation, the DROs around
Ganymede are stable. However, because of the special periodic resonance relationship
between the Galilean moons and their short period characteristics, the perturbations cannot
be ignored for practical missions. Thus, the gravitations of the Galilean moons and the
Sun are considered as perturbations in this work, to investigate the time evolution of a
massless body orbiting Jupiter. Here, we use an inertial frame with Jupiter at its center,
while the Galilean moons and the Sun are moving in circular orbits about the origin of this
coordinate system.

The initial condition X0 of a DRO can be calculated in the CR3BP system, then trans-
formed to the inertial system and given the Galilean moons’ and the Sun’s initial phase
angles θi0 (i = 1, 2, 3, 4) and θs0, respectively. The DRO affected by their gravitational
perturbations can be obtained by propagating X0 forward. One example of perturbed
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DRO at X0 = [0.9400, 0, 0, 0, 0.13208, 0]T with θi0 = 0 and θs0 = 0 and a propagation time
of 1 year is shown in Figure 19. The influence of the Sun’s gravity in the Jupiter system
is very small, so the main perturbation influence comes from the other Galilean moons.
Meanwhile, the investigated DRO is a considerable distance from the other Galilean moons,
as shown in Figure 19b. Therefore, the perturbed DRO remains in a similar trajectory to the
DRO, without any perturbation within the given propagation time. When this trajectory
crosses the y = 0 plane, the position error in the x-direction is about ±0.0006, actually about
±600 km. The position errors between the perturbed and unperturbed DRO orbits in the x
direction at different times are plotted, as shown in Figure 20. It shows that although the
perturbed DRO orbit is stable around the original DRO orbit, the orbit position error shows
an increasing trend. Therefore, it is still necessary to maintain the orbit in a timely manner.
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Figure 20. The deviation in the x direction over time (days) between the perturbed and unperturbed
DRO (X0 = [0.9400, 0, 0, 0, 0.13208, 0]T, J = 2.996155).

Furthermore, we consider the motions of period-tripling DRO bifurcating orbits under
the gravitational perturbations and find that for some of these orbits, they will quickly move
away from the original orbit and diverge outward after being affected by the perturbations
(Figure 21a), while some can maintain their orbit for a long period of time without diverging
within a certain range, and become quasi-periodic orbits (Figure 21b). This behavior is
related to the stability of the orbits, which will be explained briefly in the next subsection.
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In addition, this is also related to the structure of the orbit. When the altitude relative to
Ganymede is higher, the perturbation effect is stronger.
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This shows that the magnitude of the stability index is directly related to the rate of 
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(generally νmax < 5) depart from/approach their original orbits very slowly when affected 

by small disturbances, which can be considered approximately linearly stable. The larger 
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deviates from the original orbit. 

Figure 21. Perturbed P3DRO with θi0 = 0 and θs0 = 0: (a) X0 = [0.939,0,0,0,0.13190256,0]T, J = 2.996546
and (b) X0 = [0.96,0,0,0,0.103373313,0]T, J = 2.997904.

3.4. Manifold Structures

Often leveraged to generate the initial guesses for transfer orbit design in the CR3BP,
manifolds offer pathways for approaching and departure from unstable periodic orbits.
The stability of period-multiplying bifurcating orbits has been analyzed in the previous
subsection. It was found that the P3DRO family possesses the largest range for the maxi-
mum stability index. Thus, taking the period-tripling bifurcation as an example, we select
different orbits with the maximum stability indices of νmax = 26.2387, 10.1016, and 3.0858,
and choose several initial points uniformly distributed on these orbits, then plot their stable
manifold structures (ε = 10−4, about 100 km) with two periodic lengths under the CR3BP
model, as shown in Figure 22.
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Figure 22. Stable manifold structures of P3DRO in two periods: (a) X0 = [0.9025, 0, 0, 0, 0.19642833, 0]T,
νmax = 26.2387, (b) X0 = [0.9155, 0, 0, 0, 0.17223724, 0]T, νmax = 10.1016, and (c) X0 = [0.9295, 0, 0, 0,
0.14750765, 0]T, νmax = 3.0858.

This shows that the magnitude of the stability index is directly related to the rate
of the departing/approaching flows. Those orbits that possess small stability indices
(generally νmax < 5) depart from/approach their original orbits very slowly when affected
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by small disturbances, which can be considered approximately linearly stable. The larger
the maximum stability index, the more significant the manifold structure and the faster it
deviates from the original orbit.

Furthermore, we investigated the manifold structures of engineering significance, the
methodology for which is mentioned in Section 2.5. We selected a part of stable manifolds
near the period-tripling bifurcation orbit (X0 = [0.9025, 0, 0, 0, 0.19642833, 0]T, J = 2.993305);
the integration duration is three times that of the original orbital periods. We selected
some points on the original orbit for integration, terminating when the orbits crossed the
plane x = 0, and drew their stable manifolds. The initial point of integration is selected
as the point on the orbit when the initial value of the original orbit runs for 1.4~1.7 days;
their stable manifold structures are shown in Figure 23a. The initial point of integration
was selected as the point on the orbit when the initial value of the original orbit runs for
11.0~11.4 days; their stable manifold structures are shown in Figure 23b. The manifolds of
these parts of the orbit will come close to the orbit of Europa or Callisto after 20~30 days,
so there is the possibility of a fast low-energy transfer between the Galilean moons.
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Figure 23. Partial stable manifold of P3DRO (X0 = [0.9025, 0, 0, 0, 0.19642833, 0]T, J = 2.993305):
(a) stable manifolds within 1.4~1.7 days and (b) stable manifolds within 11.0~11.4 days.

Since the manifold structures of the period-multiplying bifurcation orbits are relatively
complex, we use a Poincaré section to draw the coordinates of the stable manifold crossing
the plane y = 0, as shown in Figure 24, with coordinates x and vx. The red points in
this figure represent the periodic orbit itself. With this information, suitable points can
be selected as the starting point, according to the engineering requirement for transfer
orbit design.

Figure 25 shows the difference in velocity between the period-multiplying bifurcating
orbits and DROs sharing the same initial positions. Figure 26 shows the average period
of the period-multiplying bifurcating orbits and the period of DROs. Existing studies
usually considered using the horizontal Lyapunov orbits (HLOs) near L1 or L2 to transfer
to DROs. From this, we can see that the difference between the initial velocities of the DRO
and period-tripling bifurcating orbit is smaller than that between the DRO and Lyapunov
orbit. This means that the velocity increment required to enter or leave the DRO via
the period-multiplying bifurcating orbits is smaller, and the probe can still have greater
energy. At the same time, although the average period of the period-multiplying bifurcating
orbits is shorter in most cases, their orbital periods increase almost in multiples; thus, the
overall transfer time may be longer. Therefore, trade-offs should be made based on the
requirements of the practical mission.
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As mentioned above, a portion of the P3DRO family shows obvious instability, and the
manifolds near the orbit can be used to design the trajectory entering or leaving the DRO.
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Note that the period-tripling bifurcation terminates near L1; hence, the manifolds of period-
quadrupling and period-quintupling bifurcation or other transfer methods should be
considered when a lower-altitude orbit from Ganymede is needed. In addition, considering
the difference in energy levels between the different Galilean moons, the manifold structures
of the period-multiplying bifurcating orbits can be spliced with the manifold structures of
Lyapunov orbits to design low-energy transfers.

4. Conclusions

This paper focuses on investigating the characteristics of DROs and higher-period or-
bits in the Jupiter–Ganymede system. Bifurcation theory was chosen to detect new families
of higher-period orbits near to the DROs. Orbital stability and the invariant manifolds of
DROs and higher-period orbits were investigated, based on stability indices and manifold
theory, respectively. Then, we further investigated the possibility of approaching/departing
from the DROs by means of stable/unstable manifolds in the period-multiplying bifur-
cating orbits. We found that the DRO family is strongly stable in the Jupiter–Ganymede
CR3BP, which is verified through a perturbation model, taking the gravitational perturba-
tions of the other three Galilean moons and the Sun into account. This result indicates that
the DROs in the Jupiter–Ganymede system can move nearer the desired orbit for a long
time, with negligible fuel consumption for regular orbital corrections, yielding potential
applications in orbiting and exploring the Galilean moons. For example, the DROs could
be used to place a long-term probe to observe the activity of celestial bodies in the Jupiter
system and to build and refine the ephemeris model of the Jupiter system. In addition,
among the period-multiplying bifurcating orbits studied in this work, the period-tripling
bifurcation was found to have the widest distribution and strongest instability. Therefore,
low-energy transfers for DROs can be designed by using the invariant manifold structures
near the period-tripling bifurcation. Our preliminary results show that orbital transfer
using the period-multiplying bifurcating orbits requires a velocity increment that is less
than when using the horizontal Lyapunov orbits, but correspondingly, the transfer time
may be longer. Based on this characteristic, some low-energy transfers can be designed
by splicing the manifolds of the period-multiplying bifurcating orbits and the horizontal
Lyapunov orbits. The discovery of unstable period-multiplying orbits around the DROs
also implies the feasibility of a low-energy manifold-to-manifold trajectory that passes by
the major moons of Jupiter. For these possibilities, orbiting and exploring missions from
DROs around the Galilean moons can be further designed, and low-energy transfer in the
vicinity of DROs in a higher-fidelity ephemeris model can be further investigated.
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