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Abstract: We consider the problem of attitude stabilization for a low Earth orbit satellite having
only electromagnetic actuation. Such a satellite is not fully actuated, as the control torque is the
cross-product of magnetic moment due to magnetorquers and the geomagnetic field. The aim of
this work is to study whether oscillating controls can be designed such that a satellite actuated via
magnetorquers alone can achieve full three-axis control irrespective of the position of the satellite.
To this end, we propose considering oscillating feedback controls which generate the motion of the
closed-loop system in the direction of appropriate Lie brackets. Simulation studies show that the
proposed control scheme is able to stabilize the considered system.

Keywords: stabilization; oscillating controls; Lie brackets; magnetorquers

1. Introduction

In this work, we consider the attitude stabilization problem for a low Earth orbit
satellite. The attitude of a satellite is its orientation in the orbital coordinate system and
is defined by an attitude matrix which is parameterized by unit quaternions (see [1] for
a survey on the application of quaternions for the orientation of rigid bodies). Attitude
stabilization can be achieved by applying external torque on the satellite, which is described
via Euler’s equations [2]. Besides the torque due to the magnetorquers, the control torque
can be provided via gas jets and reaction wheels. The books [3,4] provide an overview
of control techniques for the attitude stabilization problem. In this work, we consider
a satellite having only electromagnetic actuation. Since such a satellite is actuated via a
renewable energy source, it has a longer usable life compared to other actuation techniques.
However, it suffers from controllability limitations as the control torque is provided by the
cross-product of the geomagnetic field and magnetic moment generated by the satellite’s
magnetic coils. Specifically, the control torque is constrained to lie in the plane orthogonal
to the geomagnetic field, and therefore, full three-axis control is not possible at all atti-
tudes. However, as the satellite’s position is varying on its orbital plane, correspondingly,
the geomagnetic field also varies, and this results in the overall dynamical system being
periodic with a frequency depending on the orbital rate of the satellite. Such a nonlinear
periodic system is controllable [5,6]. There have been many works on satellites actuated via
magnetorquers alone. In [7], full three-axis control is obtained by dividing the dynamics
into two loops (inspired by the backstepping method from [8]). A sliding mode controller
is used for tracking in the inner loop, and the outer loop is used for stabilization. In [9], the
performance of three different control schemes (Detumbling, Linear-Quadratic-Regulator
(LQR) and Proportional-Derivative (PD) controls) are compared. The survey paper [10] sur-
veys applications of model-predictive control for such satellites, and the survey paper [11]
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along with the references therein provide an overview of the present state-of-art in attitude
stabilization for satellites having only electromagnetic actuation. To the best of the authors’
knowledge, the current state-of-art in attitude stabilization of satellite relies on the periodic
nature of the geomagnetic field to ensure stability given the controllability restriction of a
satellite actuated via magnetorquers alone.

In this work, we study whether oscillating controls can be designed such that a satellite
actuated via magnetorquers alone can achieve full three-axis control irrespective of the
position of the satellite and almost time-invariant geomagnetic field. In order to overcome
the aforementioned control theoretic challenges, we consider here oscillating controls in
addition to the PD controls discussed in [6]. These oscillating controls are motivated
from the literature on the control of underactuated systems [12] and are based on the
fact that the considered class of systems admits a time-varying stabilizing feedback law,
provided that the local controllability and regularity assumptions as mentioned in [13]
are satisfied. The oscillating controls are sinusoidal in nature and generate motion along
the direction of Lie brackets of vector fields of the considered dynamical system. The
book [14] provides a review on properties of Lie brackets. A generalized design procedure
of stabilizing oscillating controls for driftless control-affine systems is presented in [15],
and the inclusion of drift is discussed in [16]. The primary aim of this work is to investigate
whether oscillating controls can provide sufficient time variation such that full three-axis
control can be achieved on a satellite actuated via magnetorquers alone irrespective of the
position of the satellite. The control methodology developed subsequently archives full
three-axis control in the case of a slowly varying magnetic field. Further work is required
to address practical considerations such as magnetorquer saturation, residual magnetic
moment and disturbances such as areodynamic drag.

The rest of the paper is organized as follows. In Section 2, we review the mathematical
model of the satellite. We rewrite the aforementioned mathematical model in the control-
affine form and pose the motivating question in Section 3. Thereafter, we design Lie
bracket-based controls in Section 4. Simulation studies are presented in Section 5, and lastly,
Section 6 provides the conclusions of this work.

2. Mathematical Model

We begin by stating general coordinate systems (CS) and notations for the satellite.
A pictorial representation of the CS is described in Figure 1 with description of CS

given in Table 1. In the sequel, the superscripts c(·), o(·), w(·) represent the vector in
parentheses (·) expressed in BCS, OCS and WCS, respectively, and the subscripts Ωcw, Ωco
represent the angular velocity in BCS with respect to WCS and the angular velocity in BCS
with respect to OCS.

Table 1. Coordinate system.

Acronym Name Description

BCS Body (or Control) Coordinate System CS built on principal axes of inertia
of the satellite

OCS Orbital Coordinate System Reference CS fixed in the orbit

WCS World Coordinate System Inertial right orthogonal CS
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Figure 1. The coordinate system can be visualized in this figure. BCS is centered on the spacecraft’s
body (represented by the blue CS centered on the black cube’s center of mass). OCS is fixed on the
orbit (represented by the red CS fixed on the red orbit), and the unit vectors cio, cjo and cko are aligned
with the OCS (represented by the black CS). The unit vector cio is pointing in the direction of orbital
angular velocity vector (therefore, orthogonal to orbital plane), and the unit vector cko is pointing
away from the center of the earth (shown by dotted line).

The equations of motion of a rotating satellite with electromagnetic actuation are
governed by kinematics and rigid body dynamics. The kinematics represent the attitude of
the rotating satellite and are described via the following equation:

q̇ =
1
2

cΩcoq4 −
1
2

cΩco × q, (1)

where q (consisting of three components q1, q2, q3) denotes the vector part of the attitude
quaternion, which represents the rotation of the satellite in the BCS with respect to OCS,
and q4 is the scalar component of the attitude quaternion. The scalar part q4 is not unique,
but is constrained as follows:

q2
1 + q2

2 + q2
3 + q2

4 = 1. (2)

In this work, we consider only the kinematics of the vector part of the attitude quater-
nion in (1) and enforce quaternion constraint (2) by considering the space of q as a ball in

R3 with q4 = ±
√

1− q2
1 − q2

2 − q2
3. The rotation of the satellite in OCS with respect to the

BCS is described using the attitude matrix, which is defined as follows:

A(q) = [cio, cjo, cko], (3)

where cio, cjo and cko are the unit vectors representing the x, y and z axes of the OCS
projected on the BCS. The components cio, cjo and cko of A(q) are parameterized by the
attitude quaternion q and are defined as follows:

cio = [q2
1 − q2

2 − q2
3 + q2

4 2(q1q2 − q3q4) 2(q1q3 + q2q4)]
T ,

cjo = [2(q1q2 + q3q4) q2
4 − q2

1 + q2
2 − q2

3 2(q2q3 − q1q4)]
T ,

cko = [2(q1q3 − q2q4) 2(q1q4 + q2q3) q2
4 − q2

1 − q2
2 + q2

3]
T .

(4)

The dynamics of the satellite represents the time evolution of the angular velocity in
OCS. The angular velocity in OCS can be obtained from the angular velocity defined in
WCS by

cΩco = cΩcw −Ω0
cio, (5)
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where Ω0 is the orbital rate which will be considered a constant in this work, as the
eccentricity of the considered satellite’s orbit is negligible. The Euler equation of the
satellite in WCS can be stated as follows:

IcΩ̇cw = IcΩcw × cΩcw + Nctrl + Ngg, (6)

where Nctrl is the control torque, Ngg is the torque due to the gravitational gradient, and
the remaining terms represent the classical Euler equations as given in [2]. In this work,
we have not considered disturbance torque due to the aerodynamic drag and the residual
magnetic field as our aim is to study whether oscillating controls can be designed such that a
satellite actuated via magnetorquers alone can achieve full three-axis control irrespective of
the position of the satellite. Therefore, for the sake of simplicity, we neglect the disturbance
torques. Substituting (5) in (6) gives us

I(cΩ̇co + Ω0
c i̇o) = I(cΩco + Ω0

cio)× (cΩco + Ω0
cio) + Nctrl + Ngg (7)

Simplifying (7) gives us

IcΩ̇co = (IcΩco × cΩco) + Ω0(IcΩco × cio) + Ω0(Icio × cΩco) + Ω2
0(Icio × cio)

+ Nctrl + Ngg −Ω0(IcΩco × cio), (8)

The control torque Nctrl in (8) is generated via electromagnetic actuation. Such ac-
tuators are known as magnetorquers, and they generate control torque via interaction
between magnetic coils stored in the satellites body and the geomagnetic field due to Earth.
Mathematically, Nctrl is defined as follows:

Nctrl(t) = u(t)× B(t), (9)

where u(t) represents the magnetic moment generated by the satellite, and B(t) represents
the geomagnetic field. The satellite’s magnetic moment is generated via magnetic coils
housed inside the satellite body as follows:

u(t) = ncoil icoil(t)Acoil , (10)

where ncoil is the number of windings of the coil, icoil(t) is the current in the coil, and
Acoil is the area of the coil. The electromagnetic coils are placed perpendicular to the x,
y and z axis, and thus, m is a vector with components mx, my and mz. For the rest of the
paper, m represents the control signal. For the purpose of simulation studies in this work,
the geomagnetic field vector B(t) is approximated via the dipole model given in [3]. Let
g0

1, g1
1, h1

1 represent the empirical Gaussian coefficients of the standard model of Earth’s
geomagnetic field. The dipole model in OCS can then be stated as follows:

oBx =
a3H0

2R3 sinθ′m[3cos(2v′ − αm) + cosαm],

oBy =
a3H0

2R3 sinθ′m[3sin(2v′ − αm) + sinαm],

oBz = −
a3H0

2R3 cosθ′m,

(11)

where a is the radius of Earth, r is the geocentric distance of the satellite, θ′m is the co-
elevation of the dipole model, φ′m is the east longitude of the dipole model, αm is the right
ascension of the dipole model, v′ is the true anomaly measured from the ascending node
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and H0 = [g02

1 + g12

1 + h12

1 ]1/2 is used to calculate the total dipole strength. Furthermore,
θ′m and φ′m are calculated as follows:

θ′m = arc cos

(
g0

1
H0

)
,

φ′m = arc tan

(
h1

1
g1

1

)
.

(12)

The cosine and sine components of the dipole model have been approximated by a
harmonic oscillator. The harmonic oscillator is a 2nd order differential equation, which is
described as follows:

B̈mag + ω2Bmag = 0, (13)

where ω is frequency of the oscillations, and Bmag are the oscillating states representing
the cosine and sine components of the dipole model. The solution of (13) approximates
the cosine and sine components due to 2v′ − αm. Additional harmonic oscillators can be
added for more accurate approximations at the cost of adding extra states to the system.
The gravity gradient torque is also considered in the model, and it can be stated using the
attitude matrix (3) third row k as done in [3], as follows:

cNgg(t) = 3Ω2
0(

cko × Icko). (14)

In the sequel, Ω without subscripts or superscripts represents cΩco.

3. Problem Statement

We rewrite system (1)–(8) in the control-affine form as follows:

ẋ = f0(x) +
3

∑
i=1

ui fi(x, B), x ∈ X ⊂ R6, u ∈ R3, (15)

where x = (Ω1, Ω2, Ω3, q1, q2, q3)
T , X is a neighborhood of x = 0 in R6 such that X does

not contain any nontrivial equilibrium of (15) with u = 0,

f0(x) =



I2−I3
I1

Ω2Ω3
I3−I1

I2
Ω1Ω3

I1−I2
I3

Ω1Ω2
1
2 (Ω3q2 −Ω2q3 + Ω1q4)
1
2 (Ω1q3 −Ω3q1 + Ω2q4)
1
2 (Ω2q1 −Ω1q2 + Ω3q4)


+

(
3Ω2

0 I−1(cko × Icko)
03×1

)
−
(

Ω0 IcΩco × cio
03×1

)
+

(
I−1(IΩ0(

cΩco × cio) + Ω0(Icio × cΩco) + Ω2
0(Icio × cio))

03×1

)
,

f1(x, B) =


0

−2(q1q3+q2q4)b1+2(q2q3−q1q4)b2+(q2
1+q2

2−q2
3−q2

4)b3
I2

2(q1q2−q3q4)b1+(q2
4−q2

1+q2
2−q2

3)b2+2(q1q4+q2q3)b3
I3

03×1

,

f2(x, B) =


2(q1q3+q2q4)b1+2(q2q3−q1q4)b2+(q2

4−q2
1−q2

2+q2
3)b3

I1
0

(q2
2+q2

3−q2
1−q2

4)b1−2(q1q2+q3q4)b2+2(q2q4−q1q3)b3
I3

03×1

,
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f3(x, B) =


2(q3q4−q1q2)b1+(q2

1−q2
2+q2

3−q2
4)b2−2(q1q4+q2q3)b3

I1
(q2

1−q2
2−q2

3+q2
4)b1+2(q1q2+q3q4)b2+2(q1q3−q2q4)b3

I2
0

03×1

.

For the control design, we consider the following Lyapunov function candidate

V(x) =
1
2

ΩT IΩ +
3
2

Ω2
0(

ckT
o Icko − Iz) +

1
2

Ω2
0(Ix − ciT

o Icio) + 2η(1− q4), (16)

where η > 0 is a scalar constant. Then, the directional derivative of V(x) along the vector
field f0(x) is

L f0 V =
∂V(x)

∂x
f0(x) = ηΩTq, (17)

and the time derivative of V along the trajectories of (15) can be written as

V̇ = ηΩTq + 〈Ω, u× (A(q)B(t))〉. (18)

As the scalar triple product 〈Ω, u× (A(q)B(t))〉 is unchanged under a circular shift of
its operands, we have

V̇ = α(x) + (u, β(x)) (19)

with
α(x) = ηΩTq,

β(x) = (A(q)B(t))×Ω.

Recall that a positive definite function V : X ⊂ Rn → R of class C1 is said to be a
control Lyapunov function (CLF) for a system of the form ẋ = f (x, u), x ∈ X, u ∈ U ⊂
Rm [17], if, for any x ∈ X \ {0}, there exists a vector ux ∈ U such that (∇V(x), f (x, ux)) < 0.
Similarly, we call V(x) a weak CLF if [18], for any x ∈ X, there is a ux ∈ U such that
(∇V(x), f (x, ux)) ≤ 0. By Artstein’s theorem [19], the existence of a CLF is equivalent
to the existence of a stabilizing feedback law of the form u = v(x), v ∈ C(X \ {0}) for
nonlinear control-affine systems. We will see that the design methodology based on
Artstein’s theorem (and its extension with a weak CLF [18]) is not directly applicable in our
case. Indeed, as one can easily deduce from the expression (19), a necessary and sufficient
condition for the function V(x) to be a weak CLF for (15) is that

for each x ∈ X : if β(x) = 0 ⇒ α(x) ≤ 0. (20)

Condition (20) can be equivalently written in the following form: “for each x ∈ X,
either β(x) 6= 0 or (β(x) = 0 and α(x) ≤ 0)”.

We show that condition (20) is violated because the geomagnetic field B(t) 6= 0.
Indeed, the condition β(x) = 0 for x 6= 0 is equivalent to

Ω = λA(q)B(t) with some λ ∈ R. (21)

Then, by substituting the above Ω into α(x), we get

α(x) = λη(A(q)B(t), q),

which takes positive values under a suitable choice of λ whenever (A(q)B(t), q) 6= 0. Thus,
the only possibility to satisfy the condition (20) for any x and B(t) at the points x 6= 0 is to
have (A(q)B(t), q) ≡ 0. However, we see that the latter property holds only for B(t) = 0
due to the structure of A(q) in (3). Hence, the candidate Lyapunov function V(x) is not a
weak CLF for system (15).

To overcome the above-mentioned constraint for pure Lyapunov-based control design,
we will propose a “hybrid” control strategy based on a combination of state feedback
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controllers with ε-periodic oscillating input signals, where ε > 0 is treated as a small
parameter. Such a construction is inspired by the fact that V̇ takes positive values at some
x 6= 0 with any admissible choice of controls u. Thus, the objective of our oscillating control
component is to ensure the decreasing of V(x(t)) on time intervals of length ε when the
time derivative V̇(x) is not negative.

To be precise, we introduce a parameter µ ∈ (0, 1) and split the whole state space R6

into the union of two disjoint sets Aµ ∪ Bµ,

Aµ = {x : Wµ(x) ≥ 0},

Bµ = {x : Wµ(x) < 0}. (22)

where
Wµ(q, Ω) = (Ω, A(q)B)− µ‖Ω‖ · ‖B‖. (23)

In the sequel, we will consider the following two cases:

1. x(t) ∈ Bµ;
2. x(t) ∈ Aµ.

Consider first the case x(t) ∈ Bµ. This implies that β(x) 6= 0. We can define the
following state feedback law (pre-compensator) aiming to stabilize the trivial solution of
system (15)

ũ(x) = −γ
β(x)
‖β(x)‖ (24)

where γ > 0 is a design parameter. Note that formula (24) also contains the design
parameter η > 0 originating from (16). Then, the time derivative V̇(x) along the trajectories
of the closed-loop system (15), (24) takes the form

V̇ = α(x)− γ‖β(x)‖. (25)

The following Lemma proves the existence of a globally stabilizing control law for the
case when x(t) ∈ Bµ. This should be seen as an alternative to the locally stabilizing PD
controls discussed in the literature [6,11].

Lemma 1. For any µ ∈ (0, 1), there exists a γ > 0 such that the time-derivative of V(x) (25)
along the trajectories of the closed-loop system (15), (24) satisfies

V̇(x) < 0 for all x ∈ Bµ.

Proof. We substitute ũ(x) from (24) in (18) to obtain

V̇ = α(x)− γ‖β(x)‖ ≤ η‖Ω‖ · ‖q‖ − γ‖A(q)‖ · ‖B‖ · ‖Ω‖· | sin θ |,

≤ η‖Ω‖ − γ‖B‖ · ‖Ω‖· |
√

1− µ2 |,

= ‖Ω‖ · (η − γ‖B‖ ·
√

1− µ2),

(26)

where θ is the angle between the vectors A(q)B and Ω (recall from the definition of Wµ

in (23) that cos θ = (Ω,A(q)B)
‖Ω‖·‖B‖ , and the norm of unit quaternion is 1). By choosing γ as

γ >
η

‖B‖ ·
√

1− µ2
, (27)

and subsequently ũ(x) by substituting (27) into (24), we can ensure negative definiteness
of V̇ as x(t) ∈ Bµ =⇒ β(x) 6= 0.
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We now consider the case x(t) ∈ Aµ and we pose the following question: is it possible
to ensure

V(x(ε)) < V(x(0))

for all x(0) ∈ Aµ by applying ε-periodic oscillating controllers for some ε > 0? We show in
the following section that this is indeed the case if we consider oscillating controls with
sine and cosine terms.

4. Lie Bracket-Based Control in Aµ

In this section, we construct ε-periodic controllers that ensure the decreasing of V(x(t))
along the trajectories in Aµ. The solutions of system (15) corresponding to the initial data
x(0) = x0 and admissible controls ui(t) can be represented by the Chen–Fliess expansion:

x(t) =x0 +
3

∑
j1=0

f j1

(
x0
) ∫ t

0
uj1(s)ds +

3

∑
j1,j2=0

L f j2
f j1

(
x0
) ∫ t

0

∫ s1

0
uj1(s1)uj2(s2)ds2ds1

+
3

∑
j1,j2,j3=0

L f j3
L f j2

f j1

(
x0
) ∫ t

0

∫ s2

0

∫ s1

0
uj1(s1)uj2(s2)uj3(s3)ds3ds2ds1 + r(t),

(28)

where L fi
f j(x) =

∂ f j(x)
∂x fi(x) denotes the directional derivative of f j(x) along the vector

field fi(x), and r(t) stands for higher-order terms. The Chen–Fliess series are reviewed
in [20]. The overall control scheme comprises a time-invariant feedback component with
an oscillating component and is similar to the generalized periodic controls presented
in [15,16]. Let ε > 0 be a small parameter which controls the oscillating frequency; then, we
define the control functions as follows:

u1 =v1 +
2πk10v10

ε
sin
(

2πk10t
ε

)
,

u2 =v2 +
2πk12

√
2|v12|

ε
sign(v12) cos

(
2πk12t

ε

)
,

u3 =v3 +
2πk30v30

ε
sin
(

2πk30t
ε

)
,

(29)

where v1, v2, v3, v10, v30, v12 are treated as real parameters, and k10, k12, and k30 are nonzero
integers such that their magnitudes |kij| are mutually distinct numbers. We substitute
controls (29) into the Chen–Fliess expansion (28) and compute the Taylor series expansion
of x(ε) for small ε:

x(ε) =x0 + ε

(
f0(x0) + v1 f1(x0) + v2 f2(x0) + v3 f3(x0) + [ f1, f0](x0)v10 + [ f3, f0](x0)v30

+ [ f1, [ f2, f0]](x0)v12

)
+ o(ε2),

(30)

where [ fi, f j](x) = L fi
f j(x)− L f j

fi(x) represents the Lie brackets of vector fields fi(x) and
f j(x). The idea behind our control scheme is to construct the above v1, v2, v3, v10, v30, v12,
depending on the current system state, such that (30) guarantees(

∇V(x0),
x(ε)− x0

ε

)
< 0 for sufficiently small ε > 0 and x0 6= 0, (31)

and thereby ensure V(x(ε)) < V(x0) along nontrivial trajectories of (15).
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If x0 ∈ Aµ \ {0} is chosen in such a way that its Ω component is not parallel to A(q)B,
then β(x0) 6= 0 because of (21). Thus, by putting v10 = v30 = v12 = 0 in (29), we see that
the condition (31) is satisfied with the control parameters

vi = ũi(x), i = 1, 2, 3, (32)

at x = x0, where ũ(x) is given by (24) provided that γ > 0 is large enough.
Consider now the case x0 ∈ Aµ and Ω = λA(q)B with some λ ∈ R, where B(t) = B

indicates that the magnetic field in OCS is almost time-invariant (for example, if the satellite
is following an equatorial orbit). This implies β(x0) = 0, so that L f1 V(x0) = L f2 V(x0) =

L f3 V(x0) = 0, and the property (31) can be ensured by defining

v10 = −γ̃L[ f1, f0]
V(x),

v30 = −γ̃L[ f3, f0]
V(x),

v12 = −γ̃L[ f1,[ f2, f0]]
V(x), γ̃ > 0,

(33)

at x = x0, provided that the gain γ̃ is large enough and at least one of the Lie brackets
in (33) does not vanish at x = x0. To formalize this scheme, we introduce the following
assumption.

Assumption 1. The vector fields f0(x), f1(x, B), f2(x, B), f3(x, B) satisfy the following nonsin-
gularity condition for each x ∈ Aµ \ {0} and B ∈ R3 \ {0}:

|L f1 V(x)|+ |L f2 V(x)|+ |L f3 V(x)|+ |L[ f1, f0]
V(x)|+ |L[ f3, f0]

V(x)|
+ |L[ f1,[ f2, f0]]

V(x)| 6= 0, (34)

where we treat B as a parameter in f1, f2, f3, [ f1, f0], [ f3, f0], and [ f1, [ f2, f0]].

From the geometric viewpoint, condition (34) means that the gradient of V(x) is not
perpendicular to the linear span

span{ f1(x), f2(x), f3(x), [ f1, f0](x), [ f3, f0](x), [ f1, [ f2, f0]](x)}

for each x 6= 0 in Aµ and each admissible value of the geomagnetic field. Then, it is possible
to ensure the decreasing of V(x(t)) along the trajectories of (15) in Aµ whenever one can
implement the motion along the directions± f1(x),± f2(x),± f3(x),±[ f1, f0](x),±[ f3, f0](x),
and ±[ f1, [ f2, f0]](x).

To sum up, we propose to use the oscillating control strategy (29) with vi and vij
given by (32) and (33), respectively, when the satellite trajectory is in Aµ and either a
globally stabilizing control law (24) or a locally stabilizing PD control law when the satellite
trajectory is in Bµ.

5. Simulation Results

In this section, we present simulation results on the closed-loop system (15) using
controls (29). The geomagnetic field was simulated using (11) with (13). The empirical
Gaussian coefficients used in the simulations are obtained from the IGRF model. The inertia
(in kg ·m2) tensor of the satellite is given as

I =

3.428 0 0
0 2.904 0
0 0 1.280

.

In all the simulation results, the frequency parameter ε is 0.001, and the controller
parameters are shown in Table 2. The form of control law (24) makes it undesirable for
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practical implementation (as ‖β(x)‖ → 0 as Ω → 0). We have therefore implemented
a locally stable PD controller based on Chapter 4 in [6] when the satellite trajectory is
x(t) ∈ Bµ. The gain parameters for the PD controller were found in the following way. We
considered the case when x(t) ∈ Bµ (i.e., control scheme (33) is not active) and began by
tuning the derivative gains until we stabilized the angular velocities. Thereafter, we tuned
the proportional gains such that the kinematics were stabilized.

Table 2. Controller parameters used in simulations.

KP1 KP2 KP3 KD1 KD2 KD3 k10 k12 k30

Value 0.0375 0.0375 0.1875 55 60 35 1 2 3

The altitude of the orbit is 800 km. We ran the simulations with a geomagnetic field
that is almost time-invariant as can be seen in Figure 2 and initialized (15) in Aµ.

1 2 3 4 5 6 7 8 9 10

Number of Orbits

1

1.5

2

2.5

3

3.5

4

4.5
10

4

Figure 2. The magnetic field considered in the simulation studies is almost time-invariant. Bx, By

and Bz are the components of the dipole model in OCS (11) in the case when the satellite is following
an circular equatorial orbit (see Equation (H-30) in [3]).

In Figure 3, we can observe the stability of (15) if the satellite was operating in the situation
of an almost time-invariant geomagnetic field and (15) were initialized in Aµ. During the
transient phase (i.e., up to the 4th orbit), we observe high-frequency oscillations up to the
2nd orbit and thereafter, the frequency of oscillations is markedly decreased between the
2nd and the 4th orbit, culminating in stabilization around the 4th orbit. Note that, at the
equilibrium point, q4 is equal to−1, while q1, q2 and q3 are 0, and this is due to the quaternion
constraint (2).

In Figure 4, we observe the angular velocity Ω corresponding to Figure 3. The initial
angular velocity considered in the simulation can be attained by a damping law (referred
to as B-dot law in literature [11]), and attitude maneuvering should be started once the
initial velocity is reasonably low. It should be noted that the equilibrium point, {0} ∈ Aµ as
β(x) ≈ 0 in (19) (since Ω ≈ 0). Consequently, (33) is activated at this point, and therefore,
we observe high frequency oscillations at the steady state in Figure 4.
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Figure 3. Quaternions achieve stability (up to an error represented in terms of Euler angles) with the
initial quaternion q0 = [0.5 0.5 0.5 0.5]T despite an almost time-invariant magnetic field.

1 2 3 4 5 6 7 8 9 10

Number of Orbits
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-2

0

2

4

6
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10
10

-3

9 9.25 9.5 9.75 10
-5

0

5
10

-5

Figure 4. Angular velocities achieve stability (up to an error bound) with initial Ωx = 0.0004 rad/s,
Ωy = 0.0004 rad/s, Ωz = 0.0009 rad/s, despite an almost time-invariant magnetic field. The
oscillations seen in the zoomed-in part around the 9th orbit are due to the oscillating controls.

The high-frequency oscillations in the zoomed-in part of Figure 4 are due to the
oscillating controls. Figure 5 represents the control torque, and the relatively high torque
values in the beginning limit the practical application of this work. In future work, we plan
to study these controls with saturation limits included in (29) (imposing saturation limits
in an ad hoc manner results in an unstable behavior) to simulate the real-world situation
more closely.

We have also simulated the oscillating control scheme with locally stable PD controls
for different initial conditions, and the results are shown in Figures 6 and 7.
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Figure 5. The control torque in N-m corresponding to Figure 3 and Figure 4. The control torque has a
high magnitude in the beginning, and this limits the practical application to an extent. The chattering
seen in the zoomed-in part around 9th orbit is due to the oscillating controls.
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Figure 6. Quaternions converging to the local equilibrium point after starting from random initial
quaternions (in a local neighbourhood). Subplots 1–4 represent quaternions q1–q4, respectively.
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Figure 7. Angular velocities converging to the local equilibrium point after starting from random
initial quaternions (in a local neighbourhood). Subplots 1–3 represent angular velocities Ω1–Ω3,
respectively.

6. Conclusions and Future Work

In this work, we have proposed an oscillating control scheme for the attitude stabi-
lization of satellite actuated via magnetorquers alone. Simulation results show that the
proposed oscillating controls scheme manages to stabilize the attitude and angular velocity
in the case of a slowly varying magnetic field. However, the control torque was quite high,
and therefore, this technique still needs to be refined. Also, this work does not yet address
disturbances due to aerodynamic drag and residual magnetic field. Furthermore, a formal
proof is still lacking due to technical challenges in estimating the Chen–Fliess terms of
different orders with respect to components of the state vector, particularly in the case of a
time-varying geomagnetic field.

Possible future work could be to either find a better candidate Lyapunov function or
to use another technique such as combinations of Lyapunov and density functions to prove
the stability of the closed-loop system. Another challenging future work is to simulate
whether the magnetically actuated satellite with the proposed control scheme can follow an
orbit in the geomagnetic equatorial plane. Consequently, x(t) ∈ Aµ for all time, and the Lie
bracket-based controller (33) will be active always. Unfortunately, due to the limitations
of the conventional Ordinary Differential Equations (ODE) solver, we could not simulate
this scenario satisfactorily. Specifically, due to the oscillating nature of (29), the ODE solver
could not maintain the error tolerances without reducing the step-size to a very low value.
Therefore, further investigation is required in this direction, as the small step-size may
lead to problems both in the pulse-width modulation implementation and in the residual
magnetization of magnetorquers. To summarize, we can conclude that oscillating controls
represent a potential research direction in addressing the challenging problem of active
three-axis control using magnetorquers only.
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