P
% aerospace
% P

Article

Numerical Simulation of the Flow in Two-Phase Supersonic
Underexpanded Gas—Particle Jets Exhausting into a Slotted
Submerged Space

Sergey Kiselev *(, Vladimir Kiselev and Viktor Zaikovskii

check for
updates

Citation: Kiselev, S.; Kiselev, V.;
Zaikovskii, V. Numerical Simulation
of the Flow in Two-Phase Supersonic
Underexpanded Gas-Particle Jets
Exhausting into a Slotted Submerged
Space. Aerospace 2022, 9, 432.
https://doi.org/10.3390/
aerospace9080432

Academic Editor: Valery Zapryagaev

Received: 2 June 2022
Accepted: 27 July 2022
Published: 5 August 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Laboratory of Physics Multiphase Media, Khristianovich Institute of Theoretical and Applied Mechanics Siberian
Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
* Correspondence: kiselev@itam.nsc.ru; Tel.: +7-913-932-74-79

Abstract: A simplified 2D model for calculating two-phase gas—particle flows in a slot space has been
developed. The model can be used for fast calculation and estimation of supersonic-flow parameters
in the slot space. Using this model, a numerical simulation of the flow in two-phase gas—particle
supersonic jets exhausting into a submerged slot space bounded by two parallel disks was performed.
The presence of particles led to the splitting of the gas jet into an internal two-phase jet and an external
gas jet. In the present study, we investigated the structure of a two-phase jet as dependent on the
spacing between the disks for conditions of cold spraying. A new effect was found in the flow at
a small spacing between the disks (of the order of 0.2 mm) and a high-velocity internal two-phase
gas—particle jet was formed. The distribution of the concentration of particles in the particle jet proved
to be essentially non-uniform, with a caustic formed at the upper jet boundary.

Keywords: gas—particle jets; slotted submerged space; supersonic flow; numerical simulation

1. Introduction

The possibility of using radial nozzles for spraying coatings onto inner pipe surfaces
was demonstrated in [1]. The radial nozzle is formed by two parallel disks, in between
which the gas flow undergoes acceleration together with microparticles. When micropar-
ticles collide with the pipe surface, they adhere to it providing that their velocity is high
enough. In [1,2], the influence of the inter-disk spacing on the structure of the gas flow
between the disks was examined. In [1,2], the motion of particles was calculated for their
low volume concentration ¢ < 0.1% at which the influence of particles on the gas flow could
be ignored. On increasing the particle volume concentration c in excess of 0.1%, the effect
of particles on the gas flow can no longer be neglected.

Mathematical models used to describe two-phase gas—particle mixtures can be divided
into two classes. The first class of mathematical models is used to describe flows in which
the volume concentration of particles c is high, ¢ > 5% [3]. When calculating such two-phase
flows, it is necessary to take into account collisions between particles [3-5]. This is achieved
by introducing the collision integral into the kinetic equation for particles [3,4]. In addition,
when calculating the drag force acting on a particle, the constraint phenomena become
significant [6]. If the distance between particles is equal to several particle diameters, then it
is necessary to take into account the pseudo-turbulence due to velocity fluctuations induced
by surrounding particles [7,8].

The second class of mathematical models refers to the case of a low volume concen-
tration of particles, c < 5%. In this case, collisions between particles, as well as the effects
due to constraint and pseudo-turbulence, can be neglected. For calculating two-phase
flows, a continuum-discrete model is used, in which the gas flow is described using the
gas-dynamics equations with source terms in the right-hand sides, and the particles are
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described using the collisionless kinetic equation [9-11]. The collisionless kinetic equa-
tion for particles is solved by the method of Lagrangian particles moving relative to the
Eulerian coordinate system [10,11]. Note that the idea of the Lagrangian method for calcu-
lating particles was formulated earlier in [12,13]. The method of Lagrangian calculation of
particles was used in [14,15] to calculate the interaction of a shock wave with a cloud of
particles. In [16-18], the Euler-Lagrangian method was used to calculate the acceleration of
microparticles and their focus on Laval micronozzles.

In the present paper, we study the flow of two-phase gas—particle jets in the case of
0.1% < ¢ < 5%. Two-phase gas flows with particles exhausting from a rectangular channel
into a slot space are considered. In this case, under the action of the supersonic gas flow the
particles are accelerated in the narrow slot space. As a result, a narrow jet of gas—particle
mixture is formed at the exit from the slot space. Particles move at a speed of several
hundred meters per second. When particles impinge onto an obstacle, a strong coating
is formed on it. In the literature, this method of coating application is known as the Cold
Spray method [1]. As noted above, the use of round discs makes it possible to adapt
this method for applying coatings onto the inner surface of pipes [1]. For calculating the
supersonic jet flow, on the basis of the continuum-discrete model of [9,10], a numerical
two-dimensional (2D) model has been developed.

2. Problem Statement

For refining the 2D model, experiments and numerical calculations were carried out in
which the air flow in a slot space without particles was studied (see Figure 1). Figure 1a,b
show a diagram of the experimental setup, consisting of parallel disks 1 and 2 mounted
on a rod 3. The disks created a slot space with a width of & = 0.2 mm. In between the
disks, a spacer (shaded area in Figure 1b) was located, in which a cut of length a and
transverse size b was made (see Figure 1b). As a result, a channel occupying the region
1 <x<ry—-b/2<y<b/2,—h/2 <z < h/2with dimensions ry =5 mm, r; =9 mm,
rp = 20mm, b = 4 mm and x; = 6 mm was formed. The slot space is bounded by a circle of
radius r, = 36 mm. From prechamber 4, gas under pressure pg = 1 MPa and temperature
To = 291 K was supplied into the channel, from which it exhausted into the slot space
rp < x < 1. On the outer disk, a number of pressure holes with a diameter of d; = 0.8 mm
were made, using which the static pressure was measured in the steady flow with 0.5%
accuracy. A soot-oil coating was applied onto the surface of the outer disk in order to make
it possible to identify the boundaries of the jet in the slot space.

From Figure 1a,b, it follows that the gas flow at the channel inlet will be three-
dimensional; that is why, strictly speaking, its modeling must be performed in 3D for-
mulation. As numerical calculations show, the gas velocity in the slot space is of the order
of u ~ 10® m/s; therefore, for h = 0.2 mm, we obtain a Reynolds-number value Re ~ 104,
at which the gas flow will be turbulent; therefore, in numerical calculations it is necessary
to use the LES (Large Eddy Simulation) approach [19,20]. In such cases, for performing
3D calculations, high-speed multiprocessor computers with a large amount of memory
are required. In [19], the numerical simulation of supersonic flow in a Laval nozzle with
liquid-jet injection was performed using 44 million cells. The use of so many cells creates
serious difficulties in numerical simulations. To overcome these difficulties, in the present
paper, we propose an approximate 2D calculation model. This model makes it possible to
carry out fast calculations of supersonic gas—particle flows in the slot space between disks.
The physical basis for this model is the condition that the width of the slot space is small
compared to its length, /1/7, ~ 0.0056 << 1. The inlet region is separated out from the
slot space by a narrow channel with a subsonic gas flow. In this case, the 3D disturbances
arising at the channel inlet will be damped in the channel due to viscosity. The performance
of the proposed 2D model is substantiated by a satisfactory agreement between calculated
and experimental data.
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Figure 1. The flow region in the experiment: (a) in the (x, z)-plane; (b) in the (x, y)-plane; (c) com-
putational domain in the (x, y)-plane.

2.1. Calculation Procedure

Consider the problem regarding a gas—particle flow in a region formed by a plane
channel and an adjacent region of a slot space formed by two parallel disks (Figure 1a,b).
The upper half of the computational domain is shown in Figure 1c. The lower half of the
flow is located symmetrically about the abscissa axis.

The x and y axes are located in the plane parallel to the planes of the channel and
disks, at z = 0. The z-axis is directed normally to the x, y-plane, and the x-axis coincides
with the axis of symmetry (see Figure 1b). The distances between the sidewalls of the
channel and the disks are identical, Az = h. The flow region consists of two sub-regions
(see Figure 1). The first sub-region is the channel bounded by the contour ABCD, and the
second sub-region is the slot space in between the disks, bounded by the contour EFDG.

2.2. Equations for Gas Flow in the Channel Approximation

The gas—particle flow is described by flow equations in the channel approximation. In
this approximation, the equations for the gas are obtained by averaging the gas quantities
over the transverse coordinate —h/2 < z < h/2, a procedure that makes them dependent
only on the coordinates x, y. For obtaining equations in the channel approximation, we
write equations for a viscous heat-conducting gas in divergent form:
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where the subscripts i, j, k denote the components x, y, z, and the summation is performed
over repeated indices. On the disk surface, z = +h/2, system (1) must obey the no-slip
boundary conditions v, = vy = vz = 0 and the condition of zero flux of heat into the
walls (adiabaticity condition g, = 0). In the case of a narrow channel (see Figure 1a) in
Equation (1), one can put

v, =0,0dp/dz=0 2)

Taking into account conditions (2) and inequalities Tox >> Tyx , Tox >> Tyx, ag% >>
O | x5 aTZ", 4z >> qx , 42 >> qy, we rewrite Equation (1) as:

R ok apvy =0, %G + & (0} +p) + 3y (pvxvy) = %,
apz;y +ox (vavy) +a (PU + P) asz L qF =03+,
o(e£)) () ¢ (1)) = g2

Integrating these equations across the slot region and taking into account the boundary
conditions at z = +h/2, we obtain:

} +apu+8pv:0, ag%—#%(puz—kp)-k%(puv):—m,
i ﬁ(P”U) y (Pvz +p) =Ty T = 2Taxlopyn Ty = 2Ty, py 00
h/2 2 2 2
=t 35 9) « (- 8) + () 0
v=1% hfz vydz
i yaz.
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Note that when the gas flows from the prechamber into the channel, the streamlines
become bent (see Figure 1a); therefore, Gortler vortices can appear in the boundary layer of
the channel, which are then carried into the slot space. In this case, in averaging Equation (1)
over the transverse coordinate, instead of conditions (2), conditions v, = 0, dp/dz = 0

h/2 h/2
must be used, where 7, = [ v.dz/handp = [ pdz/h. After averaging Equation (1),
—h/2 —h/2

we again obtain Equation (4), with the only difference being that the energy equation
will include, instead of g2, the sum g2 + v2. In the case of supersonic flows, the condition
q> >> v? is satisfied in the slot space; that is why Equation (3) can also be used in the
presence of Gortler vortices in the boundary layer.

For closing the system (3), it is necessary to determine the force 7y, Ty that acts on the
gas from the side of disk walls. By analogy with the turbulent flow in a pipe [21], we put

12 0.06 h
= Cwpuq/h, vy = Cwpvq/h, Cw = = + _ M9

Re ' (2Re)’® ~  u @

The drag coefficient Cyy involves two terms. The first term corresponds to the laminar
and the second to the turbulent flow. In the literature, the second term is called the Blasius
formula [21]. The numerical values in the formula for Cyy were chosen from the condition
of matching the profile p(x) in the channel obtained in the calculation by Formula (3) and
in the experiment to the profile p(x) in the slot space. Formula (4) is valid in the case in
which there occurs a closure of the boundary layers that appear on the outer and inner
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disks. Let us estimate the distance from the channel inlet to the point of closure of the
boundary layers Ax, = r, — 11 (see Figure 1a). The thickness of the turbulent layer on
a plate increases with the coordinate x according to the linear law § = v.x/u, where v,
is the characteristic velocity of turbulent fluctuations [22]. Using the expressions for the

frictional stress on a plate oy, = pv% =C jcpu2 /2, weobtainu /v, = ,/2/C f [22]. In the case

of turbulent flow, we have C R 0.06/Rel/* and, therefore, at Re ~ 10* we have u /v, = 20.
Substituting the values § = h/2, x = Ax,, and u/v, ~ 20 into the formula § = v.x/u, we
obtain: Ax, ~ 10h. On the assumption that # = 0.2 mm, we find the estimate Ax, ~ 2 mm.
It follows from here that Formula (4) is valid for the gas flow in the slot space.

2.3. Equations for Gas and Particles in the Channel Approximation

When particles are present in the gas flow, it is necessary to add to the right-hand side
of the motion Equation (3) the force Fy , F, that acts on the gas from the side of particles.
To the right side of energy Equation (3), it is necessary to add the heat flux Q. due to the
exchange of heat between the gas and particles and due to the heating of the gas by the
friction force acting between the gas and particles. The motion of particles is described by
the collisionless kinetic equation for the particle distribution function f [10,11]. The gas
flow is described by the system of Equation (3), in the right parts of which the force of gas
interaction with particles and the heat flux from gas to particles are added. The complete
system of gas—particle equations has the form:

9g | oF | 9G _
Gts TS tH=0

Iy é)u oo
ou ou-+p pou
po | F= puv G = pv* +p ’
V2 V2 Vz
p(e+7) pu(e+%+7) pv(e+%+7)
0
?7?  E=CyT, p= (v =1)pE, g = Vu> + 07,
vy 'y
—uFy —vF; — Qe 5)
= — [ mpapyf dupdv,dT,, Fy = — [ mpayy f dupdo,dT,, M =1,

u—u V—0Up

Qe = [ mp((u—up)apy + (0 —vp)apy — Csqp) f dupdoydTy, ap. = Tp Apy = =,

T-T,

3/2
Ty—T. c
Gp = —57/ 1 = Ho T (T) ,A=HE, L = 3812 C (Repy, Myp),

1 _

o

af
g"'u

T \ Ty T, = 10y,

= AN Nu =2+ 0,6Rel 2Pr', qip = /(1 — 1)’ + (0— v,)°,
Repp = %, Mp =12, 4= ’Y%,

p% +0p% + agf;f + % + % =0,f=f(t,xp,yp,uip,vp, Tp),

n= [ fdu,dvydT,

The f is the distribution function of particles in the phase space t, Xp, Yp, Up, Up, Tp.
The particle drag coefficient C; depends on the relative Reynolds and Mach numbers
Repp, Myp [23]. The Fy, F;, Q. are the components of the force acting from the side of
particles and the flux of energy from particles to the gas flow [9-11].

2.4. Method for Calculating Gas—Particle Flows

In this paper, two problems are considered. The first problem is that the calculation
of the gas flow, without particles (here, Equations (3) and (4) are to be solved), is merely
methodical. The second problem concerns the calculation of the flow of the gas—particle
mixture (here, Equations (4) and (5) are to be solved), which is a new problem of scientific
interest. Both problems were solved numerically by the relaxation method in the region
comprising a rectangular channel and a slotted flooded slot space (see Figure 1c). At the
initial time, in the middle of the channel a discontinuity of gas parameters was set, to the
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left of which were parameters pg, Tp like those in the high-pressure chamber, and to the
right, parameters p,;, T, like those in normal atmosphere were specified. In the second
region of the flow, parameters at normal atmospheric pressure and temperature, p,, T,
were set. The gas was discharged into the atmosphere under normal conditions; therefore,
the corresponding conditions were set at the computational-domain boundary FG. For
supersonic flow, M = q/a > 1, symmetry conditions on the boundary FG were adopted,
and for subsonic flow, M < 1, relations on the Riemannian characteristic were used, where
M is the Mach number of the gas flow. At the channel inlet AD, parameters py, To, like
those in the high-pressure chamber, were adopted, and the gas velocities were determined
from the relation on the characteristic. At the channel inlet AD, over the section y < y; the
particle flux | p was set. The impermeability condition was set at the boundaries AB, BC,
and the condition of symmetry was set on the sections DE, EF, CG. For particles on
the axis of symmetry DE, EF and on the boundary AB, the mirror reflection condition
was adopted.

The equations for the gas in (3) and (5) were solved on a curvilinear Eulerian grid
using the modified explicit Lax-Wendroff scheme, whose order of accuracy was reduced to
unity in order to suppress the oscillations at discontinuities [2]. The modified Lax-Wendroff
difference scheme used is described in Appendix A. The collisionless kinetic Equation in (5)
was solved in Lagrangian variables by the particle cell method [10,11]. The particles that
were introduced into the computational domain were divided into cells in such a way that
each cell contained particles of the same diameter with the same velocity and temperature.
In this case, during the motion of particles, their number in each cell was preserved and the
equations of motion of the cells coincided with the characteristics of the kinetic Equation
in (5):

%:“Prdﬂ:vw%:“vx'dﬂ:“r’yrd&:”lv (6)
t dt dt dt dt

For calculating the interaction force ayx, apy and the flux of heat g, between the gas
and particles, the gas parameters were projected onto the particle cells. The gas parameters
in the i-th particle cell were found by the linear interpolation method using the formula

J J
8t =) Sigl/) S )
j=1 j=1

where the summation over | is carried out over the gas cells with which the i-th particle
cell intersects (see Figure 2a), and the quantity ¢ assumes the value of one of the gas
parameters—density p, velocity u, v, or temperature T.

\ SJ.\
S~ .,'.

J e \ Je

j

/

*;

/

}

(a) (b)

Figure 2. Diagram illustrating the determination of gas characteristics in a particle cell grid: (a) the
gas parameters in the i-th particle cell; (b) the particle parameters in the j-th Eulerian gas cell.
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The concentration of particles n?, the interaction forces FJ’:]., F;j, and the flux of energy
Qp; in the j-th Eulerian gas cell (see Figure 2b) were calculated by the formulas
n't = ZI: iy F’“z:—Zl;m at i P”.:—lem a’l S
] . Si 7 Txj = Ppxi S; 7 Cyj P ptTpyi S; 7 (8)

j iz
no__ Zm A (u? —u Vo + (o — o™ )a . — c.g" Sijn’
of = & i\ M pi | Ppxi i~ Upi ) Tpyi ~ Csiflpi ) 75

where the summation in Formula (8) is performed over all 7 particle cells intersecting with
the j-th gas cell.

2.5. Calculated Parameters of the Problem

As noted above, this paper considers two problems. In the first problem, the gas
flow in the slot space is studied, and in the second problem, we examine the flow of a
gas—particle mixture in the slot space. In both problems, one and the same computational
domain is considered, involving a channel and a slot space formed by two disks (see
Figure 1).

As noted above, the computational domain consisted of a channel and a disk (see
Figure 1). The rectangular channel consisted of inlet and outlet parts connected together by
an inclined wall. The height of the inlet part of the channel is y4 = 4 mm, and the height of
the outlet part, yp = 2 mm. The length of the inlet part of the channel was Ax 45 = 2 mm,
and that of the inclined and outlet parts, respectively, Axgc = 4 mm and Axcp = 12 mm.
We studied the flow of a two-phase jet in between closely and widely spaced disks. The
inner radius of both disks had identical values equal to 71 = 20 mm. The outer radius of
the narrow disks was rp = 36 mm, and the radius of the widely spaced disks, r; = 90 mm.
In the present study, we investigated the influence of the width of the slot space on the flow
of the two-phase jet in between the disks. For this reason, calculations were carried out for
different widths & of the slot space.

As the working gas, air with the following parameters was chosen: Cy = 732J/ (kg - K),
v =144 =1.827-10"kg/(m - s), Ty = 291 K, T; = 120 K, and Pr = 0.72. We analyzed
the motion of aluminum particles with the following parameters: C; = 880 J/ (kg - K),
pp = 2700 kg/ m?, particle diameter dp = 10 um. The pressure and temperature of the
gas under normal atmospheric conditions were p, = 0.1 MPa and T, = 283 K. The gas
pressure and temperature at the inlet to the channel were py = 1 MPa and Ty = 283 K.
Figure 3 shows the difference grid on which our numerical calculations were carried out.
The total number of cells in the computational domain was N, = 51,783. The number of
calculated grid nodes in the plane channel was Ny = 174 x 22 = 3828, and that in the space
between the disks, N; = 139 x 345 = 47,955.

¥, mm 4

NN

T
T

T
T
|
18!
T
T
In§
T
T
I

ma!
T
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N }
U R "2l g

(@) (b)

Figure 3. Difference grid: (a) in the vicinity of the channel outlet into the slot space; (b) in the
slot space.
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Particles were introduced by specifying on the boundary AD a row of cells parallel
to the y-axis with a step Ay.. The total number of such cells was N. = 30. The sizes of
the particle cells, Ax; = 0.08 mm and Ay, = 0.08 mm, were chosen such that their value
would be of the order of the size of the grid cells for the gas. The volumetric concentration
of particles in the cells was ¢ = 9-1073 (¢ = nV), where V,, is the particle volume). The
initial velocities and temperatures of the particles at the boundary AD were u, = 50 m/s
and T, = 283 K. After some row of particle cells was displaced to a distance Ax inside the
channel, a new row of cells was introduced. The rate of the particle flow was calculated by
the formula js = ppcupysh. The number of particle cells in the computational domain was
N; = 4146.

3. Results and Discussion
3.1. Calculation of the Gas Flow without Particles

To check the efficiency of the proposed 2D calculation Model (3), we carried out a
numerical simulation of the gas flow without particles between two disks located at a
distance h = 0.2 mm. The radius of the outer disk was 7, = 36 mm, and the number of
cells, N; = 51,783. Suppose that at the initial time ¢ = 0, in the channel filled with the
gas at rest (air) with temperature Tp = 283 K, there exists a pressure jump: pg = 1 MPa
at x < 12.5 mm, and pp = 0.1 MPa at x > 12.5 mm (line 0 in Figure 4a). As a result of
the disintegration of the discontinuity, there arises an unsteady flow, which is established
with the passage of time (see Figure 4). In the present paper this flow is assumed steady,
providing that the amplitude of flow-rate fluctuations at the exit from the slot space satisfies
the inequality Ajg/jo < 2%.

1 ; 5
1 Je, gfs u
. MPa | i ;
| 1.2
0.8_ ] .
n S~ 1
0.64 ST T s
g 064 | ¢
0.4 117
049 1
— 4-10 :
0.2 11
] ~_ _JN 1
\1-0\ \1-5. \2-0\..\2-5\\\.3-0\—7—7—7—33—! 0 — .072. - ‘0‘.4‘ - ‘0}6‘ - IOTSI T ‘i
X, mm t, ms
(a) (b)

Figure 4. Calculation results for the unsteady gas flow exhausting into the slot space of height
h = 0.2 mm: (a)—dependence of gas pressure on the axis y = 0 at ten times ¢; following at time
intervals At = 0.1 ms; (b)—dependence of gas-flow rate on time in the inlet and outlet sections of the
channel (solid red line and blue dashed line, respectively).

The steady flow is illustrated in Figure 5. It is seen that there is a subsonic flow in the
channel. When the stream leaves the channel and enters the slot space, it turns around and
accelerates to a supersonic speed in a centered rarefaction wave.

The supersonic flow in the slot space is limited on the right by the shock wave (see
Figure 5b). In the case when the deceleration force acting from the side of the disks is
neglected (7o = 0, 7y = 0), the flow in the channel and in the slot space proves to be
supersonic (see the dashed line in Figure 5a).

To check the convergence of our numerical calculations, such calculations were also
performed for the numbers of cells N, = 51,783, N/ = 207,132, and N; = 828,528. Those
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calculations were found to yield close results (see Figure 6) and, therefore, all subsequent
calculations (unless stated otherwise) were carried out on a grid involving 51,783 cells.

Vpl|. kg/m*
Vo, ke

2775
2525
2275
2025
1775
1525

30 S 30 35
X, mm X, mm

(a) (b)

‘ ‘]0‘ o ‘15' o ‘20‘ o ‘25‘ o ‘30‘x1n;m‘35'

(©)
Figure 5. Steady-state gas flow in the channel in the case of 1 = 0.2 mm: (a) Mach-number isolines
and gas streamlines; (b) isolines of density gradient |Vp|; (¢) Mach-number profile on the axis y = 0;

the dashed line shows data calculated without taking into account the friction force acting on the gas
from the side of the disks.

P, MITa

0.8
0.6
0.4

0.2

(b)

Figure 6. Distribution of pressure (a) and Mach number (b) on the axis y = 0 in the steady gas flow
calculated with different numbers of cells: the solid, dashed, and dash-and-dot lines correspond to
N, = 51,783, N/ = 207,132, and N, = 828,528, respectively.

Figure 7 compares the calculation results with the experimental data. To estimate the
error in the experiment, several experiments were carried out with various external disks.
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Different symbols in Figure 7a (circles and squares) show the results of static-pressure
measurements performed on disks that differed in the location of pressure holes.

\\
/P,
0.8 :
B “ E
0.6 ol )
‘I
i o )
0.4
v
a \\
02 0\o
. \
§ ; 4
Ry __O_- -F-_ : &8 D, - 0bar
T T T = @ b-a=17-13 mm
10 15 20 25 30 35 ;

b oa-4 13 mm

Figure 7. Results of experiments and calculations performed at # = 0.2 mm: (a) distributions of static
pressure on the surface of the outer disk on the axis y = 0 in the experiment (symbols) and in the
calculations (solid line); (b) soot-oil coating on the surface of the outer disk in the presence of two
channels of width b = 17 mm and b = 4 mm.

The solid line in Figure 7a shows the calculated distribution of pressure along the
jet axis. The dashed line shows the curve calculated without taking into account the
friction force due to the disks, 7o = 0, 7, = 0. Evidently, within the experimental error,
a satisfactory agreement between the calculated and experimental results is observed.
Figure 7b shows the soot-oil coating shoot after the experiment on the outer disk without
pressure holes yet with two channels. The boundaries of the channel and the jets exhausting
into the flooded slot space correspond to the black lines in Figure 7b. This case corresponds
to a fan-shaped right jet, whose opening angle at the upper boundary of the jet is 25°, and
at the lower boundary —30°. A certain scatter in the angles of the jet opening is apparently
due to the non-parallelism of the disks. The calculated jet shown in Figure 5a is also
fan-shaped with a half-angle of 30°. Both in calculations and experiments, a supersonic
underexpanded jet exhausting into a flooded slot space has a fad-like shape. This was due
to the action of the friction force on the jet from the side of the discs. In the absence of disks,
the supersonic underexpanded jet exhausting into the flooded space has a barrel shape.

Note that the numerical calculations described above were performed on a personal
computer. One calculation took several minutes. The profound gain in calculation time
was due to the fact that in our 2D model there was no need to calculate the boundary layer,
in which case, in order to fulfill the condition y < 1, it was necessary to use a refined
difference grid. Instead, the 2D Models (3) and (5) use Formula (4) for the drag coefficient
Cw. The values of the coefficients entering the latter formula are to be borrowed either
from the experiment or from a special calculation of viscous gas flow.

3.2. Calculated Data for a Gas—Particle Jet
3.2.1. Jet in between Narrow Disks

The ratio of the outer radius 7. = 36 mm to the inner radius r, = 20 mm of the
nerrow disks is r, /1, = 1.8. Figure 8 shows the pattern of the steady flow in a two-phase
gas—particle jet in the case when the width of the channel and slotted space was small,
h = 0.2 mm. Here, the particle flow rate was j; = 0.584 - 1073 kg/s.
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Figure 8. Calculated data for a two-phase gas—particle jet exhausting from a channel into a slotted
space with 1 = 0.2 mm: (a) Mach-number isolines and gas-flow streamlines; (b) isolines of density
gradient |Vp|; (c) particle concentration; (d) dependence of the gas flow rate at the channel inlet
(solid line) and at the slot-space outlet (dashed line) on time.

Figure 5 shows the established pattern of the gas flow without particles and with
the same parameters at the inlet to the channel except for the channel width, which was
h = 0.2 mm. From Figure 5a,b and Figure 8a,b, it follows that in both cases, when the gas
exhausts from the channel, it accelerates to a supersonic velocity in a central expansion
wave emerging from the corner point. Particles decelerate the supersonic gas jet and, as a
result, the maximum Mach number M = 1.75 in the two-phase gas—particle jet turns out
to be lower than that in the gas jet without particles. Due to the friction about the disk
walls and gas deceleration by particles, there forms a curvilinear shock wave closing the
supersonic flow. Comparison between Figures 5 and 8 shows that the presence of particles
in the supersonic jet leads to a displacement of the closing shock wave in the upstream
direction, towards the exit cross-section of the channel. Furthermore, the particles present
in the jet lead to the formation of a gas-flow non-uniformity in the transverse cross-section
(see Figure 8a,b). This non-uniformity is formed during the interaction of the expansion
wave with the boundary of the particle jet, and then it becomes more pronounced due
to the gas deceleration by particles. In the part of the gas region occupied by particles, a
more intense gas deceleration occurs compared with the region free of particles. As a result,
the jet splits into an internal jet with particles and an external jet without particles (see
Figure 8a,b). The internal and external jets are separated by a tangential discontinuity that
coincides with the particle-jet boundary. Note that the criterion for establishment of the
flow in the two-phase gas—particle jet was also the stabilization of gas-flow rate at the exit
from the slot space with r. = 35 mm (see Figure 8d).



Aerospace 2022, 9, 432

12 of 28

The particle jet in the channel and in the slotted space is shown in Figure 8c. It is seen
that in the channel, in the subsonic gas stream, the particle jet undergoes compression. On
the contrary, in the slot space this jet undergoes expansion that occurs due to its interaction
with the gas jet. The distribution of the concentration of particles in the transverse cross-
section of the particle jet is essentially non-uniform. On the upper boundary of the particle
jet, there forms a lateral caustic in which the density of particles increases by about two to
three times (see Figure 9). As the flow moves downstream, in the supersonic region, the
particle jet undergoes expansion in a transverse direction. As a result, the concentration of
particles on the caustic decreases in value, and the caustic itself shifts in the direction of the
ordinate axis (see Figure 9). In the cross-section x = 23 mm, the caustic is at the point with
the coordinate ¥ = 1 mm, and in the cross-section x = 30 mm, at the point y = 1.6 mm.

0.0124 c
c

1 0.0064
0.01

0.0084

0.0044
0.0064

0.004+
] 0.0024

0.002-

0 T T o T o o T 1 1y +r——

(a) (b)

Figure 9. The distribution of particle concentration across the flow in two cross-sections:
(a)—x = 23 mm; (b)—x = 30 mm.

In order to exclude the influence due to the friction force acting from the side of the
disks on the two-phase flow, we performed calculations for a large inter-disk spacing,
h = 0.4 mm, at the rate of particle consumption being js = 1.168 - 10 kg /s. The calculated
data for Mach-number isolines are shown in Figure 10.

X, mm

Figure 10. Calculated Mach-number isolines for i = 0.4 mm.
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The comparison of Figure 8a (h = 0.2 mm) with Figure 10 (2 = 0.4 mm) shows that
in both cases the qualitative pattern of the flow is the same. However, on increasing the
inter-disk spacing, the Mach number in the supersonic jet has increased, and the closing
shock wave has shifted downstream. Figure 11 shows the dependences of the gas velocity
u = u(x) and the velocity of particles u, = u,(x) along the abscissa axis calculated for the
cases of i = 0.2 mm and / = 0.4 mm. Evidently, on increasing the inter-disk spacing, the
velocity of the gas flow and that of particles have both increased accordingly.

u, m/s
450

u, m/s o e 1
4004 4004

350 i 3504
3001 / : 300

4 ’l ' ]
250 2501
2004 2004
150 150

1001 1007
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(a) (b)

Figure 11. Calculated gas velocities u = u(x) (dashed lines) and particle velocities u, = up(x) (solid
lines) at h = 0.2 mm (a) and & = 0.4 mm (b).

The effects observed in Figures 10 and 11 are related to the reduction in the friction
force acting from the side of the disks on the supersonic jet.

To assess the influence due to the grid step, the same problem was solved for the
flow of a gas—particle mixture between the disks. In the numerical calculation, the number
of gas cells and the number of particles were increased by 4 times (N/ = 207,132 and
N'’; = 16,584). Figure 12 compares the data calculated for N/ = 207,132, N’s = 16,584 and
N, = 51,783, N; = 4146.

0.015:

0.4 0.005

.

o e T L S 0 T
X, mm Jy, mm

(@) (b)

Figure 12. Comparison of data calculated for two values of the number of the gas and particle cells:
(a) distribution of pressure on the jet axis; (b) distribution of particle concentration in the section
x = 23 mm. Data shown with solid lines were obtained in the calculation with N/ = 207,132 and
N! = 16,584, and data shown with dashed lines, in the calculation with N, = 51,783 and N, = 4146.

From Figure 12, it follows that the distributions of gas pressure in these two calcula-
tions coincide with each other. An increase in the number of particle cells led to a more
detailed pattern in the distribution of particle concentration c(y) and to a slight shift in the
center of the caustic Axy/x ~ 6%.
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3.2.2. Jet in between Widely Spaced Disks

The ratio of the outer radius r. = 90 mm to the inner radius r, = 20 mm of the widely
spaced disks is r. /12 = 4.5. The revealed pattern of the flow in a two-phase gas—particle
jet for the case in which the width of the channel and that of the slotted space (separation
between the disks) were small, i1 = 0.2 mm, is shown in Figure 13.

X, mm

u, m/s

(d)

Figure 13. Calculated data for a two-phase gas—particle jet exhausting from a channel into a

slotted space with 1 = 0.2 mm: (a)—Mach-number isolines M(x,y) and gas-flow streamlines;
(b)—isolines of density gradient |Vp|; (c)—longitudinal gas velocity u#(x, y) and gas-flow streamlines;
(d)—concentration of particles c(x, y).

From Figure 13a, it is seen that, as the gas moves in the slot space between widely
spaced disks, the presence of particles leads to the splitting of the gas jet into two jets, an
internal and external one, similar to the case of the flow in between closely-spaced disks
(see Figure 8). The internal jet is located inside the particle jet, and its upper boundary
therefore coincides with the boundary of this jet. The external jet is located above the
jet of particles. When exhausting out of the channel, both jets, separated by a tangential
discontinuity, undergo acceleration to supersonic velocity. Under the action of the force of
friction due to the disk walls, a curvilinear shock forms in the cross-section x, ~ 30 mm
(see Figure 13b). In the internal jet, the shock is normal, and the flow behind the shock
in the internal jet is therefore subsonic. In the external jet, the shock is oblique, and the
flow behind this shock is therefore supersonic. Due to the deceleration by the disk walls,
the flow in the outer jet becomes subsonic. As the flow moves downstream, the external
subsonic jet undergoes expansion, and the gas velocity in this jet quickly decreases (see
Figure 13c). As a result, at large distances from the channel exit plane, the velocity in the
internal jet turns out to be higher than that in the external jet (see Figure 8c). In the case of
widely spaced disks (see Figure 13d), the particle jet has the same structure as in the case of
closely spaced disks (see Figures 8c and 9). As the flow moves downstream, the particle jet
expands according to the linear law.

Figure 14 shows the established pattern of the flow in the gas jet without particles
with the same parameters as those at the inlet to the channel.

In the gas jet without particles (see Figure 14a), the flow first accelerates to a supersonic
velocity. Afterwards, due to the interaction with the disk walls, a normal shock forms in
the jet, behind which the flow decelerates to a subsonic velocity. From Figures 13 and 14,
it is evident that in the case of wide disks (r./r2 = 4.5), an exponential lateral spreading
of the jet occurs behind the shock wave. In the case of narrow discs (r./r, = 1.8), the jet
width increases linearly (see the calculated data in Figures 5 and 8 and the experimental
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data in Figure 7b). A similar flow pattern is observed in the experiment (see Figure 15) for
a gas jet in between wide disks (7, /7 = 3.8) under the same conditions in the prechamber
(ro =1Mpa, Ty = 283 K).

(b)

Figure 14. Calculated data for a gas jet without particles exhausting from a channel into a slot space
with h = 0.2 mm: (a)—Mach-number isolines M(x, y) and gas-flow streamlines; (b)—longitudinal
gas velocity u(x,y) and gas-flow streamlines.

Figure 15. Soot-oil coating on the surface of the outer wide disc at # = 0.15 mm.

This difference between the flows in the slot space in between the narrow and wide
disks is due to the different position of the shock wave in the two cases. In the case of the
narrow disks, the shock wave is located at the end of the slot space (see Figures 5 and 8),
so that the gas flow between the disks turns out to be supersonic for the most part. The
expansion of the jet in this case occurs due to the rotation of the velocity vector in the
centered rarefaction wave. In the case of wide disks (see Figures 13 and 14), the shock wave
is located at the beginning of the slot space; that is why the gas flow behind the shock wave
is subsonic in a larger region of the slot space.

Figure 16 shows the distributions of gas parameters in three cross-sections of the
gas jet: in front of the shock wave (solid line) and behind the shock wave (dashed and
dash-and-dot lines).

It is seen that the gas parameters depend on the distance to the jet axis y. The average
values p(x), p(x) and %(x) were calculated using the formulas

1%’ 1 7 1 7
o= — d,ﬁzf/ ud,*:,—/ ud 9
ij/Py pyfop ¥y, p nyo puay

where y; is the jet width, which was determined from the condition u(x,y;) = au(x,y = 0),
« = 0.3. Figure 17 shows the distributions of these values
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Figure 16. The distribution of gas parameters across the jet in the gas flow between wide disks:
(a)—pressure p(y); (b)—density p(y); (c)—longitudinal gas velocity u(y). The solid red lines cor-
respond to the section x = 25 mm; the dashed blue lines, to the section x = 40 mm; and the
dash-and-dot brown lines, to the section x = 70 mm.
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Figure 17. The distribution of average gas parameters in the flow between wide disks: (a)—p(x);
(b)—p(x); (c)—u(x); (d)—y;(x). The solid red lines correspond to a two-phase jet of gas—particle
mixture, and the dashed blue lines to a gas jet without particles.
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The coordinates of shock waves in the gas jet and the two-phase jet in Figure 17 are
close to each other, x. ~ 33 mm. It is seen that behind the shock wave (x > x.), the
pressure and density vary slightly (9p(x)/dx ~ 0 and dp(x)/dx ~ 0), and the velocity
rapidly decreases with increasing coordinate x. The jet width of the gas—particle mixture
increases linearly, and the exponential expansion of the stationary gas jet width without
particles take place.

Let us give a qualitative explanation as to the exponential expansion of the stationary
gas jet without particles in the case of wide disks. It is seen from Figures 13a and 14a that
there is a subsonic flow behind the shock wave. To describe the flow in between wide
disks, we use the quasi-one-dimensional approximation. Since in the jet we have u > v,
we neglect the transverse gas velocity in Equation (3). Averaging Equation (3) over the
transverse coordinate y and taking into account the fact that 9p(x)/dx ~ 0, we obtain

m =2 =2
puyih = B, n% - —cf% . CpT + ”7 — CpTy (10)
where the bar denotes the average gas parameters, y; = y;(x) is the transverse coordinate
of the jet boundary, B = const is the gas flow rate in the jet, and Tj is the stagnation
temperature. Equation (10) are valid in the slot space behind the shock wave x, < x < ..
The solution of Equation (10) is given by the formulas:

B — _ (x_x*) = _ T ﬂ% _ _ (x_x*)
— u—u*exp< th> , T_T*+2Cp (1 exp( chT , (11)

where the asterisk denotes the parameters of the gas behind the shock wave at x = x..
The gas density can be found from the equation of state p ~ p/RT. As it is evident from
Figure 17b, the density of the gas behind the shock wave can be approximately considered
constant; therefore, below, we assume that p ~ p,. In this approximation, from the first
two equations in (11), we obtain the dependence of the jet velocity and width on the
longitudinal coordinate:

o o X))\ Yy (r—x)
o —exp( Cr A ), y]’f = exp(Cf 7 , (12)

It follows from here that the exponential growth of the jet width is due to the decel-
eration of the gas by the friction on the disk walls, and due to the pressure’s remaining
constant when the gas moves downstream in the subsonic jet.

Using Formula (11), we estimate the characteristic length of change in the speed and
width of the jet, Ax =~ h/Cy. Behind the shock wave, we have: u ~ 200 m/s (Figure 17c).
Taking into account the fact that h = 0.2 mm and v ~ 0.15-10"% m?/s, we find the
characteristic Reynolds number: Re a 2.7 - 103. Substituting this value into Formula (4) and
then into Formula (11), we obtain for the characteristic length, a value of Ax ~ 25 mm. The
obtained estimate agrees well with the results of the numerical calculation (see Figure 17c).

Let us estimate the effect of particles on the transverse structure of the jet. A compari-
son of Figure 13c with Figure 14b shows that in a jet without particles, there is a smoother
decrease in velocity u(y) with displacement along the y-axis (at x = const) in comparison
with a two-phase jet (see Figure 18a).

From Figure 18b, it follows that the momentum flux J, = pu? + p in the internal
two-phase jet exceeds the same flux in the gas jet without particles.

In order to investigate the effect due to the force of friction acting from the side of the
disk walls, we performed calculations for a larger inter-disk separation. Figure 19 shows
the established pattern of the flow in a gas jet without particles in that case.

From Figure 19, it is seen that the exhausting jet without particles has a structure
typical of the exhaustion of supersonic underexpanded jets [18,19]. Within the calculated
region, the supersonic gas jet consists of two barrels separated with a shock wave [24].
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Figure 18. The profile of flow velocity u(y)(a) and that of momentum flux J,(y) (b) calculated in
the cross-section x = 70 mm. The solid line and the dashed line show the data, respectively for a
two-phase jet and for a gas jet without particles.
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Figure 19. Calculated data for a two-phase jet without particles exhausting from a channel into
a slotted space with & = 0.8 mm: (a)—Mach-number isolines M(x,y) and gas-flow streamlines;
(b)—isolines of density gradient |Vp]|.

Figure 20 shows the established pattern of the flow in a two-phase gas—particle jet
exhausting into the space with the same separation between the walls, 1 = 0.8 mm.

(a) (b)

Figure 20. Calculated data for a two-phase gas—particle jet exhausting from a channel into a slotted
space with h = 0.8 mm: (a)—Mach-number isolines M(x, ) and gas-flow streamlines; (b)—isolines
of density gradient |Vp|; (c)—longitudinal gas velocity u(x, y) and gas-flow streamlines.
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From Figure 20, it is seen that the structure of the two-phase gas—particle jet consid-
erably differs from the structure of the gas jet without particles. The jet exhausting from
the channel is accelerated to a supersonic velocity and also splits into two jets. The first
(internal) jet is located in the particle region, while the external jet moves in the region over
the particle jet. In this case, no barrels that arise when an underexpanded jet exhausts into
a submerged space are observed in the gas flow (see Figure 19). At x ~ 35 mm, in the
flow there arises a curvilinear shock wave, which consists of two characteristic sections. In
the region of the internal jet, the shock is normal; therefore, the flow behind this shock is
subsonic. In the region of the second (external) jet, the shock wave is oblique, and the flow
behind the latter jet therefore remains supersonic. Since, in the latter case, no deceleration
of the external jet occurs, the velocity of this jet exceeds the velocity of the internal jet (see
Figure 21a). Figure 21 shows the distribution of gas velocity and momentum flux across
the flow for a two-phase jet and in a gas jet without particles.

450;-.\\ Jp, MPa

u, m/s J

4001 0317

Figure 21. Dependences calculated in the transverse cross-section x = 70 mm: (a)—velocity u(y)
(b)—momentum flux J,(y). The solid line and the dashed line show the data for a two-phase jet and
for a gas jet without particles, respectively.

Figure 21a shows that in the two-phase jet, the gas velocity in the internal jet is two
times lower than that in the jet without particles (see Figure 21a). The momentum of the
internal jet is also half that in the jet without particles (see Figure 21b).

4. Conclusions

The present paper describes a modified Lax-Wendroff scheme making it possible to
considerably suppress the oscillations arising at discontinuities. A simplified 2D model for
calculating two-phase gas—particle flows in a slotted space has been developed. The model
can be used for fast calculation and estimation of supersonic-flow parameters in a slotted
space. A numerical simulation of two-phase gas—particle jets exhausting from a channel
into a submerged slot space between variously spaced disks is performed. At a small
separation between the disks, the friction force acting on the gas from the side of the disk
walls exerts a significant influence on the gas flow. At a large disk width, the friction force
leads to an exponential growth in the transverse size of the jet when moving downstream.

It is shown that the presence of particles leads to the formation of gas-jet non-uniformity
in the transverse cross-section. In the slot space in between the disks, the gas jet separates
into two jets, with a tangential discontinuity formed in between. The internal jet is located
inside the jet of particles, and the external jet, above this jet. When the flow exhausts out
of the channel, the gas undergoes acceleration to supersonic velocity in both jets. The
supersonic gas flow ends with a shock, which is a normal one for the internal jet and an
oblique one for the external jet. The flows in the two jets differ qualitatively in the cases of
small and large inter-disk separations.
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A new effect was found in the case of a small inter-disk separation: the velocity of the
internal jet turns out to be larger than that of the external jet. This is due to the fact that
in the region behind the shock wave, a deceleration of the outer jet and its expansion to
the lateral sides occur. As a result, the velocity in the external jet decreases faster than the
velocity in the internal jet. In the latter case, the presence of particles leads to the formation
of an internal high-velocity two-phase gas—particle jet in the vicinity of the centerline.

In the case of large spacing between the disks, the influence due to the friction force
exerted on the disks can be neglected and, as a result, the gas velocity in the internal jet
becomes lower than that in the external jet. This is due to the fact that the gas deceleration
in the internal jet occurs behind a normal shock wave, whereas that in the outer jet occurs
behind an oblique shock wave. In the latter case, the external supersonic jet no longer
undergoes deceleration due to the walls, with its velocity exhibiting only minor changes as
the flow moves downstream.

The jet of particles experiences considerable deformation in the slot space due to its
interaction with the gas stream. The distribution of the concentration of particles in the jet
becomes essentially non-uniform. On the upper boundary of the jet, there forms a caustic,
on which the concentration of particles turns out to be two to three times higher than that
at the center of the jet.
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Nomenclature

Time

Longitudinal coordinate axis
Transversal coordinate axis
Longitudinal gas velocity
Transversal gas velocity
Velocity vector modulus

Gas pressure

Gas density

Gas specific internal energy
Gas temperature

Speed of sound

Dynamic viscosity

Mach number

Thermal conductivity

Cy  Heat capacity in the pas at constant volume
Cp  Heat capacity in the pas at constant pressure
0% Poisson’s adiabatic exponent
Re  Reynolds number

Pr  Prandtl number

Nu  Nusselt number

Rejp Relative Reynolds number

2R S MDD/ QR R
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Mj, Relative Mach number

f Distribution function of particles

n Concentration of particles

pp  Density of the particle

dp Diameter of the particle

xp  Longitudinal particle coordinate

yp Transversal particle coordinate

up  Longitudinal particle velocity

vy Transversal particle velocity

Tp  Particle temperature

apx  Longitudinal particle acceleration

apy  Transversal particle acceleration

qp Flux of heat to the particle

Cs  Drag coefficient of the particle

Cs Heat capacity of the particle material

Cw  Drag coefficient of the friction force acting from the disk

Ty  Longitudinal component of the friction force acting from the disk
Ty  Transversal component of the friction force acting from the disk
F, Longitudinal component of the friction force acting from the particles
Fy Transversal component of the friction force acting from the particles
Q Flux of energy from particles

N:  Number of gas cells

Ns Number of particle cells

i Jet width

Jp Momentum flux

P Average pressure

0 Average gas density

u Average longitudinal gas velocity

Appendix A

In matrix form, the system of 2D gas-dynamics equations can be written as

of OJF oG
= +—+==—-+H=0 Al
of Tox Tay T (A1)

System (A1) describes smooth flows in the 2D case. In calculating smooth flows,
Equation (A1) should be replaced with an appropriate difference scheme to be solved on
a computer. If discontinuities (shock waves or contact discontinuities) occur in the flow,
then Equation (A1) at discontinuities becomes inapplicable. Two approaches are then used
to calculate such flows. In the first approach, discontinuities in the numerical solution, at
which algebraic relations resulting from the laws of conservation of mass, momentum, and
energy must be fulfilled, are treated separately. In the second approach, discontinuities in
the numerical solution are smeared out due to the artificial, or scheme, viscosity inherent to
difference schemes called shock-capturing difference schemes. Shock-capturing difference
schemes of first-order accuracy yield monotonic solutions in which discontinuities look
smeared over a finite number of cells (Godunov’s theorem). However, if the order of
accuracy of a scheme is higher than unity, then oscillations seriously deteriorating the
solution arise at discontinuities.

To solve this problem, two approaches were used. In the first approach, TVD schemes [25]
were proposed, in which, in the vicinity of extrema and discontinuities, a high-order scheme
is reconstructed in such a way that it becomes a scheme of first-order accuracy. To this
end, nonlinear limiters are used in such a way that when moving onto the next time
layer, the total variation in the solution does not increase (TV (u"*!) < TV (u"), where
TV(u) = Y |ug 1 — ug]). In the second approach, ENO and WENO schemes [26] were

k

proposed, in which a linear combination of difference patterns (or schemes) with coefficients
depending on the solution smoothness are used. The coefficients at the difference patterns
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are chosen in such a way that the difference patterns containing a discontinuity are made
minimal, while the difference patterns in the region of smooth solution, optimal. Both
approaches are progressing actively, with an extensive bibliography on them being available
in literature (see monograph [27]).

In this paper, with the example of the Lax-Wendroff scheme [28], we propose a simpler
method making it possible to suppress oscillations at discontinuities. Namely, we introduce
the difference scheme (4), being a linear combination of a first-order scheme with weight
1/(n +1) and a second-order Lax-Wendroff scheme with weight /(7 + 1). In this version
of the method, the parameter 5 remains constant throughout the entire flow region. It is
obvious that, using smoothness indicators [29], one can make the parameter # variable, so
that the scheme becomes a scheme of the first order in the region of discontinuity, and a
scheme of the second order in the region of smooth flow.

1.  Numerical calculation scheme.

Let us construct a numerical scheme for solving the equation

ou  OF(u)
= = A2
ot ox 0 (A2)
We specify integer nodes of a difference grid t", x; using formulas t* = t"~! +
and x; = x;_1 + h, and half-integer nodes, using formulas /2 — 4 7/2 and
Xk+1/2 = Xk + h/2, where T is the step over time and # is the step over space. We de-

note the variable u at integer nodes as 1y, and the variable at half-integer nodes, as u;(’j_“ll //22

Let the values of u}} on the n-th time layer be known. It is required to find the values of

u’lzﬂ which approximate Equation (A2) on the (n + 1)-th time layer. On the intermediate

time layer, t11+1/2 the values of ”Zill//zz are defined as

n+1/2 _

T
weiy = 5 (ug +uiq) — E(Fl?—«—l —F'), B = F(uy) (A3)

NI~

We determine the values of the variable u on the (1 + 1)-th time layer "*! using
the formula:

1 1 T 1

+1 _ +1/2 +1/2 +1/2 +1/2

we = ] (’lug + 5(’/‘2—1/2 + ”Z+1/2) 7 (’7 + 2) (B2 =B )> (Ad)
where 0 < # < co. In the case of 7 = 0, Formula (A4) yields a first-order accuracy scheme

1 T
+1 _ n+1/2 n+1/2 n+1/2 n+1/2
w = 5 (”kfl/z + ”k+1/2) o (Pk+1/2 - kal/z) (A5)

In the case of # — oo, Formula (A4) yields a second-order accuracy difference scheme

upth = — %(Flﬁll//zz - Fl?jll//zz) (A6)
which, together with Equation (A3), is called the two-step Lax-Wendroff scheme. Evidently,
the difference scheme (A4) presents a linear combination of schemes (A5) and (A6). The
parameter 17/ (17 + 1) determines the weight with which the second-order accuracy scheme
enters Equation (A4).
Let us find the order of approximation and derive the stability condition for the
schemes (A3) and (A4). We rewrite Equation (A2) as:

ou ou __OF

T
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Putting F = cu in the difference schemes (A3) and (A4), on the assumption that
¢ = const we obtain:

n+l _ 1 n K n n K2 n n n
s (“k - 28”k+1 - ”k—1) - 7(”k+1 —2up + ”k—l))+

1 2
i(p+1) ((ulrcl+1 +2up +up ) -2 (MZ+1 - ulrclfl) -K (”Zﬂ —2up + ”1@1))/

where x = c7/h is the Courant (CFL) number. Inserting into Formula (A7) the functions
u T = (o "), ull ) = u(xe + b, t"), and ul! | = u(x;_1,") expanded in the vicinity

of ujl = u(xy, t") in Taylor series, we obtain the first differential approximation:

(A7)

ou  du u  ,0%u ckh  *u  cdu ,
m“a;:“(atz_c axz)T——h (A8)

Eliminating the time derivatives, from Equation (A8) we finally obtain:

ou Jdu _ ch 1 \*u  cdu ,
at“ax4(q+1)<1+x—"_’c>ax2_6ax3h (A9)

The residual on the right side of Equation (A9) is determined by two terms, of which
the first term has the order of uyh/ (7 + 1) and the second term, the order of Clly h?. Tt
is seen that at 7 = 0 the difference scheme (A7) is accurate to the first order O(h), and at
1 — 0, to the second order O(h?). In the intermediate case, 0 < 17 < o, the error is of order
O(h/(n +1)). By choosing the parameter 7 large enough, one will be able to substantially
improve the accuracy of the scheme under consideration. In numerical calculations of
two-phase gas—particle flows described in the article, we assumed that 77 = 9.

Let us find the condition of stability for the difference scheme (A7). Representing the
solution of Equation (A7) as ujl = A" exp(ink), we obtain the following expression for the
transition coefficient

A= (1—iksina+x?(cosa — 1))/ (7+1)+

+(cosa +1—i2csina + x*(cosa — 1)) /2(7 + 1) . (A10)

The necessary condition for the stability of the scheme is the requirement reported
in [30], which for Expression (A10) assumes the form:

1—|A;2 =2sin?(a/2) (1 +262(n +1/2)) /(7 +1)—

All
sint(a/2) (1 +2x%(7 + 1/2))2/(17 +1)% — 4x2sin?(a/2) 4 4x2 sin*(a/2) > 0. (A
In the neighborhood of the point x = 1, inequality (A11) simplifies to
1— [A]2 = 2sin?(a/2) (1 +2y sin2(oc/2)) (1 - KZ) /(1+1) >0 (A12)

Inequality (A12) implies that the difference scheme (A7) is stable for Courant numbers
less than unity:
x=ct/h<1 (A13)

The difference scheme (A3), (A4) constructed for Equation (A2) can easily be general-
ized to the equations of 1D unsteady gas flow:

1Y pu
ZJ;Jrngo,f:(pu ),F:(Pu2+P ) (Al4)
* ple+u?/2) pu(e+p/p+u?/2)

where p = (7 — 1)pe, and y is the adiabatic exponent. Applying the substitution u}} — f}'
in Equations (A3) and (A4), we obtain:
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+1/2 _ 1
fisip = E(fl? i) — ﬁ(ﬁ?ﬂ - Fl:l) /
1 _ 1 1 +1/2 +1/2 1 +1/2 +1/2
i = m(ﬂf? +3 /2 +fl:l+1/2) - %(’7 + 2) (inll/z - Fl?—l/z)) :
As 11 — oo, the difference scheme (A15) transforms into the Lax-Wendroff scheme.
The system of Equation (A14) has three characteristics, dx/dt = u and dx/dt = u %,

(c = \/vp/p is the speed of sound), so that the stability condition (A13) for scheme (A15)
can be rewritten as:

(A15)

k=ct/h <1, ¢=max|u=£c| (Al6)

Consider the problem of discontinuity decay in the 1D nonstationary case. Let gas
parameters involving a discontinuity at the point x = 0.6 m be specified at the initial
moment of time ¢ = 0 in the region 0 < x < 1 m as follows:

p=09MPa, p= 1.5kg/m3, x<0.6m;

p=01MPa, p=12kg/m3, x>06m. (A17)

After disintegration of this discontinuity, a rarefaction wave propagates to the left,
and a shock wave, to the right. In our calculations, the computational domain was divided
into a total of 500 cells (N = 500). Figure A1 shows calculated results for the problem of
discontinuity decay obtained using three difference schemes: Figure Ala—c the first-order
scheme; Figure Ald—f the Lax-Wendroff scheme; Figure Alg-i the proposed scheme (A15)
with #7 = 9. The dashed lines in Figure A1 show the distributions of gas parameters that
were obtained from the exact solution of the discontinuity-decay problem [27]. Evidently,
the use of the first-order accuracy scheme leads to a strong smearing of both the shock-wave
front and contact discontinuity. The use of the Lax-Wendroff second-order scheme leads to
pronounced oscillations in numerical solution arising at the shock-wave front and contact
discontinuity. The proposed difference scheme (A15) makes it possible to notably reduce
the width of smearing of the shock-wave front and contact discontinuity compared to the
first-order scheme, and the amplitude of shock-wave front oscillations compared to the
Lax—Wendroff scheme without any loss of accuracy.

p,kg/m? oy 2000

Figure A1l. Cont.
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(8)

Figure Al. Calculation results for discontinuity decay in p(x), p(x)-, and T(x)-distributions at
the times t = O and f = 5-10"* s: (a—c) calculation performed using the first-order scheme;
(d—f) calculation performed using the Lax-Wendroff scheme; (g-i) calculation performed using
scheme (A15) with 7 = 9.

2. Numerical scheme for 2D calculation on an irregular difference grid.

When calculating 2D flows in a non-rectangular computational domain, a smooth
mapping of this domain onto a rectangle is traditionally performed [29]. In the case of
an intricate domain, such a mapping is a difficult task. Consider another approach, in
which an irregular grid in the Cartesian coordinate system (x ,y) is used to approximate
desired functions. Let us generalize the difference scheme (A15) for calculating 2D unsteady
flows on an irregular difference grid. We cover the flow region with a grid consisting of
quadrangular cells, whose nodes are specified by coordinates (xi ,y;) (see Figure A2a).

Figure A2. Difference grid and cells in a 2D domain: (a)—difference grid; (b)—cell centered at the
point (xk41/2 ,Y1+1/2); ()—cell centered at the point (xx , ;).

We choose a cell with coordinates (x ,y;), (xkr1, Y1), (Xk41,Y141), and (xg,y;41), and
renumber the nodes of this cell using to the following rule:

kl1—1,k+1,1—=>2;k+1,14+1—-3;kI+1—4 (A18)

In this cell, we construct a parallelogram whose vertices pass through the midpoints
of the side faces of the cell. We determine the coordinates of the cell’s center at the point
(Xk+1/2 »Y1+1/2), which coincides with the coordinates of the point of intersection of the
diagonals of the parallelogram:

Xkg1/204+1/2 = (X1 + X141 + Xeg1,) + Xeg1,041) /4 (A19)
Yir1/204+1/2 = (Y1 + Yri+1 + Vi + Yea1i41) /4

This cell, centered at the point (Xx11/2 ,¥1+1/2), is shown in Figure A2b. In the same
figure, the parallelogram and its diagonals are shown with dashed lines. The values
fi41/2,141,2 at the center of the cell can be calculated by the formula

1
fiv1/2041/2 = 1 (fi?,z + fers + firiie +fl?,l+1> (A20)

Similarly, at the center of the cell, we calculate the function H! 11/2041/2 entering the
first equation of (Al). Let flow parameters f;'; be known at the nodes of the cells at the
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fk+1/2 1+1/2

n+1 __

k,1

n+1/2

time t,. Using Equation (A1), we modify the difference scheme (A15) to determine the flow
parameters f/; "1 on the next time layer #"*1 = #" 4 7. Adding derivatives with respect to
one more spat1a1 coordinate, we rewrite scheme (A15) as

_ fn T aF) + (ag) + H"
fk+1/2,l+1/2 2 ((ax k+1/2,1+1/2 ay k+1/2,1+1/2 k+1/2,1+1/2 |7

1 +1/2 ae\" T2 | rag\MH1/2 +1/2 A21
s (O (), (8), ) oo+ b =
+1/2 +1/2 +1/2 +1/2 +1/2
4 (fn Ve et B e TR 1/21+1/2)
Using the Stokes formula, we obtain formulas for calculating the derivatives at the
centers of the cells (see Figure A2b)
oF\" 1 0 " 1
(> _ §’§ Fay, (G> R 55 G, (A22)
X ) iy1/2041/2  Ski1/2141/2 Y /) k17204172 Sk+1/2]+1/2

where 5S¢ 1/5141,7 is the area of the cell with the center at (k+1/2, [ +1/2), see Figure A2b.
For calculating the contour integrals (A22), we use a more convenient enumeration of cell
nodes, which is defined above in rule (A18).

In these notations, the cell area Sy 1/241/2 = S1 + S is calculated by the formulas

51= % 712 x 714 = %((xz —x1)(ya —y1) — (Y2 — y1) (x4 — x1)), (A23)
Sy =1{Tax 73| = 5((xa — x3) (2 — y3) — (ya — y3) (x2 — x3))

The integrals in (A22) are calculated while tracing the boundaries of the cell in a
counterclockwise direction:

$ Fdy = Fy(y2 1) + F35(y3 —y2) + Fa(ya —ys) + Fiy (1~ va),
By =5(F + F), By =3(F + F), By = 5(F} +F”) i’ = *(F” +F),
Sﬁde = GZ (x2 —x1)+ G23(X3 —x2) + G34(X4 — X31) + 41(9(1 —xy), (A24)
Gl = 3(G{ +G5), G35 = 3(G} + G}), G4y = 3(G} +GJ),
Gy = %(GZ +GY).

The derivatives at the cell nodes k, I are calculated similarly. To calculate these
derivatives, we surround each cell node k, [ with a quadrilateral whose nodes are located
at the centers of the neighboring cells, (x¢—1/2 ,¥1-1/2), (Xk+1/2 ,Y1-1/2), (Xkt1/2 , Yi41/2),
and (Xx_1,2 ,¥1+1/2) (see Figure A2a). Let us renumber the obtained cell nodes using
the rule

1 1 1 1 1 1

This cell centered at the point (xx ,y;) is shown in Figure A2a. The partial derivatives

at the cell node k, [
n+1/2 n+1/2
(81—“) = 1 ngdy, (aG) = §6de (A26)
ax k,l Sk’l ay k,l Sk]
can be found using the contour integrals over the cell boundaries calculated by Formulas
(A23) and (A24). By direct verification, one can make sure that Formulas (A23)-(A26) define
derivatives (A22) with the second-order accuracy.

In the case under study, the computational domain consists of a channel and a slot
space bounded by two disks. Due to symmetry, it suffices to calculate the flow in the upper
right quarter of the slot space only. Figure A3 shows the grid that covers the flow region in
the channel and that in part of the slot space.
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Figure A3. Grid in the channel and in the slot space.

The intersections of the dashed lines are the centers of the cells, which are indicated
with half-integer indices. The thick lines show the boundaries of the channel and those of
the slot space, behind which lawn points (points lying outside the computational domain)
are located.
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