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Abstract: Neural networks are one of the methods used in system identification problems. In this
study, a NARX network with a serial-parallel structure was used to identify an unknown aerial
delivery system with a ram-air parachute. The dataset was created using the software-in-the-loop
method (Software in the loop). Gazebo was used as the simulator and PX4 was used as the autopilot
software. The performance of the NARX network differed according to parameters used, such
as the selected training algorithm, input and output delays, the hidden layer, and the number of
neurons. Within the scope of this study, each parameter was examined independently. Models
were trained using MATLAB 2020a. The results demonstrated that the model with one hidden layer
and five neurons, which was trained using the Bayesian regularization algorithm, was sufficient for
this problem.

Keywords: Bayesian regularization; Levenberg–Marquardt; NARX network; scaled conjugate gradient;
software in the loop

1. Introduction

In aircraft, system identification can be thought of as estimating aerodynamic pa-
rameters or defining a mathematical model of the system. Three methods have been
proposed in the literature for the estimation of aerodynamic parameters of parachute land-
ing systems [1]. The first of these covers analytical methods based on computational fluid
dynamics. Others are wind tunnel tests and flight tests. In this study, we focused on the
methods used in flight tests.

The purpose of system definition is to obtain a mathematical model according to the
inputs and outputs obtained from the flight tests. Hamel and Jategaonkar proposed the
4M (maneuver, measurement, method, model—see Figure 1) requirements for successful
system identification [2], arguing that:

• Control inputs should be created to cover extreme points;
• High-resolution measurements should be used;
• The possible mathematical model of the vehicle should be defined; and
• The most suitable method for the data should be chosen.

Jann and Strickert suggested separating the symmetric and asymmetric maneuvers
that need to be carried out in the formation of data to be used in the definition process [3]
(Figure 2).

The methods used in parameter estimation can be listed as the Equation-error, output-
error, and filter-error methods. The question of which method to choose can be decided
according to the measurement and the noise present in the process [2] (Figure 3). If
disruptive factors can be ignored in both, the fastest method, the equality-error method, is
preferred. If the disturbing factors are only assumed in the measurements, the output-error
method is recommended, and if both are present, the filter-error method is recommended.
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The output-error method is the most widely preferred method for parameter estima-
tion in the literature. In his study, Grauer calculated a dynamic model of an aircraft during 
flight by adapting the output-error method, which is usually carried out using post-flight 
data, to real-time flight data [4]. In another study using the output-error method, Jann 
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The output-error method is the most widely preferred method for parameter estima-
tion in the literature. In his study, Grauer calculated a dynamic model of an aircraft during
flight by adapting the output-error method, which is usually carried out using post-flight
data, to real-time flight data [4]. In another study using the output-error method, Jann
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estimated the state variables of a parachute landing system called ALEX via sensor inputs
(GPS, Magnetometers, Gyros, Accelerometers) [5]. On the other hand, Jaiswal, Prakash, and
Chaturvedi estimated the aerodynamic coefficients of a parachute landing system using
the maximum likelihood method and the output-error method [6].

In addition to statistical methods, machine learning techniques, which are increasing
in popularity day by day, have also been successfully used in solving system identification
problems. In the literature, artificial neural networks have been used in modeling aircraft
dynamics [7–11], estimating aerodynamic forces and moments [12–15], and in controller
designs [16,17]. Both feed-forward neural networks [14,18] and recurrent neural networks
have been widely used in these studies [19]. Roudbari and Saghafi proposed a new method
for describing the dynamics of highly maneuverable aircraft. In the model they developed,
they modeled the flight dynamics with artificial neural networks. The difference between
their approach and those of traditional methods is that they did not use aerodynamic
information during the training process [20]. Bagherzadeh supported a model with flight
dynamics in order to increase the performance of the artificial neural network model [21].

The development of deep learning methods has enabled these methods to be used
frequently in system identification problems. The residual neural network approach,
which is one type of deep neural network, is one of the methods used to solve these
problems. Goyal and Benner developed a special architecture for dynamic systems called
LQResNET [22]. The method they proposed allowed for the use of observations in the
modeling of dynamical systems. Their model was based on the principle that the rate
of a variable depends on the linear and quadratic forms of the variable. Chen and Xiu
suggested the framework called gResNet. They defined the residual as the estimation error
of the prior model. They also used a DNN to model the residual [23].

In this study, a NARX Network with a serial-parallel structure was used to identify
an unknown aerial delivery system with a ram-air parachute. The dataset was created
using the software-in-the-loop method (software in the loop). Gazebo was used as the
simulator and PX4 was used as the autopilot software. The performance of the NARX
network differed according to parameters used, such as the selected training algorithm, the
input and output delays, the hidden layer, and the number of neurons. Within the scope
of this study, each parameter was examined independently. Models were trained using
MATLAB 2020a.

2. Mathematical Model

In this study, a 6-degree-of-freedom model developed for a parachute landing system
was used [24]. The Equations of motion of the vehicle can be written as:

mI3x3

 .
u
.
v
.

w

 = F−mS(ω)

u
v
w

, (1)

I

 .
p
.
q
r

 = M− S(ω)I

p
q
r

, (2)

where m is the mass, I is the inertia matrix, [u, v w] are linear velocities, [p, q r] are the
angular velocities in the body frame, S(ω) is a skew-symmetric matrix consisting of linear
velocity vectors, F is the force, and M is moment.

Due to the xz-symmetry plane of the parachute landing system, the inertial matrices
consist of 4 unique components.

S(ω) =

 0 −r q
r 0 −p
−q p 0

 (3)
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I =

Ixx 0 Ixz
0 Iyy 0

Ixz 0 Izz

 (4)

The forces and moments affecting the parachute are caused by gravity and aerody-
namic forces. The gravitational force can be written according to the body (b) axis.

Fg = mg

 − sin(θ)
cos(θ) sin(Φ)
cos(θ) cos(Φ)

 (5)

The aerodynamic forces acting on the system are written using the relevant aerody-
namic coefficients (CD0, CDα2 , CDδs , CYβ, CL0, CLα, CLδs ), according to the body axis.

Fa = QSb
wR

CD0 + CDα2 α2 + CDδs δs
CYββ

CL0 + CLαα + CLδs δs

 (6)

In this Equation, S represents the parachute surface area, δs represents symmetric
trailing edge deflection, and (b

wR) is the rotation matrix from the aerodynamic coordinate
system to the body axis.

b
wR = RαRβ =

cos(α) 0 − sin(α)
0 1 0

sin(α) 0 cos(α)

 cos(β) sin(β) 0
− sin(β) cos(β) 0

0 0 1

 (7)

b
wR = RαRβ =

cos(α) cos(β) cos(α) sin(β) − sin(α)
− sin(β) cos(β) 0

sin(α) cos(β) sin(α) sin(β) cos(α)

 (8)

The angle of attack and slip angle are obtained from the velocity vector in the body axis.

α = tan−1
(

vz

vx

)
(9)

β = tan−1

(
vy√

v2
x + v2

z

)
(10)

The velocity vector in the body axis consists of the global velocity and the wind effect.

Va =

vx
vy
vz

 =

u
v
w

− b
nR

wx
wy
wz

 (11)

b
nR is the rotation matrix from the coordinate system on the North-East-Down-axis

which has its origin in the center of mass of the parachute to the body axis. Euler angles
(roll, pitch, yaw) are used in this notation.

Rφ =

1 0 0
0 cos(φ) sin(φ)
0 − sin(φ) cos(φ)

 (12)

Rθ =

cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 (13)
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Rψ =

1 0 0
0 cos(ψ) sin(ψ)
0 − sin(ψ) cos(ψ)

 (14)

b
nR = RφRθ Rψ (15)

Aerodynamic moments affecting the parachute can also be written using the relevant
coefficients (Clβ, Clp, Clr, Clδa , Cm0, Cmα, Cmq, Cnβ, Cnp, Cnr, Cnδa ). These are roll, pitch, and
yaw moments, respectively [2].

Ma =
ρV2

a S
2


b
(

Clββ + b
2Va

Clp p + b
2Va

Clrr + Clδa δa

)
c
(

Cm0 + Cmαα + c
2Va

Cmqq
)

b
(

Cnββ + b
2Va

Cnp p + b
2Va

Cnrr + Cnδa δa

)
 (16)

here, ρ is air density, c represents mean aerodynamic chord, δa = δa/δa max is asymmetric
trailing-edge deflection, and S is the canopy reference area.

3. Materials and Methods

The dataset was created using the software-in-the-loop method (software in the loop).
Gazebo was used as the simulator and PX4 was used as the autopilot software. A virtual
flight was performed in the Gazebo environment (Figure 4).
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The parameters required for the simulation were used considering the autonomous
landing system with a parachute model named Snowflake (Table 1) [3].

Table 1. Parameters of the Snowflake parachute model [3].

Parameter Value

Mass (m) 1.9 kg
Canopy reference area (S) 1 m2

Inertia matrix (I)
 0.042 0 0.0068

0 0.027 0
0.0068 0 0.054


Maximum brake deflection (δsmax ) 0.25 m

Aerodynamic coefficients



CD0 = 0.15 CDα2 = 0.90
CYβ = −0.05 CL0 = 0.25
CLα = 0.68 Cm0 = 0
Cmα = 0 Cmq = −0.265

Clβ = −0.036 Clp = −0.355
Clr = 0

Cnβ = −0.036
CD0 = −0.09

Clδa = 0.15
Cnp = 0

Cnδa = 0.003


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Gazebo compatible sensor models were used to obtain the flight data for the vehicle in
the simulation environment. These consisted of a gyroscope, magnetometer, accelerometer,
barometer, and GPS. The estimation of the state variables of the vehicle was carried out
with PX4 software, using the extended Kalman filter.

PX4 has a state estimation module called EKF2 which uses the EKF algorithm. It uses
IMU data in the state prediction phase. To correct these values, a GPS and barometer are
used in the state correction phase [24].

Simplified models of the sensors used can be shown similarly [25]:

xm = x + b + n, (17)

.
b = nb, (18)

where xm is the measured value; x is the real value; and b, n, and nb represent bias and
Gaussian noise, respectively. The sensor parameters can also be expressed using this
notation. The sensor parameters used in the simulation are given in Table 2.

Table 2. Parameters used in the simulation.

Sensors Noise Density (σn) Random Walk (σnb ) Bias Correlation
Time (σn)

Gyroscope 0.00018 0.000 1000.0
Accelerometer 0.00186 0.006 300.0
Magnetometer 0.00040 0.000 600.0

The simulation was carried out in a windless environment and the air density was
1.225 kg/m3. In the simulation, the system was released from a height of 500 m. Dropping
occurred in 30 s. Control inputs δa and δs are given as full right and full left (Figure 5).
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The flight data received from the system were arranged and the input vector x and the
output vector y were created.

x = [∂a ∂s] (19)

y = [u v w p q r] (20)
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A total of 270 s of data were reduced to 225 s to cover the flight section, and 2250 pieces
of data were produced using a 10 Hz measurement. The position and velocity of the vehicle
in the flight data used are shown in Figures 6–8.

In order to improve the performance of the model, 70% of the flight was used for
training and the remaining 30% was used in the testing process. Since the landing position
is the most important phase, the first phase of the flight was selected as the training data.
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3.1. NARX Network

A nonlinear autoregressive exogenous (NARX) network is a nonlinear model represen-
tation used in time series models. In this notation, the model’s outputs depend on the past
output values, the inputs, and the past values of the inputs. Its mathematical expression is
given as follows:

y(t) = f
[
y(t− 1), y(t− 2), . . . , y

(
t− ny

)
; u(t), u(t− 1), . . . , u(t− nu)

]
, (21)

where y denotes outputs, u denotes inputs, and f represents a nonlinear function. The struc-
ture in which f is modeled as a neural network is named the NARX neural network (NARX
network) [26]. This model has been used for modeling conventional fixed-wing [27,28] and
rotary-wing [29,30] aircraft. A NARX neural network can be modeled using two types of
models: parallel and serial-parallel (Figure 9). In the parallel model, the estimated output
values are fed back into the system.

ŷ(t) = f
[
ŷ(t− 1), ŷ(t− 2), . . . , ŷ

(
t− ny

)
; u(t), u(t− 1), . . . , u(t− nu)

]
(22)
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In the serial-parallel model, only real system outputs are used:

ŷ(t) = f
[
y(t− 1), y(t− 2), . . . , y

(
t− ny

)
; u(t), u(t− 1), . . . , u(t− nu)

]
(23)

where ŷ(t) represents the estimated output value time t.
Since the data set used in this study included real system outputs, the serial-parallel

structure was preferred. The feed-forward network block shown in Figure 9 consisted
of multilayer feedforward neural networks, which consisted of at least one hidden layer
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and neurons. Each neuron calculated the outputs with the help of the activation function,
determined using the inputs and their weights, as shown in Figure 10, where, xn, wn, b, and
f represent inputs, weights, bias, and the activation function, respectively. The architecture
of the NARX neural network with a serial-parallel structure is shown in Figure 11.
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The selection of the activation functions plays an important role in the model design.
The functions used in the hidden layers and the functions used in the output layer vary.
Differentiable functions are preferred in hidden layers. These functions, which are preferred
over linear functions during training, enable the models to perform successfully with more
complex problems. In the literature, functions that are frequently used in hidden layers
are ReLU (Rectified Linear Activation), sigmoid (logistic), and Tanh (hyperbolic tangent)
functions. The function used in the output layer differs according to the type of problem.
Linear functions are used in regression problems, whereas softmax or sigmoid functions
are used in classification problems. This concept is illustrated in detail in Table 3.

The process of calculating and updating the weights is called training. The aim here
is to minimize the targeted error function for model performance. In the neural network
model, this function can be written as the sum of the squares of the errors:

E =
n

∑
i=1

e2
i , (24)

where e is the error and n is the number of data.



Aerospace 2022, 9, 443 10 of 19

Table 3. Activation functions.

Function Plot

ReLU f (x) =
{

x, x > 0
0, x ≤ 0
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The training algorithm used in feed-forward neural network methods is known as
the back-propagation algorithm [31]. Since the convergence rate of the steepest descent
method, which is used as a standard in the back-propagation algorithm, is slow, many
learning algorithms have been developed for neural network training. The main ones are
the Levenberg–Marquardt algorithm [32], the Bayesian regularization algorithm [33], and
the scaled conjugate gradient algorithm [34].

3.2. Levenberg–Marquardt

The Levenberg–Marquardt algorithm is a second-order training algorithm used in
solving nonlinear optimization problems. According to the weight values that need to
be updated, the Jacobian of the error function shown in Equation (23) can be calculated
as follows:

J =


∂e1
∂w1

· · · ∂e1
∂wm

...
. . .

...
∂en
∂w1

· · · ∂en
∂wm

, (25)
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where m is the number of weights in the network. After finding the Jacobian matrix, the
gradient vector (g) and the Hessian matrix (H) can also be calculated.

g = JTe (26)

H = JT J (27)

The weights are updated based on the Jacobian matrix.

wi+1 = wi −
(

JT
i Ji + αi I

)−1(
2 JT

i ei

)
g = JTe, (28)

where αi is the learning coefficient and I is the unit matrix. A theoretical analysis can be
found in [35].

3.3. Bayesian Regularization

The error function is rearranged using the regularization method to generalize the
neural network [36]:

F = µEw + νE, (29)

where µ and ν are the regularization parameters and Ew is the sum of the squared weights.
The Bayesian regularization method is used for the optimization of the editing parameters.
Considering the weight values as random variables, it aims to calculate the weight values
that will maximize the posterior probability distribution of the weights in the given data
set. The posterior distribution can be expressed according to the Bayes rule:

P(w|D, µ, ν, N) =
P(D|w, ν, N) P(w|µ, N)

P(D|µ, ν, N)
, (30)

where D represents the dataset and N represents the neural network model. P(D|w, ν, N)
expresses the likelihood function, P(w|µ, N) is the prior density, and P(D|µ, ν, N) is the
normalization factor. It can be said that the noise in the dataset and in the weights has a
Gaussian distribution. Thus, the likelihood function and antecedent intensity values can be
calculated.

P(D|w, ν, N) =
e−νE

Z(ν)
(31)

P(w|µ, N) =
e−µEw

Zw(µ)
(32)

Here, Z =
(

π
ν

)n/2 and Zw =
(

π
µ

)m/2
. By rearranging these equations, the posterior

distribution to the weights can be rewritten.

P(w|D, µ, ν, N) =
e−(µEw+νE)

Zw(µ)Z(ν)
(33)

Regularization parameters are effective in the N model. The Bayes rule can be applied
for the optimization of these parameters.

P(µ, ν|D, N) =
P(D|µ, ν, N) P(µ, ν|N)

P(D|N)
(34)

As can be seen in Equation (34), the function P(D|µ, ν, N) is directly proportional
to P(µ, ν|D, N). Therefore, the maximum value of the function P(D|µ, ν, N) must
be calculated. Adjustment parameters can be calculated using the Taylor expansion of
Equation (29). A theoretical analysis can be found in [37].

µ =
γ

2Ew
(35)
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ν =
n− γ

2E
(36)

γ = m− µ tr(H−1) (37)

3.4. Scaled Conjugate Gradient

In the steepest descent algorithm implemented in the standard back-propagation
algorithm, a search is made in the opposite direction of the gradient vector while updating
the weights. Although the error function decreases rapidly in this direction, the same
cannot be said for the convergence rate. Conjugate gradient algorithms search using the
direction with the fastest convergence. This direction is called the conjugate direction. In
this method, the search first starts in the reverse of the gradient vector, similarly to the
steepest descent algorithm. It differs from the second iteration as follows.

p0 = −g0 (38)

xk+1 = xk + αkgk (39)

pk = −gk + βk pk−1 (40)

Different algorithms have been developed according to the way in which the βk
coefficient is calculated. Moller, on the other hand, combined the LM algorithm and the
conjugate gradient algorithm for the calculation of the number of steps in the algorithm he
developed. This algorithm is called the scaled conjugate gradient algorithm [35]. In this
algorithm, which is based on calculating the approximate value of the Hessian matrix, the
design parameters change in each iteration and are independent of the user. This is the
most important factor affecting the success of the algorithm.

Hk =
E′(wk + σk pk)− E′(wk)

σk
+ λk pk (41)

βk =

(
|gk+1|2 − gT

k+1gk

)
gT

k gk
(42)

pk+1 = −gk+1 + βk pk (43)

4. Results and Discussion

The performance of the NARX network differs according to parameters used, such
as the selected training algorithm, the input and output delays, the hidden layer, and
the number of neurons. Within the scope of this study, each parameter was examined
independently. Models were trained using MATLAB 2020a. The root-mean-square error
(RMSE) and mean absolute error (MAE) values were used to evaluate model performance.
The metrics used are presented in Table 4.

Table 4. Metrics used in the evaluation of models.

Measures Equation Description

Root-mean-square error RMSE =

√
∑n

i=1 e2
i

n
Low values indicate that the

model was successful.Mean absolute error MAE = ∑n
i=1|ei |

n

First, the performance of the training algorithms (Bayes arrangement, Levenberg–
Marquardt, scaled conjugate gradient) in a model consisting of a single hidden layer and
15 neurons was compared. The input and output delay vectors were determined as in [12].
A hyperbolic tangent was used as the activation function in the hidden layer and a linear
function was used in the output layer. The errors according to the training algorithms are
shown in Table 5.
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Table 5. Performance based on the training algorithms.

Algorithm RMSE MAE RMSE MAE RMSE MAE

LM 0.0007 0.0005 0.0026 0.0023 0.0016 0.0011
BR 0.0007 0.0005 0.0025 0.0021 0.0015 0.0011

SCG 0.0260 0.0081 0.0101 0.0018 0.0218 0.0037

Despite the fast training time, SCG performed worse than LM and BR. At this stage,
the hidden layer and the number of neurons within it were changed and the results were
examined and shown in Table 6. BR was used as the training algorithm.

Table 6. Performance based on the number of hidden layers and neurons.

No
Hidden Layer Train Test Total

1 2 3 4 RMSE MAE RMSE MAE RMSE MAE

1 10 - - - 0.0007 0.0005 0.0025 0.0021 0.0015 0.0011
2 3 - - - 0.1538 0.0051 0.0018 0.0016 0.1256 0.0039
3 5 2 - - 0.0208 0.0072 0.0318 0.0312 0.0250 0.0152
4 5 - - - 0.0008 0.0006 0.0012 0.0010 0.0010 0.0007
5 10 5 - - 0.0007 0.0005 0.0056 0.0044 0.0033 0.0018
6 25 - - - 0.0006 0.0005 0.0018 0.0015 0.0012 0.0008
7 50 - - - 0.0006 0.0005 0.0023 0.0019 0.0014 0.0010
8 15 12 - - 0.0007 0.0005 0.0027 0.0020 0.0017 0.0010
9 15 12 12 - 0.0009 0.0005 0.0015 0.0013 0.0012 0.0008

10 15 12 12 6 0.0009 0.0005 0.0016 0.0014 0.0012 0.0008

According to the angle of attack and the slip angle, it can be seen that model 4, which
consisted of a single hidden layer and five neurons, showed the best performance. A
comparison of the model results with the real system is shown in Figure 12.
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In order to observe the performance of the models with the same aerodynamic char-
acteristics and different weights, the system weight was increased to 10 kg and a flight
was carried out from an altitude of 1000 m. Control inputs produced during the flight are
shown in Figure 13.
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The model performances for a 120 s flight were compared using error metrics and
computational costs measures. As can be seen in Table 7, increasing the number of hidden
layers and neurons increased the computation time. Considering the model performances,
model number 4 exhibited the best performance.

Table 7. Model performances for increased weight.

Model No RMSE MAE Computational
Cost (ms)

1 0.2379 0.1782 42.274
2 0.2235 0.1523 40.971
3 0.2965 0.2206 49.747
4 0.1363 0.0973 43.325
5 0.3029 0.2376 43.777
6 0.2963 0.2071 43.872
7 0.2616 0.1802 44.537
8 0.3100 0.2182 66.263
9 0.3137 0.2219 66.851
10 0.3004 0.2244 66.961

The estimation errors for increased weight are shown in Figure 14. The increase in
the number of hidden layers increased the overshoot values, although it did not result in
any significant changes in model performance. Finally, the performance of the developed
models was examined in a system with different aerodynamic properties. An aerial delivery
system called ALEX was used to determine the necessary parameters (Table 8) [3].
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Table 8. Parameters of ALEX [3].

Parameter Value

Mass (m) 97.6 kg
Canopy reference area (S) 19.72 m2

Aerodynamic coefficients



CD0 = 0.084 CDα2 = 0.90
CYβ = −0.216 CL0 = 0.25

CLα = 2.36 Cm0 = 0
Cmα = 0 Cmq = −0.174

Clβ = 0.104 Clp = −0.149
Clr = 0.096

Cnβ = 0.019
CD0 = 0.084

Clδa = −0.048
Cnp = −0.027

Cnδa = 0.039



The control inputs used in this flight, starting from a 200 m altitude, are shown in
Figure 15.

Table 9. Model performances for ALEX.

Model No RMSE MAE

1 0.0296 0.0225
2 0.0491 0.0457
3 0.0781 0.0721
4 0.1251 0.1195
5 0.0413 0.0308
6 0.0562 0.0471
7 0.0388 0.0273
8 0.0734 0.0375
9 0.0510 0.0462
10 0.1024 0.0435
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The performances of the models are shown in Table 9 and Figure 16. Model 1, which
was found to have the best performance, consisted of a single hidden layer and 10 neurons.
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In order to determine the limits of the developed models, the effects of weight and
aerodynamic coefficients on the models were observed. The aerodynamic coefficients that
determined the effects of control inputs on force and moment were chosen. Error rates
were observed by changing the selected parameters by ±10%. RMSE was used as the error
metric. As can be seen in Table 10, model 4, which consisted of a single hidden layer and
five neurons, demonstrated the best performance.

Table 10. Model performances according to changes of 10%.

No
m Cdδs Clδa Clδs Cnδa

+10% −10% +10% +10% −10% +10% −10% −10% −10% −10%

1 0.0035 0.0042 0.0036 0.0034 0.0033 0.0032 0.0030 0.0029 0.1345 0.0039
2 0.0070 0.0072 0.0063 0.0045 0.0057 0.0055 0.0052 0.0056 0.0397 0.0065
3 0.0156 0.0157 0.0129 0.0284 0.0166 0.0182 0.0179 0.0183 0.0591 0.0182
4 0.0032 0.0041 0.0032 0.0023 0.0031 0.0031 0.0027 0.0031 0.0739 0.0028
5 0.0055 0.0094 0.0072 0.0054 0.0064 0.0061 0.0053 0.0058 0.2064 0.0063
6 0.0123 0.0116 0.0111 0.0073 0.0099 0.0104 0.0081 0.0086 0.1334 0.0093
7 0.0119 0.0114 0.0122 0.0064 0.0086 0.0087 0.0073 0.0078 0.0623 0.0089
8 0.0123 0.0161 0.0027 0.0084 0.0121 0.0112 0.0098 0.0020 0.2058 0.0110
9 0.0120 0.0104 0.0099 0.0057 0.0110 0.0094 0.0076 0.0113 0.0578 0.0089

10 0.0121 0.0131 0.0102 0.0077 0.0112 0.0102 0.0090 0.0100 0.0950 0.0091

Considering the maximum error of five degrees, the limits of the models could be
determined approximately, according to the parameters, via interpolation. The results are
shown in Table 11.

Table 11. Limits of models.

No
m Cdδs Clδa Clδs Cnδa

Max Min Max Min Max Min Max Min Max Min

1 6.623 0.000 0.342 −0.156 0.545 −0.258 0.390 −0.200 0.0032 −0.0037
2 4.261 0.000 0.238 −0.093 0.379 −0.087 0.267 −0.055 0.0037 −0.0010
3 2.960 0.847 0.167 0.069 0.229 0.078 0.149 0.052 0.0034 0.0016
4 7.066 0.000 0.372 −0.278 0.571 −0.271 0.422 −0.181 0.0034 −0.0063
5 4.905 0.141 0.221 −0.061 0.354 −0.064 0.264 −0.050 0.0031 −0.0011
6 3.244 0.475 0.178 −0.019 0.282 0.025 0.207 −0.001 0.0032 0.0002
7 3.289 0.450 0.171 −0.036 0.302 0.000 0.219 −0.012 0.0034 0.0001
8 3.244 0.873 0.422 −0.004 0.258 0.033 0.189 −0.335 0.0031 0.0006
9 3.278 0.311 0.188 −0.053 0.269 0.011 0.214 0.023 0.0035 0.0001

10 3.266 0.638 0.185 −0.013 0.267 0.022 0.197 0.013 0.0033 0.0001

5. Conclusions

In this study, a simulation environment was designed for a parachute landing system
in the Gazebo/ROS environment. By implementing an aerial delivery system in PX4
autopilot software, the necessary infrastructure for a software-in-the-loop system was
created. Flights were performed in the simulation environment and flight data were
collected. Using these data for the description of the system, an NARX network model
was trained, and a dynamic model was used to estimate the system. During the training
process, different training algorithms were used (LM, BR, and SCG) and the effects of
the numbers of hidden layers and neurons were observed. The effects of weight and
aerodynamic coefficients on the models were also examined and the model limits were
determined. As a result of the examinations, the model consisting of a single hidden layer
and five neurons outperformed the other models evaluated. As the rates of different model
parameters increase, the model which has the best performance may change. Therefore,
errors in models can be improved by means of online training methods.
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In future studies, pre-trained models will be updated using online training methods.
Furthermore, the trained model will be tested using real flight data. After the model is
verified, controller studies will be carried out and autonomous landing of the landing
system will be carried out at the desired target location.
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