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Abstract: Current predictions on future drone operations estimate that traffic density orders of
magnitude will be higher than any observed in manned aviation. Such densities redirect the focus
towards elements that can decrease conflict rate and severity, with special emphasis on airspace
structures, an element that has been overlooked within distributed environments in the past. This
work delves into the impacts of different airspace structures in multiple traffic scenarios, and how
appropriate structures can increase the safety of future drone operations in urban airspace. First,
reinforcement learning was used to define optimal heading range distributions with a layered airspace
concept. Second, transition layers were reserved to facilitate the vertical deviation between cruising
layers and conflict avoidance. The effects of traffic density, non-linear routes, and vertical deviation
between layers were tested in an open-source airspace simulation platform. Results show that optimal
structuring catered to the current traffic scenario improves airspace usage by correctly segmenting
aircraft according to their flight routes. The number of conflicts and losses of minimum separation
was reduced versus using a single, uniform airspace structure for all traffic scenarios, thus enabling
higher airspace capacity.

Keywords: airspace structure; airspace design; conflict detection and resolution; air traffic control;
modified voltage potential; U-space; self-separation; reinforcement learning; deep deterministic
policy gradient; BlueSky ATC simulator

1. Introduction

The European drones outlook study [1] estimates that as many as 400,000 drones
will be operating in the airspace by 2050. The use of machine learning in tactical conflict
detection and resolution (CD&R) is a tool that could potentially support advanced and
scalable access to the airspace for a large number of drone (U-space) services. The present
work aids this research by developing a reinforcement learning module that selects the
optimal airspace structure for the current traffic, decreasing the conflict severity and rate for
unmanned aviation operations in urban environments. A conflict is a predicted future loss
of minimum separation (LoS). A loss of minimum separation (or intrusion) occurs when
two aircraft are closer to each other than the minimum separation distance. The paramount
objective of air traffic control (ATC) is to prevent intrusions.

Airspace structure plays a positive role in airspace capacity. Within centralized ATC,
structuring consists of separating the airspace into different sectors. Each air traffic con-
troller (ATCo) is responsible for one sector. The number of aircraft in each sector is limited
to how many aircraft each ATCo can control simultaneously [2]. However, it is yet not clear
how to optimally structure a distributed airspace. The Metropolis Project explored different
types of airspace structures for manned flights in a dense urban area, using distributed sep-
aration assurance [3]. Results showed that a ‘layers’ concept, where the available airspace
is segmented vertically, increases airspace capacity by reducing the number of conflicts and
losses of minimum separation. This concept was further developed recently for unmanned
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aviation [4], where all directions within an urban infrastructure were divided per the avail-
able vertical layers. This research focused on a single, uniform structure and analyzed its
effect. The present work builds upon the latter by exploring optimized structures catered
to the expected traffic scenario.

Research related to road vehicles explored reinforcement learning (RL) to improve
lane configuration [5,6]. Dynamic lane configurations reduced the average travel time in
congested road networks when compared to a fixed, traditional lane-direction configura-
tion [7]. Fixed configurations assume pre-known, static traffic patterns. However, in the
real world, traffic may change considerably; one single configuration is not necessarily
optimal for all traffic situations [8]. Urban air traffic has several similarities with road traffic
that justify exploring machine learning techniques successfully applied in the latter [9,10].
First, unmanned aviation is set to follow road infrastructure [11]. Thus, the effects of the
environment topology on traffic agglomeration are similar in both cases. Collisions are
prevented by maintaining a minimum distance between vehicles, comparable to aviation.
However, there are remarkable differences between drones and road vehicles. The latter can
become stationary, but not all drones can hover [12]. Additionally, in aviation, minimum
separation distances are typically larger. These challenges will be further examined in
this work.

This study used the open-source, ATC simulation tool BlueSky [13] to simulate op-
erations in an urban environment. Aircraft follow pre-planned routes around urban
infrastructure (thus, preventing collisions with static obstacles). Conflicts between aircraft
are resolved with conflict resolution (CR) with implicit coordination. This work resorted to
CR model modified voltage potential (MVP) [14], which has proved effective in reducing
losses of separation with minimal state deviation [15]. Normally, most conflict detection
and resolution (CD&R) methods favor heading deviations as preferred by air traffic con-
trollers. However, in an urban environment, such deviations could result in collisions with
the surrounding infrastructure. We favor a speed and altitude-based conflict resolution
approach, guaranteeing that the frontiers with the surrounding urban infrastructure are
always respected. Finally, the deep deterministic policy gradient (DDPG) [16] model was
used to determine optimal directions per layer within a layered airspace concept.

2. Related Work

ATM is a critical domain, with safety as the top priority, which explains the slow
progress in the use of machine learning (ML) approaches in the ATM domain when com-
pared to other research fields [17]. Here, we focus on the application of ML for airspace
design. The body of work in this area is narrow; ML approaches are often limited to assess-
ing the complexity in an airspace sector. Brito [18] used supervised learning to predict air
traffic demand in airspace sectors, enhancing the predictability of airspace sector demand
versus a baseline demand estimation model, which mimics the current practice. Li [19]
employed an unsupervised learning approach for the airspace complexity evaluation; re-
sults showed that it outperformed state-of-the-art methods in terms of airspace complexity
evaluation accuracy. Finally, Wieland [20] showed that ML approaches can help determine
the importance of each complexity feature in predicting airspace capacity.

Regarding airspace structuring, existent ML methods are more directed at manned
aviation, focusing on airspace sectors. Xue [21] approached dynamic vector resectorization
with Voronoi diagrams and genetic algorithms. Results show that these are capable of
determining the dominant traffic flow, which is one of the main concerns in sector design.
Kulkarni [22] used dynamic programming to partition airspace based on the ATCos work-
load, showing that this could be a viable tool. Finally, Tang [23] proposed an agent-based
model to dynamically partition the airspace, to accommodate the traffic growth while satis-
fying efficiency metrics. The trained models showed promising results both in balancing
the ATCos workload and the average sector flight time.

To the best of the authors’ knowledge, this is the first work that approaches airspace
structuring for unmanned aviation environments. The latter entails a very specific challenge:
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these types of operations entail a much higher number of heading deviations (i.e., turns
during the flight route) than manned aviation, where aircraft employ (as much as possible)
direct routes from the start to the endpoint. We employed an urban environment with the
objective of ‘forcing’ turns to see whether the RL method could adapt to these changes.
Nevertheless, the RL method herein employed could also be applied to layered airspace
without turns and roads. In this case, the RL method should be used to define the heading
ranges in each vertical layer.

3. Layered Urban Airspace Design

The usage of drones in an urban environment entails several challenges. Separation
with the urban infrastructure must be guaranteed at all times. Most of the current tactical
CD&R methods are directed at manned aviation, aimed at detecting other flying traffic at
cruise altitude. A model directed at dynamic obstacles cannot automatically be translated
to defend against static obstacles. In most existing research on tactical conflict resolution,
static obstacles are predominantly defined as (sparse) objects to fly around, as opposed to a
multitude of objects that dominate the available space to operate [24]. This work considers
that aircraft follow a pre-defined safe route around all static obstacles. Waypoints are set at
the center of the roads, from which aircraft do not deviate.

Conflict resolution is not as efficient as it would be in non-constrained airspace,
as aircraft cannot modify their headings to avoid conflicts. Near head-on conflicts are
practically impossible to resolve without heading deviation. The focus must then be on
conflict prevention. Airspace structures directly reduce conflict probability by decreasing
the likelihood of aircraft meeting during their flights. The Metropolis Project has shown
that a layered airspace structure considerably reduces the rate of conflicts [25]. Two
effects contribute to this reduction. First, the total traffic density is segmented into groups
of aircraft allocated at different altitude layers. Second, these groups are divided per
aircraft heading, enforcing a degree of alignment between the aircraft, which decreases the
likelihood of conflicts in each layer.

Previous research [4,26–28] investigated the layered concept in urban environments.
However, only evenly distributed heading ranges per layer (as exemplified in Figure 1)
have been researched. However, this is only optimal when the heading distribution of the
traffic is uniformly distributed as well. In reality, this is often not the case. Flights may
be performed predominantly in specific directions, following the topology of the bigger
avenues in the urban environment. Aircraft may be expected to heavily move towards
areas with higher population densities, or to a few specific storage points when employed
for delivery purposes. Additionally, the directions of flight may change often as aircraft
redirect at intersections to avoid collisions with static obstacles.

0◦–60◦

120◦–180◦

240◦–300◦

60◦–120◦

180◦–240◦

300◦–360◦

Figure 1. Evenly distributed airspace structure; the total heading range (360◦) is divided per the
available traffic layers.

Aircraft will not be equally distributed over the available airspace when the structure
of the airspace does not align with the current heading distribution. One layer will have a
higher traffic density than the others when aircraft predominantly adopt a certain direction.
In the worst-case scenario, the segmentation factor will be lost, canceling out the benefit of
having a layered structure. Thus, the airspace structure should be set as a function of the
current traffic scenario to prevent conflicts and reduce travel time. Moreover, given the fast-
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changing nature of the traffic, an automated control is preferable to guarantee fast response
times and higher structure variability. In this work, we propose a reinforcement learning
approach responsible for defining the heading range per traffic layer as a function of the
expected traffic scenario. The objective is for this automated agent to focus on dividing
aircraft per layer according to the real distribution, making full use of the available airspace.

4. Airspace Structure with Reinforcement Learning
4.1. Agent

We employed an RL agent whose objective was to set an optimized structure that
catered to the expected traffic scenario. We assumed that the agent had full information on
the future traffic density and trajectories. In a real-world application, this agent might be
seen as a component responsible for defining the structure of the operational airspace.

4.2. Learning Algorithm

An RL model consists of an agent interacting with an environment E in discrete
timesteps. At each timestep, the agent receives the current state s of the environment and
performs an action a in accordance with which it receives a reward rt. An agent’s behavior
is defined by a policy, π, which maps states to actions. The goal is to learn a policy that
maximizes the reward. Many RL algorithms have been researched in terms of defining the
expected reward following action a. In this work, we used the deep deterministic policy
gradient (DDPG), defined in [16].

Policy gradient algorithms first evaluate the policy and then follow the policy gradient
to maximize the performance. DDPG is a deterministic actor–critic policy gradient algo-
rithm, designed to handle continuous and high-dimensional state and action spaces. It has
proven to outperform other RL algorithms in environments with stable dynamics [29]. Ad-
ditionally, DDPG has been successfully implemented in the aviation environment [30–32],
proving that it can adapt to aircraft dynamics. However, DDPG can become unstable, being
particularly sensitive to reward scale settings [33,34]. As a result, rewards must be carefully
defined.

DDPG is an instance of the actor–critic model. The deterministic actor receives a
state from the environment and outputs an action. The critic maps each state–action pair,
informing the actor how to adjust towards outputting the best actions. Furthermore, the
DDPG model employs target networks and a replay buffer. The target networks are mostly
useful to stabilize function approximation when learning for the critic and actor networks.
The replay buffer stores multiple past experiences, from which mini-batch samples are
used to update the actor and critic. The pseudo-code for DDPG is displayed in Algorithm 1.
Additionally, exploration noise was added to promote exploration of the environment; an
Ornstein–Uhlenbeck process [35] was used in parallel with the authors of the DDPG model.

Algorithm 1 Deep deterministic policy gradient.

Initialize critic Q(s|aµ) and actor µ(s|θµ) networks
Initialize replay buffer R
for all episodes do

Initialize action exploration
while episode not ended do

Select action at according to the current state st from the environment and the current actor
network
Perform action at in the environment and receive a reward rt and new state st+1
Store transition (st, at, rt, st+1) in the replay buffer R
Sample a random mini-batch of N transitions from R
Update critic by minimizing the loss
Update the actor policy using the sample policy gradient
Update the target networks

end while
Reset the environment

end for
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Table 1 presents the hyperparameters employed in this work. We resorted to two
hidden layer-neural networks with 120 neurons in each layer. Both layers used the rectified
linear unit (ReLU) activation function.

Table 1. Hyperparameters of the employed RL method used in this work.

Parameter Value

TAU 0.001
Learning rate actor (LRA) 0.0001
Learning rate critic (LRC) 0.001

EPSILON 0.1
GAMMA 0.99

Buffer size 1 M
Minibatch size 256

# Hidden layer-neural networks 2
# Neurons 120 in each layer

Activation functions Rectified linear unit (ReLU) in the hidden layers
Softmax in the last layer

4.3. State

The state input into the RL model must contain the necessary data for the RL agent to
successfully determine an optimal heading division per traffic layer. We consider that such
a decision requires information on the traffic demand, flight routes, and their evolution over
time. However, representing correct traffic flow evolution is non-trivial and can assume
various shapes. Moreover, with RL, a simplified representation of the environment is often
needed to optimize the training of the neural network. Representing the complete flight
routes for all aircraft would greatly increase the size of the state formulation and with it
the number of possible states and state–action combinations. As the size of the problem’s
solution space grows exponentially with the number of states, it may reach a point where
the training time becomes unrealistic.

Therefore, we assumed a state array with a fixed dimension representing a simplified
version of the environment. Based on the pre-defined routes, ‘snapshots’ were made of
certain points in time. Each point in time was defined by four variables, with each variable
representing the number of aircraft in each of the four possible directions: east, south, west,
and north. Figure 2 represents the complete state array. A total of four ‘snapshops’ were
taken, each one further in time by five minutes. For example, E1 represents the number
of aircraft traveling in the east direction at minute five past the start of the traffic scenario.
Naturally, having more ‘snapshops’ provides more information regarding the environment
but at the cost of adding more complexity to the model.

E0 S0 W0 N0 E1 S1 W1 N1 E2 S2 W2 N2 E3 S3 W3 N3 L1 L2 L3 L4 L5 L6

Traffic in 0 min Traffic in 5 min Traffic in 10 min Traffic in 15 min Layer Occupancy

Figure 2. State formulation of the reinforcement learning agent. The first 16 state variables represent
the expected traffic intensity per direction (east, south, west, and north) at the expected point in time.
The last six positions represent the current number of aircraft in each traffic layer.

Additionally, for simplification, a fixed number of vertical layers was assumed. Six
traffic layers were defined. The six final elements of the state array (L1 to L6) were used
to indicate the current number of aircraft in each traffic layer. It was considered that
the structure was set before the aircraft initiated their flights. Thus, the airspace was
empty at the beginning of each episode, and the six final positions equaled 0 in the initial
state. However, at the end of the episode, as the RL model was informed of the next
state, this information became relevant. Ideally, the RL agent should opt for a structure
that homogeneously divides aircraft across the available airspace (segmentation effect).
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Additionally, this state formulation could potentially be used in a situation where the
traffic volume at the beginning of the episode is not zero as it is capable of transmitting
such information.

4.4. Action

The RL agent determines the action to be performed for the current state. The incoming
state values are transformed through each layer of the neural network, in accordance with
the neuron weights and the activation function in each layer. The activation function takes
in the output values from the previous layer and converts them into a form that can be taken
as the input for the next layer. The output of the final layer must be turned into values that
can be used to define the heading range in each traffic layer. A softmax activation function
was employed in the last layer; the output values were used to define which direction was
allowed at each traffic layer. Since there was a maximum of four possible directions, and a
total number of six layers, the dimension of the action array was set to twenty-four (four
directions × six layers). Figure 3 shows how the necessary information was extracted from
the action array. For example, the first four positions of the array corresponded to the four
directions possible in the first layer; the direction with the highest integer value was picked.

E0 S0 W0 N0 E1 S1 W1 N1 E2 S2 W2 N2 E3 S3 W3 N3 E4 S4 W4 N4 E5 S5 W5 N5

1st Layer 2nd Layer 3rd Layer 4th Layer 5th Layer 6th Layer

Figure 3. Action array output by the reinforcement learning model. Each successive four positions
represent a traffic layer. The highest integer value indicates the direction (east, south, west, or north)
to be allowed in the respective layer.

Thus there are two main components upon which the RL agent decides:

• The number of layers for each direction: the RL agent may decide to select more
layers for a direction adopted by the majority of aircraft. However, an important
safeguard was implemented upon the airspace structure output by the RL agent. To
make sure that all directions were allowed in the airspace, a final check was applied
to the structure. If all possible directions were not yet allowed, the last layer was
overwritten to allow for the missing directions. Note that it may occur that more than
one flight direction is allowed in this layer.

• The order of the layers: the RL agent decides which directions are in adjacent layers.
For a fixed structure, it is good practice to allow the left or right turning by just
climbing or descending one layer. However, on purpose, the agent is free to choose
the order of directions. It will be evaluated whether the structure output by the RL
agent includes an understanding of perpendicular directions.

4.5. Reward

The RL model should prioritize safety, with the paramount factor being the likelihood
of conflicts or LoSs. However, it is unclear, at this state, which element will result in a
more optimal convergence—the total number of conflicts, or the total number of losses
of minimum separation. As a result, the following reward formulations will be tested
and compared:

1. The RL model receives a −1 for each conflict.
2. The RL model receives a −1 for each loss of minimum separation.

A loss of separation is detected when two aircraft are closer to each other than the
minimum separation distance. A conflict is a predicted future loss of minimum separation.
More details on the state-based conflict detection used in this work are given in Section 5.6.

Note that a considerable limitation of this reward formulation is the fact that it does not
take into consideration efficiency, more specifically, (1) extra energy consumption resulting
from drones traversing between layers far away, and (2) extra energy consumption due to
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the vertical conflict avoidance maneuvers. Urban air mobility vehicles are limited (energy-
wise). Thus, these maneuvers can hinder the paths and travel times of these vehicles.
Nevertheless, this work is the first approach intended to study whether RL methods can
successfully set an airspace structure adapted to the traffic scenario; thus, we opted for a
simple reward formulation focusing only on safety. Notwithstanding, it may be considered
that safety has an indirect positive effect on efficiency: decreasing both the total number
of conflicts or LoSs directly reduces the number of vertical conflict avoidance maneuvers.
Future work should consider efficiency elements as well. Nevertheless, weights of safety
and efficiency should be carefully considered. Safety should not be jeopardized in favor of
faster or longer flight routes.

5. Experiment: Safety-Optimized Airspace Structures

The following subsections define the properties of the performed experiment. The
latter aims at using RL to define the heading range at each vertical traffic layer within
layered urban airspace. Note that the experiment involves a training and a testing phase.
First, the RL model was trained continuously with a set of traffic scenarios. Second, it was
tested with unknown traffic scenarios. Performances with these new scenarios are directly
compared to a baseline that employed evenly distributed heading ranges per layer.

5.1. Simulated Environment

We first define the simulation area. This is an urban setting built using the Open Street
Map networks (OSMnx) python library [36], an open-source tool for street network analysis.
We used an excerpt from the San Francisco Area, representing an orthogonal street layout
with an area of 1.708 NM2, as depicted in Figure 4. The OSMnx library returned a set of
nodes from which a network of roads could be defined.

Figure 4. The urban environment used in these experiments. The data were retrieved from the
OSMnx python library [36]. Nodes are highlighted in blue.

In this area, roads and intersections were defined by vertices and nodes, respectively.
Two adjacent nodes represent the edges of a road. Aircraft can only travel from one node to
another when these are connected. With the intention of reducing complexity, each node
was considered to have (upmost) four connecting roads, as shown in Figure 5. Only existing
roads were considered. Additionally, we assumed that each road was unidirectional, with
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only one lane. We did not make any assumption regarding the width of the road, which
would have been needed if more directions were considered.

Figure 5. Possible directions in each one of six available traffic layers: W (west), N (north), E (east),
and S (south).

5.2. Transition Layers

In conventional aviation, temporary altitude layers are often used as a level-off at
an intermediate flight level along a climb or descent to avoid conflicts [37]. In our urban
airspace, we applied the same concept: we included (low-speed) transition layers in the
airspace to be used only by aircraft that were transitioning between traffic layers. Aircraft
performed the heading turns in these transition layers, preventing conflicts resulting from
heterogeneous speed situations when an aircraft decelerated just before a turn. Transition
layers were expected to be (almost) depleted of aircraft at any point in time, reducing the
likelihood of aircraft meeting in conflict. Moreover, we considered that aircraft flew along
the middle of the road. Since we also made no assumptions about the width of a street,
aircraft were also not allowed to use heading changes for conflict resolution. This means
that aircraft could only resort to speed and altitude changes to avoid conflicts. However,
a vertical space needs to be reserved for vertical conflict resolution, preventing aircraft
from entering adjacent traffic layers. Thus, additional vertical layers were allocated for this
purpose. Figure 6 depicts the different layers used in the experimental scenario.

Traffic
LayersFa

st
La

ye
rs

Sl
ow

La
ye

rs

Figure 6. Different altitude layers used in this work.

Three different layer types were considered, each dedicated to different actions:

• Six traffic layers (in blue): the main layers used by cruising traffic.
• Six slow transition layers (in light grey) were used for transitioning between traffic

layers. This is a necessary mid-step prior to the aircraft entering different traffic layers.
First, the aircraft exit the current traffic layer without modifying their speed, in order
to not create conflict with other cruising aircraft, and they move toward the slow layer.
Here, the aircraft decrease their speed to reach the speed required to comply with the
turn radius. After turning, the aircraft start accelerating toward the desired cruising
speed/moving to the destination traffic layer.
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• Six fast transition layers (in dark grey) were used to perform vertical conflict avoidance
when necessary. The overtaking aircraft resolve the conflict by moving into the fast
layer; aircraft being overtaken have the right of way. Once the conflict is resolved, the
aircraft move back into the traffic layer to guarantee that the fast layers are (mostly)
depleted of other traffic when the aircraft need to perform vertical resolution.

All layers were set with a height of 15 ft. There was a margin of 5 ft between the layers
to prevent false conflicts.

5.3. Flight Routes

Aircraft spawn locations (origins) were placed in alternating orders on the edge of the
simulation area, with a minimum spacing equal to the minimum separation distance, to
avoid conflicts between spawn aircraft and aircraft arriving at their destinations. Multiple
traffic layers were used; aircraft were spawned at the altitude of a layer that allowed for
the initial heading. Aircraft climbed almost vertically. Finally, an aircraft was deleted from
the simulation once it left the simulation area. To prevent aircraft from being removed
incorrectly when traveling through an edge road, aircraft were set to move out of the
map once they finished their route and were removed once they moved away from an
edge node.

Each aircraft has several waypoints it must pass through. These are always nodes from
the map and are calculated based on the defined initial direction, number, and direction of
turns, as displayed in Table 2. There were a total of 75 traffic scenarios (15 initial heading
distribution × 5 turns) per traffic density. During the creation of the simulation scenarios,
the total flight time of the already created aircraft was accounted for so that the desired
instantaneous traffic densities were respected. All aircraft started at the corresponding end
of the map, allowing for a linear route towards their initial directions (e.g., an aircraft with
an initial direction of the east will start at the west end of the map). If there are no turns,
the aircraft will travel in their initial directions throughout the complete route. A turn to
the right from an aircraft with the initial direction east indicates that the aircraft will turn
south during its route. A turn to the left would result in this aircraft turning north.

Table 2. Flight routes are defined as per the initial direction and the number of turns. The aircraft
initial distribution defines, for each scenario, the percentage of flights starting in each initial direction.
A total of 15 scenarios with different initial distributions were used. Each scenario was performed
five times, with a different number and direction of turns.

Traffic Scenario: #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15

%
A

/C
In

it
ia

lH
dg

D
is

tr
ib

ut
io

n East (E): 100 0 0 0 50 50 50 0 0 0 33 33 33 0 25

South (S): 0 100 0 0 50 0 0 50 50 0 33 33 0 33 25

West (W): 0 0 100 0 0 50 0 50 0 50 33 0 33 33 25

North (N): 0 0 0 100 0 0 50 0 50 50 0 33 33 33 25

Flight Path With Turns: All traffic scenarios are repeated with:

•No Turns (0)
•2 Turns to the Right (2R)
•4 Turns to the Right (4R)
•2 Turns to the Left (2L)
•4 Turns to the Left (4L)

During the training of the RL model, one set of 75 traffic scenarios with medium
traffic density was used. During testing, three different sets of each traffic density (low,
medium, and high traffic density) were run. Thus, testing was conducted for three different
trajectories for each combination of initial direction and the number of turns. This variability
of traffic scenarios is aimed at testing the performance of the RL model in multiple situations.
Using different heading distributions tests the capacity of the RL model to successfully
segment different traffic scenarios over the available airspace. Using a different number
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of turns tests the ability of the model to protect against successive changes in the heading
distribution.

5.4. Apparatus and Aircraft Model

The open-air traffic simulator BlueSky [13] was used to test the efficiency of dynamic
airspace structuring. The performance characteristics of the DJI Mavic Pro were used to
simulate all vehicles. Here, speed and mass were retrieved from the manufacturer’s data,
and common conservative values were assumed for the turn rate (max: 15 ◦/s), acceleration,
and breaking (1.0 kts/s).

5.5. Minimum Separation

The appropriate minimum safe separation distance depends on the operational envi-
ronment and type of aircraft involved. For unmanned aviation, there are no established
separation distance standards yet. We opted for 50 m for horizontal separation, as com-
monly used in research [38]. For vertical separation, 15 ft was assumed, based on the
dimension of the vertical layers.

5.6. Conflict Detection

This study employed state-based conflict detection, which assumes the linear prop-
agation of the current state of all aircraft involved. Thus, the time to the closest point of
approach (CPA), in seconds, is calculated as:

tCPA = −
~drel ·~vrel
~vrel

, (1)

where ~drel is the Cartesian distance vector between the involved aircraft (in meters) and ~vrel
is the vector difference between the velocity vectors of the involved aircraft (in meters per
second). The distance between aircraft at CPA (in meters) is calculated as:

dCPA =
√

~d 2
rel − tCPA

2 ·~v 2
rel . (2)

When the separation distance is calculated to be smaller than the specified minimal
horizontal spacing, a time interval can be calculated in which separation will be lost if no
action is taken:

tin, tout = tCPA ±

√
RPZ

2 − dCPA
2

~vrel
. (3)

These equations will be used to detect conflicts, which are said to occur when dCPA < RPZ,
and tin ≤ tlookahead, where RPZ is the radius of the protected zone or the minimum horizon-
tal separation and tlookahead is the specified look-ahead time. A look-ahead time of 30 s was
used for conflict detection and resolution.

5.7. Conflict Resolution

To guarantee safety in between static obstacles (e.g., buildings, trees), movement
within the horizontal plane was severely limited. For conflict resolution, we look at the
remaining degrees of freedom, namely speed and altitude variations. Within an urban
environment, we may consider two main conflict geometries: (1) conflicts with aircraft
traveling along the same road; (2) conflicts at intersections. Within the first case, aircraft
fly in the same direction; intruders are positioned directly in front or behind the ownship.
These conflicts can be treated as pairwise conflicts, with a simple resolution, where each
aircraft respects a minimum distance to the aircraft in front. The second type of conflict
is more complicated. Crossing traffic flows, or merging aircraft, leads to multi-aircraft
conflicts for which simple rules no longer suffice. For these conflicts, we resort to the
velocity obstacle theory [39,40], which translates the two-dimensional problem of crossing
flows into speed constraints, identifying which velocities result in conflicts.
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Figure 7 exemplifies the construction of a velocity obstacle (VO). Ownship (A) is in
conflict with an intruder (B). A collision cone (CC) can be defined as the triangular area
between the lines tangential to the intruder’s protected zone (PZ). A and B are in conflict
when the relative velocity between these two aircraft is inside the CC. A VO is defined
as a collision cone translated by the intruder’s velocity; thus, expressing the separation
constraints to the absolute velocity space of the ownship. This VO represents the set of
ownship velocities that lead to a loss of separation with the intruder. R represents the
radius of the PZ. PA(t0) and PB(t0) denote the initial positions of the ownship and the
intruder, respectively. PB(tc) identifies the intruder’s position at the moment of collision.
Each intruder in the vicinity of an ownship results in a separate VO.
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Figure 7. Representation of a velocity obstacle (VO) imposed by intruder B, and the relationship
between a circular velocity vector set and the protected zone (PZ) [41]. By adding the intruder’s
velocity, the collision cone (CC) is translated, forming the intruder’s VO.

The geometric resolution of the MVP model, as defined by Hoekstra [14,42], is dis-
played in Figure 8. When a conflict is detected, MVP uses the predicted future positions
of both ownship and intruder at the closest point of approach (CPA). These calculated
positions ‘repel’ each other, and this ‘repelling force’ is converted to a displacement of the
predicted position at CPA. The avoidance vector is calculated as the vector starting at the
future position of the ownship and ending at the edge of the intruder’s protected zone,
in the direction of the minimum distance vector. Thus, this displacement is the shortest
way out of the intruder’s protected zone. Dividing the avoidance vector by the time left
to CPA yields a new speed, which can be added to the ownship’s current speed vector,
resulting in a new advised speed vector. From the latter, a new advised heading and speed
can be retrieved. The same principle is used in the vertical situation, resulting in an advised
vertical speed. In a multi-conflict situation, the final avoidance vector is determined by
summing the repulsive forces with all intruders. As it is assumed that both aircraft in a
conflict will take (opposite) measures to evade the other, MVP is implicitly coordinated.

PZIntruder

Repelling
Force

Ownship

Heading
Deviation

•

CPA

Intruder

Speed
Change

Figure 8. Modified voltage potential (MVP) geometric resolution. Adapted from [14].
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5.8. Independent Variables

During training, reward formulation and conflict resolution were introduced as inde-
pendent variables to observe how each influenced the training of the RL agent. During
testing, different traffic densities were introduced to analyze how the RL model performed
at traffic densities it was not trained in. Additionally, airspace structure outputs by the
RL model were compared with a commonly used fixed, uniform airspace structure. More
details are given below.

5.8.1. Reward Formulation

Two different reward formulations were tested and compared in terms of training
efficiency: (1) −1 per each conflict; (2) −1 per each LoS.

5.8.2. Conflict Resolution

The effect of conflict resolution on the safety results was tested by directly comparing
the efficacy of an RL agent trained in an environment without conflict resolution (CR-OFF),
with another RL agent trained in an environment where MVP was used to generate conflict
resolution maneuvers through speed and altitude variation (CR-ON).

5.8.3. Traffic Density

Traffic density varied from low to high as per Table 3. The instantaneous aircraft value
defined the number of aircraft expected at any given moment during the measurement
period. At high densities, vehicles spent more than 10% of their flight times avoiding
conflicts [43]. The RL agent responsible for setting the airspace structure was trained at a
medium traffic density and was then tested with low, medium, and high traffic densities. In
this way, it was possible to assess the efficiency of an agent performing in a traffic density
different from that in which it was trained.

Table 3. Traffic volume used in the experimental simulations. The number of spawned aircraft
correspond to 20 min of simulation time; the range results from different flight paths as the necessary
time to traverse the environment is dependent on the initial direction(s) and the number of turns.

Low Medium High

Traffic density [ac/10,000 NM 2] 292,740 585,408 878,112
Number of instantaneous aircraft [-] 50 100 150
Number of spawned aircraft [-] 80–397 159–794 236–1189

5.8.4. Airspace Structure

The airspace-structured output by the RL agent must be compared to a baseline-fixed
structure ([W,N,E,S,W,N]), to verify that there is a significant improvement in having
dynamic structuring catered to each traffic scenario versus one pre-defined structure.
The latter is the structure defined in Table 4, which obtained good results in previous
research [44]. This baseline structure adopted one direction per vertical layer. In addition,
it was possible to cross into a perpendicular road by climbing or descending to the next
layer. The latter is the main benefit of this structure as it reduces the number of necessary
vertical deviations.

5.9. Dependent Variables

Three different categories of measures were used to evaluate the effects of the different
operating rules set in the simulation environment: safety, stability, and efficiency.
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Table 4. Quadrant rules for the baseline airspace structure used for comparison.

1st Layer (W) 2nd Layer (N) 3rd Layer (E) 4th Layer (S) 5th Layer (W) 6th Layer (N)

Altitude

5.9.1. Safety Analysis

Safety was defined in terms of the number and duration of conflicts and losses of
separation, where fewer conflicts and losses of separation are considered safer. Additionally,
losses of separation are distinguished based on their severity according to how close the
aircraft are to each other:

LoSsev =
R− dCPA

R
. (4)

A low separation severity is preferred.

5.9.2. Stability Analysis

Stability refers to the tendency for tactical conflict avoidance maneuvers to create
secondary conflicts. In the literature, this effect has been measured using the domino effect
parameter (DEP) [45]:

DEP =
nON

c f l − nOFF
c f l

nOFF
c f l

, (5)

where nON
c f l and nOFF

c f l represent the number of conflicts with CD&R ON and OFF, respec-
tively. A higher DEP value indicates a more destabilizing method, which creates more
conflict chain reactions.

5.9.3. Efficiency Analysis

Efficiency is evaluated in terms of the distance traveled and the duration of the flight.
There is a preference for methods that do not considerably increase the path traveled
and/or the duration of the flight.

6. Experiment: Hypotheses
6.1. Simulated Traffic Scenarios

A set of 75 different scenarios was simulated for each traffic density (low, medium,
and high traffic densities). During training, only the medium traffic density was employed;
during testing, all three different traffic densities were employed. Within the different
scenarios, different initial directions and the number of turns throughout the flight routes
were set. This was an attempt at introducing a varying number of aircraft per direction
and a different number of vertical deviations. Given that the traffic density was constant
throughout each scenario, it was hypothesized that a smaller number of different initial
traffic directions would lead to a higher number of conflicts and LoSs, due to the fact
that all aircraft would be traveling in the same vertical layers, on the same ‘roads’. When
more initial directions are in place, existing traffic is distributed among the airspace to a
greater extent, reducing the probability of aircraft meeting in conflict. Additionally, it was
hypothesized that a higher number of turns would be harder to optimize, as turns are not
explicitly represented in the state formulation.
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Nevertheless, looking only at the number of initial directions and turns is not enough
to immediately identify the total number of conflicts and LoSs at the end of the simulation.
Safety is also dependent on the trajectories taken and the topology of the environment. The
latter may make some directions more prone to conflicts than others; the position of static
obstacles may lead to certain locations turning into conflict ‘hotspots’. The latter will be
analyzed with the experimental results.

6.2. Dynamic Airspace Structuring

It was hypothesized that having a dynamic airspace structure that catered to the
expected traffic scenario would result in fewer conflicts and losses of minimum separation
compared to having one fixed structure, which is not optimal for all different traffic cases.
For an unbiased comparison, we must employ a fixed structure expected to perform
reasonably well in a large range of different traffic scenarios. The structure (W, N, E, S,
W, N) was chosen; the latter has been proven to be successful in previous research [44].
Naturally, it could even be that there are specific traffic scenarios for which this baseline
structure is the most efficient and it may outperform the structure output by the RL model.
This is relevant for comparison, to evaluate which structuring characteristics lead to an
increase in safety.

6.3. Training of the Reinforcement Learning Model

It was hypothesized that employing conflict resolution during training of the RL model
is optimal, as it is a better representation of the testing environment, where aircraft attempt
to avoid each other. Additionally, having CR during training would allow optimization
to focus on the conflicts that a geometric conflict resolution algorithm cannot resolve,
instead of focusing on conflicts with small severity. The latter may be the majority but
are easily resolved through conflict resolution. However, without conflict resolution, the
RL agent can focus on conflict prevention; having fewer conflicts may result in fewer
multi-conflicts situations.

Furthermore, the main objective of the RL agent is to reduce the LoS number, since
this is the paramount value considered for safety. However, LoSs are sparse compared
to conflicts, which may limit the optimal convergence of the RL model. The LoS number
may not be sufficient for the RL to gather enough information for a proper understanding
of the environment. Looking at conflicts results in more information for the RL agent,
as these occur in higher numbers. Thus, the latter was hypothesized to warrant more
optimal training. It is assumed that, although the total number of conflicts is not directly
proportional to the number of LoSs [15], fewer conflicts lead to fewer LoSs.

Finally, testing of the RL agent included similar and different traffic densities to the
training conditions. The agent was expected to perform better in the traffic density in which
it was trained. However, applying the agent to different densities allowed one to assess
how the efficiency of airspace structures varied with the traffic density. It was hypothesized
that the agent may be the least effective at densities higher than the one it was trained
in, as the complexity of the emergent behavior, and of the consequent solution, increased
proportionally to the density.

7. Experiment: Results
7.1. Training of the RL Agent for Safety-Optimized Airspace Structuring

The RL agent responsible for setting the airspace structure was trained at a medium
traffic density; 75 different traffic scenarios were tested repeatedly. These varied in the
number of turns and initial direction(s), as previously described in Section 5.3. Each scenario
execution corresponded to one episode, which, during the training phase, ran for 20 min.
In total, 100,000 episodes were run. Thus, the set of (different) 75 episodes was repeated
roughly 1330 times. Four (2 × 2) different RL agents were trained and compared directly to
confirm the hypotheses set in Section 6.3; two agents were trained in an environment with
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CR (CR-ON), and two others without CR (CR-OFF). The two agents in each environment
will be used to compare the efficiency of training based on LoSs and conflicts.

Safety Analysis

Figure 9 displays the evolution of the total number of pairwise conflicts and LoSs
during training without CR. Each point represents the average conflicts or LoSs for 75 traffic
scenario cycles. The shaded and solid lines represent all values and the moving average
over the previous 50 values, respectively. For reference, the high variability at the beginning
of the training was due to the impact of exploration noise. This noise was intentionally set
stronger at the initial cycles to promote exploration. Its impact was reduced throughout
training. We can see that although the number of conflicts and LoSs were strongly correlated,
a LoS-based reward resulted in convergence to an optimal value whereas training based on
conflicts did not. The former converged to a minimum number of conflicts and LoSs after
approximately 200 cycles of the 75 training traffic scenarios (200× 75 = 15 k episodes in
total). Focusing on reducing the number of LoSs also reduced the number of conflicts. In
comparison, training based on conflicts did not lead to finding an optimal value during
a run of 100,000 episodes. There was no clear trend of decrement in conflicts throughout
training. One possible reason is that the large magnitude of the total number of conflicts
may have had a negative effect on performance. It could be that decreasing the reward per
conflict, or normalizing the reward value, as is often done in practice to boost performance,
could reduce the training time. However, such an investigation was deemed not relevant
given the better success with a LoS-based reward.

(a) Evolution of the total number of pairwise conflicts (CR-OFF).

(b) Evolution of the total number of LoSs (CR-OFF).
Figure 9. Evolution during training of two RL agents—one trained based on the number of conflicts
(in blue) and the other on the number of LoSs (in orange). Conflict resolution was not applied in
this environment.

Figure 10 shows the evolution of the total number of conflicts and LoSs during training
with CR. The differences here are not as great as with the previous RL models trained
without CR. However, contrary to the latter, the agent optimized based on the number of
conflicts achieved fewer conflicts and LoSs. We consider this to be a direct consequence of
the number of LoS occurrences in the environment. As hypothesized, in an environment
with fewer LoSs, the number of conflicts is a better reward formulation, as its higher value
provides more information to the RL agent. However, without conflict resolution, the
number of LoSs and conflicts is higher. Thus, the LoS provides enough information and,
being the paramount safety value, should be used.
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The most effective RL agents, ‘CR-OFF, LoS’—the agent trained based on LoS in an
environment without CR, and ‘CR-ON, conf’—the agent trained based on conflicts in
an environment with CR, must now be directly compared within the same conditions.
Figure 11 shows an example of the airspace structures produced by the two agents. Each
row corresponds to one traffic scenario. For example, the first row identifies the traffic
scenario where all aircraft initiated their flights directed east, and no turns were performed
during the flight. The last row identifies the traffic scenario where aircraft initiated their
flights directed east, south, west, or north (with equal distribution); each aircraft performed
four turns to the left during their flights. The structure outputs by the ‘CR-OFF, LoS’ and
‘CR-ON, conf’ agents are displayed in the left and right columns, respectively.

(a) Evolution of the total number of pairwise conflicts (CR-ON).

(b) Evolution of the total number of LoSs (CR-ON).
Figure 10. Evolution during training of two RL agents, one trained based on the number of conflicts
(in blue) and the other on the number of LoSs (in orange). Conflict resolution was applied in
this environment.

In Figure 11, symbol (←) identifies the most employed airspace structure for each RL
agent. Agent ‘CR-OFF, LoS’ used 28 different structures, with structure E,N,S,W,E,N being
used in 29 of the traffic scenarios. This structure is employed more often when aircraft are
more dispersed throughout the environment, i.e., when more different initial directions are
employed. As expected, the more uniform the traffic scenario is, the more the RL agent
tends to pick a structure where all directions have similar priority. In comparison, the
‘CR-ON, conf’ agent used 29 different structures, with structure E,E,E,E,W,(N,S) employed
on 10 of the training traffic scenarios. This selection shows a different structure approach
than the ‘CR-OFF, LoS’ agent. The latter opted for a uniform structure that performed
relatively well for most traffic scenarios; the ‘CR-ON, conf’ agent preferred a structure that
heavily focused on two directions—east and west—as per Figure 11. This is considered to
be a direct result of applying the conflict resolution. CR resolves a lot of the conflicts that the
‘CR-OFF, LoS’ agent prevents with a structure that promotes even segmentation of aircraft
throughout the airspace. Thus, the ‘CR-ON, conf’ agent focuses on conflict ‘hotspots’ at
which CR is ineffective. Given that the most used structures strongly prioritize the west
and east directions, this indicates that the topology of the environment leads to most of the
‘hotspots’ occurring when aircraft travel in the directions west–east and vice versa.
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Figure 11. Example of airspace structure output by the two best-performing RL agents. On the left:
the RL agent trained without CR, based on the number of LoSs. On the right: the RL agent trained
with CR, based on the number of conflicts.

The efficacy of the segmentation performed by the RL agent is more clearly evalu-
ated when aircraft travel predominantly in one direction. Here, the structure should be
optimized to adapt most vertical layers to this direction. For example, the ‘CR-OFF, LoS’
agent outputs structure N,N,S,N,N,(W,E) (highlighted in Figure 11 with the symbol (.)) for
traffic scenarios with: (1) the initial direction north with no turns; (2) initial directions south,
west, and north with no turns. In both situations, the RL model found that guaranteeing a
minimum of conflicts between aircraft traveling north had the best impact on reducing LoSs.
The ‘CR-ON, conf’ agent prioritized, for example, structure E,E,E,E,E,(W,N,S) (highlighted
in Figure 11 with the symbol (/)) for most of the traffic scenarios where all aircraft initiated
flights heading east. It should be noted that more than one direction on the last layer means
that a safeguard was implemented to guarantee that all directions were allowed in the
final structure, even though the RL agent did not opt to do so. In these cases, this decision
was understandable, as aircraft do not follow all directions, and there is a chance that,
without the safeguard, the structure would have been even more optimal. Moreover, it is
interesting that, often, with multiple directions, the agents chose to focus on one instead of
trying to evenly distribute all directions. It seems that, at the current traffic density, strongly
optimizing one direction results in fewer LoSs and conflicts than trying to equalize all.

Regarding turns (and consequent vertical deviations to move to a traffic layer where
the new direction is allowed), it is interesting to see that the RL agent is able to gather some
information on direction changes through the state formulation. The structure selected
by the RL agent for no turns was not repeated for the same initial directions(s) when
turns were in place. For example, structure W,W,N,W,W,(E,S) (highlighted in Figure 11
with the symbol (�)) was used for the traffic scenario with the initial direction of east and
two turns to the left (aircraft will first turn to the north and then to the west). Thus, the
RL favors the directions the aircraft moved to after turning. Furthermore, the order of
directions per vertical layer also affects the final amount of vertical deviations that aircraft
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must perform. Allowing aircraft to turn left or right by moving one layer upwards or
downwards is often a good practice; however, these structures often employ adjacent
directions in adjacent structures, several times that east–west and north–south are adjacent.
It may be that, in some cases, this is the optimal structure. For example, due to the topology
of the environment, it may be that, in some traffic scenarios, the conflicts during cruising
phases are larger occurrences than conflicts during climb and descending. The impact of
climb and descent on final safety will be further analyzed during the testing phase.

Figures 12 and 13 show the results obtained by directly comparing the final structure
output by the ‘CR-OFF, LoS’ and the ‘CR-ON, conf’ agents in environments with and
without conflict resolution, respectively. As previously hypothesized, the agent trained with
CR performed better when CR was applied; the ‘CR-ON, conf’ agent (in green) had fewer
conflicts and LoSs (see Figure 13). Analogously, the ‘CR-OFF, LoS’ agent performed better
in an environment without CR. However, while the ‘CR-OFF, LoS’ agent still performed
reasonably well in an environment with conflict resolution (often resulting in fewer conflicts
and LoSs than the baseline, fixed structure in orange), the ‘CR-ON, conf’ agent had the
worst performing structures when no conflict resolution was applied. This was expected
given the structures chosen by this agent (see Figure 11). While the ‘CR-OFF, LoS’ agent
selected structures that evenly distributed the existent traffic per the available airspace
(which favored the efficiency of any CR algorithm), the structure output by the ‘CR-ON,
conf’ agent seemed to work directly on the behavior of the CR algorithm. The agent
prioritized directions where the CR algorithm seemed to be unable to resolve conflict
‘hotspots’. However, this added strain on other directions. Although the CR algorithm
seemed to be able to resolve conflicts in these directions, without conflict resolution, these
directions become concentrations of conflicts.

(a) Total number of pairwise conflicts.

(b) Total number of losses of minimum separation.
Figure 12. Final comparison of the best RL agents during training in an environment without conflict
resolution. The results are directly compared using a baseline, fixed structure.

Furthermore, from the previous results, some conclusions can be drawn regard-
ing the safety impact of singular and multiple directions and the number of turns in
the environment:

• Within traffic scenarios starting with a single direction, east and west stand out,
resulting in considerably more conflicts. This justifies the emphasis by the ‘CR-ON,
conf’ agent on these directions. Moreover, as expected, when aircraft are initially
distributed through more directions, the consequent segmentation results in fewer
conflicts and LoSs.
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• It was hypothesized that increasing the number of turns would lead to a higher
number of conflicts and LoSs. Turns lead to vertical deviations between cruising
layers, and having aircraft enter and leave these layers lead to conflict situations [44].
However, within the experimental results, more turns sometimes result in fewer
conflicts and LoSs. This is considered a result of additional segmentation created
by vertical deviations. Aircraft become more distributed throughout the available
airspace as now they also move within the transition layers. This effect appears to
have had a positive impact on safety.

(a) Total number of pairwise conflicts.

(b) Total number of losses of minimum separation.
Figure 13. Final comparison of the best RL agents during training in an environment with conflict
resolution. The results are directly compared using a baseline, fixed structure.

7.2. Testing of the RL Agent for Safety-Optimized Airspace Structuring

From the results obtained during training, we opted to utilize the ‘CR-ON, conf’ agent
in the forthcoming testing verification with additional traffic scenarios. This RL agent was
tested with a total of 225 traffic scenarios; 75 scenarios in each traffic density (i.e., low,
medium, and high). The RL agent was previously trained within a medium traffic density;
it is of interest to see how it behaved at lower and higher traffic densities. All testing
episodes were different from the ones the RL agent trained in. For each traffic scenario (i.e.,
the combination of specific traffic density, initial direction(s), and the number of turns),
three repetitions with different flight trajectories were performed. Each traffic scenario ran
for an hour. However, note that the state formulation was not modified; it still only covered
the first 20 min of the traffic scenario. The duration of the traffic scenario was increased to
analyze the effect of having a scenario longer than the state contemplated. Additionally, a
longer run allowed for a more complete analysis of the impact of employing the structure
output by the RL agent vs. a fixed, uniform one. Finally, testing was performed in an
environment where aircraft may change their speeds and altitudes to avoid conflicts.

7.2.1. Safety Analysis

Figure 14 shows the mean total number of pairwise conflicts. The RL model was able
to reduce the number of conflicts for all traffic scenarios and densities when compared
to having one fixed airspace structure. Contrary to the hypothesized, the RL agent did
not perform worse at high traffic densities. The airspace structures, which led to an
optimal number of conflicts at a medium traffic density, were also applicable to higher
traffic densities.
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Figure 15 shows the amount of time spent with a deconflicting state decided by the
CR method, instead of following their preferred state. This does not include the time to
recovery when aircraft are no longer in conflict and are redirected to their next waypoints.
The RL model was able to reduce the time in conflict for all traffic scenarios and densities
when compared to having one fixed airspace structure. Although the RL reduced both the
number of conflicts and the total time in conflict, these do not have a direct correlation.
Fewer pairwise conflicts do not necessarily mean less time in conflict per aircraft and
vice versa.

Figure 14. Mean total number of pairwise conflicts during testing of the RL agent. All traffic densities
had 75 traffic scenarios, with the initial direction(s) and the number of turns following the same order
as shown during the training phase.

Figure 15. Total time in conflict per aircraft. All traffic densities had 75 traffic scenarios, with the
initial direction(s) and the number of turns following the same order as shown during the training
phase.

Figure 16 shows the mean total number of LoSs. The RL model was able to reduce
the number of LoSs for all traffic scenarios and densities when compared to having one
fixed airspace structure. Although the focus of the RL agent was to reduce conflicts, fewer
conflicts led to fewer LoSs. Analogously to the total number of pairwise conflicts (see
Figure 14), there was no decrease in efficiency for higher traffic densities. Interestingly, in
comparison with the fixed structure, the improvement obtained with the RL agent appeared
stronger in the high traffic density than in the low one.
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Figure 16. Mean total number of losses of separation. All traffic densities have 75 traffic scenarios,
with the initial direction(s) and the number of turns following the same order as shown during the
training phase.

Figure 17 displays the intrusion severity. For most traffic scenarios, there was no
relevant discrepancy between the fixed, uniform structure, and the structure output by the
RL agent. However, with the former, there were outliers where the mean intrusion severity
reached higher values. With a more efficient segmentation, aircraft were better at keeping a
safer distance and were not as close.

Figure 18 presents the relative speed between aircraft in an LoS situation. Higher
relative speeds indicate speed heterogeneity that increased complexity in the airspace.
Transition layers were in place to minimize the effect of high relative speeds from aircraft
exiting and entering a cruising layer; aircraft only decelerate, turn, and accelerate within
the slow layers. Slow layers are considered safer for this state change, as they are expected
to be (almost) depleted of aircraft. This might not be the case when multiple aircraft
initiate vertical deviations simultaneously. Additionally, a high relative speed can occur in
a fast layer. Aircraft performing an avoidance maneuver in close proximity with different
avoidance speeds will result in high relative speed conflict situations. On average, the
structure output by the RL agent leads to a lower relative speed between aircraft in conflict.
However, surprisingly, at lower traffic densities, there are outliers of high relative speeds.
This may explain why, in some low-density traffic scenarios, the RL agent was not able to
considerably decrease the number of LoSs (see Figure 16).

Figure 17. Mean intrusion severity rate. All traffic densities had 75 traffic scenarios, with the initial
direction(s) and the number of turns following the same order as shown during the training phase.

Figures 19 and 20 show where LoSs occurred for all traffic scenarios tested for the
fixed structure and the structures produced by the RL agent, respectively. As shown in
Figure 16, with the RL agent, there were fewer LoSs. Figure 19 shows that, with the uniform
structure, most of the LoSs occurred in the transition layers. Figure 20 also displays LoSs
in the transition layers, but not as predominantly. In this case, the last layer stands out as
having the most LoSs. This is due to the safeguard implemented on the structure output by
the RL agent; if not all directions are included in the structure, the last layer is overwritten
to allow for the missing directions. Consequently, this layer may have an agglomeration
of aircraft with different headings, leading to a high incidence of LoSs. As per Figure 11,
the RL agent opted for heavily prioritizing certain directions, instead of a more uniform
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distribution. This approach proves more reasonable in the medium traffic density that
the RL agent was trained in than in a higher traffic density. In a medium traffic density,
including multiple directions in one layer may still result in a number of conflicts that do
not cancel out the benefit of prioritizing other directions. However, at high traffic densities,
a high incidence of traffic in one layer may result in a significant number of conflict chain
reactions with a negative impact on safety.

Figure 18. Mean relative speed between pairs of aircraft during LoSs with multiple layers. All traffic
densities had 75 traffic scenarios, with the initial direction(s) and the number of turns following the
same order as shown during the training phase.

Figure 19. Altitudes at which LoSs occur with a baseline structure. The sizes of the points vary
between a maximum value of 3128 and a minimum value of 1 LoS. All traffic densities have 75 traffic
scenarios, with the initial direction(s) and the number of turns following the same order as shown
during the training phase.
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Figure 20. Altitudes at which LoSs occurred with the structure produced by the RL agent. The sizes
of the points vary between a maximum value of 7519 and a minimum value of 1 LoS. All traffic
densities had 75 traffic scenarios, with the initial direction(s) and the number of turns following the
same order as shown during the training phase.

7.2.2. Stability Analysis

Figure 21 displays the mean DEP value. A high positive value represents conflict chain
reactions, resulting from conflict avoidance maneuvers, causing airspace instability. Previ-
ous work on unconstrained airspace showed that applying conflict resolution maneuvers at
high traffic densities tends to create secondary conflicts while reducing LoSs [25]. When free
airspace is scarce, having aircraft moving laterally and occupying a larger area of airspace
often results in more conflicts. However, in this work, as resolution maneuvers only move
aircraft to a vertical layer dedicated to this purpose, they did not lead to secondary conflicts.
For most simulated traffic scenarios, employing conflict resolution reduced the number of
conflicts compared to a situation without CR.

Figure 21 shows peaks very close to both −1 and 1, showing how the effect on the
stability of applying conflict resolution must be correlated with the traffic scenario and flight
routes. Additionally, the RL model selects a different structure for every traffic scenario.
Some structures may put stress in some traffic layers, which may create conflict ‘hotspots’
with aircraft continuously resolving and creating conflicts. Interestingly, the highest peaks
(i.e., traffic scenarios in which conflict resolution induced instability) were more frequent
at the lower traffic densities. Negative peaks, where conflict resolution strongly reduced
the number of conflicts and occurred more often at higher traffic densities. From these
results, it can be derived that the greatest benefit of conflict resolution was the decrease in
conflict ‘hotspots’ resulting from the high incidence of traffic on the same ‘road’. While it
can be expected that vertical conflict resolution may result in secondary conflicts, due to
uncertainty regarding the intruder’s maneuvers, it reduces the number of aircraft cruising
at the traffic layer by moving some aircraft to the ‘fast’ layer. At higher traffic densities, the
latter effect significantly reduces the number of conflicts. At low traffic densities, conflict
‘hotspots’ are not as common and, therefore, secondary conflicts due to vertical deviations
increase in the total number of conflicts.
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Figure 21. Domino effect parameter values. All traffic densities have 75 traffic scenarios, with the
initial direction(s) and the number of turns following the same order as shown during the training
phase.

7.2.3. Efficiency Analysis

Figure 22 shows the average length of the 3D flight path per aircraft. The differences
in flight paths between different structures originate mainly from: (1) different vertical
distances between traffic layers that aircraft occupy throughout their paths, and (2) different
numbers of vertical maneuvers to avoid conflicts. The RL model shows a reduction in
the flight path lengths for some of the traffic scenarios when compared to having one
fixed, uniform airspace structure; however, this behavior is not consistent throughout all
traffic scenarios.

Figure 23 shows the average flight time per aircraft. There is no clear improvement
in flight time when the RL model is employed. Additionally, the flight path and time
are not directly proportional (see Figure 22). A shorter flight path does not necessarily
mean a shorter flight time, as sometimes speed changes resulting from conflict avoidance
maneuvers also affect flight time.

Figure 22. Flight path per aircraft. All traffic densities had 75 traffic scenarios, with the initial
direction(s) and the number of turns following the same order as shown during the training phase.

Figure 23. Flight time per aircraft. All traffic densities had 75 traffic scenarios, with the initial
direction(s) and the number of turns following the same order as shown during the training phase.
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8. Discussion

Using reinforcement learning to find an airspace structure that catered to the traffic
scenario had a positive effect by reducing the total number of conflicts and losses of
minimum separation when compared to using a uniform, fixed heading distribution per
vertical layer. The latter is optimal for uniform traffic distribution. However, this is hardly
the case in an urban environment where aircraft must respect the topology of static obstacles
(e.g., buildings, trees). Adapting the airspace to the operational traffic scenario allows for
maximizing the efficiency with which the available airspace is utilized. When an inadequate
structure is employed, the vertical distribution of traffic will be uneven, decreasing the
intrinsic safety provided by the layered design.

However, there are still questions regarding this implementation. First, the final
structure output by the RL agent seems to be directly correlated with the behavior of
the conflict resolution algorithm. Structures lose efficacy severely when applied in an
environment without conflict resolution. Analogously, it is likely that the structures would
be less than optimal when different conflict resolution rules are implemented. Which
structures benefit capacity is entirely dependent on the conditions of the operational
environment. Second, it is not yet clear how the safety of operations can be guaranteed
during configuration changes. Traffic scenarios will naturally vary substantially throughout
the day; therefore, the airspace structure should also. In this work, changing from one
structure to another was not analyzed. It was assumed that such transitions would entail
several vertical deviations in order for cruising aircraft to adapt to the new structure.
Increasing the number of vertical deviations may increase the number of conflicts. Thus, it
is likely that, during a direct change in the airspace structure, the RL agent must take into
account the previous structure to reduce the number of vertical deviations. The following
sub-sections dwell further into these subjects.

8.1. Efficacy of Reinforcement Learning

As initially hypothesized, the structure outputs by the RL agent are heavily dependent
on whether conflict resolution is applied or not. Without conflict resolution, the airspace
structure is optimized towards efficient segmentation of the existing traffic throughout the
available airspace. With conflict resolution, structures focus on increasing segmentation for
the directions where most conflicts remain after conflict resolution is applied. The structures
are dependent on the topology of the environment and the conflict resolution strategies
that are applied. With different conditions, these structures may not be as optimal. In
conclusion, as is the case with most reinforcement learning research, the RL model performs
better during testing when trained in a similar environment. The conflict resolution and
navigation rules with which the RL agent is trained should therefore be as similar to the
real environment as possible.

Furthermore, the reward formulation heavily influences the performance of the rein-
forcement learning agent. It is often considered that the reward should specify what the
agent should be doing, but not how it should be doing it [46]. The reward should be based
on the number of LoSs as this is the paramount value for safety. However, in an environ-
ment with conflict resolution, it is often the case that the number of LoSs is not sufficient to
provide enough information for proper training. Conflict resolution is often able to resolve
most LoSs, and the ones remaining may not be preventable with the airspace structure
alone. Thus, the RL agent will not be able to find any clear path through optimization. On
the basis of the test results, with conflict resolution, the number of conflicts proved to be a
more efficient reward formulation. Naturally, this is only valid because it is fair to assume
that fewer conflicts will lead to fewer LoSs. Interestingly, the opposite was true for training
without conflict resolution, where a reward formulation based on the LoSs resulted in faster
and more optimized training. In this case, the airspace structure had a direct impact on the
number of LoSs as these were not resolved by a conflict resolution algorithm. Therefore,
the reward formulation should be carefully tuned to the environment.
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8.2. Conflict Resolution

Previous work on layered airspace structures in urban environments focused on speed-
only conflict resolution [4,44]. However, this was found insufficient to prevent conflicts at
high traffic densities. As was the case with this work, conflict resolution through heading
variation is often not possible. To do so would require knowing the width of every ‘road’ in
order to decide where aircraft can resolve conflicts laterally. Additionally, in a multi-conflict
situation, the lateral resolution could potentially cause aircraft to push each other into
the surrounding urban infrastructure. Therefore, the remaining degree of freedom is the
vertical dimension. By reserving vertical space for upward vertical avoidance maneuvers,
we are able to reduce the total number of conflicts and losses of minimum separation. This
is both due to increasing the amount of maneuvers aircraft may perform to resolve conflicts,
as well as temporally increasing segmentation as some aircraft temporarily move to the
layer reserved for vertical avoidance.

The results of the current study show the importance of having vertical space specifi-
cally reserved for vertical conflict resolution. The vertical maneuver will effectively resolve
the conflict if: (1) the aircraft moves towards a flight level that is not already densely
populated (i.e., moving vertically does not result in secondary conflicts), and/or (2) small
relative speeds with aircraft present at the altitude the ownship moves into. The former is
achieved by reserving the layer for vertical resolutions only. Aircraft return to the main traf-
fic layer once the conflict has been resolved. The latter is guaranteed as the MVP employs
a ‘shortest-way-out’ solution. The variation will always be as minimal as possible from
the aircraft’s current state to resolve the conflict. As a result, the relative speed between
aircraft traveling in the ‘fast’ layer will be relatively small as they opt for traveling as close
as possible to the desired cruising speed. Thus, the relative speed with other aircraft in the
‘fast’ layer is not as great as with aircraft in the ‘slow’ layer, which is purposely used for
turns that must be performed at a limited speed necessary to comply with the turn radius.

Another point of concern for the success of vertical deviation is the uncertainty regard-
ing intruder maneuvers. In case the intruders also initiate a similar vertical maneuver, the
conflict will likely not be resolved. Future research can improve on reducing uncertainty by:
(1) applying priority rules defining which aircraft has the right of way; (2) sharing intent
information, making aircraft aware of the intruder’s future trajectory. However, prior to
using intent information, the risks of its implementation must be considered. First, data
transmission and processing delays will affect aircraft reaction times, decreasing efficacy in
resolving short-term conflicts. Second, the aircraft must have the necessary equipment to
receive and transmit data if they want to make use of this safety. Consequently, the safety
of each aircraft is also dependent on how many of its intruders have this system.

Finally, the efficacy of resolution maneuvers is dependent on the speed and acceler-
ation of the operating aircraft. Aircraft with different performance limits will resolve a
different number of conflicts. Additionally, a different number of vertical layers or different
safety margins for minimum separation will affect the climbing and descending times,
which may affect the number of conflicts and losses of minimum separation during vertical
maneuvers. In this work, a ‘fast’ layer per traffic layer was used for conflict resolution.
More layers dedicated to vertical avoidance may improve safety but it would also increase
the amount of vertical layers aircraft must traverse. These choices are heavily dependent
on the operational environment and aircraft involved.

8.3. Advice for Future Work

The following is advised for further research and improvements:

• The exploration of more powerful states and reward formulations. For the state
formulation, four ‘snapshots’ of the evolution of the traffic were considered. However,
in fast-changing traffic scenarios, the RL agent may require more snapshots to fully
understand the progression of traffic over time. Additionally, only safety factors were
considered as the reward. Future implementations may also benefit from including
efficiency elements, such as the flight path and flight time.
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• In this work, the last traffic layer was used to allow directions that the RL did not
allocate space for. However, this layer may become a ‘hotspot’ for conflicts when more
than one direction is set. Other possibilities could be researched (e.g., distributing air-
craft traveling within “missing directions” over layers with small heading differences).

9. Conclusions

This paper examined adapting a layered airspace design to the operational traffic
scenario through the use of reinforcement learning. The structures produced by an RL
agent optimized the usage of airspace by segmenting aircraft efficiently throughout the
available airspace by taking into account their flight plans. The results showed a reduced
number of conflicts and losses of minimum separation when compared to a uniform, fixed
structure, which assumed a uniform traffic scenario (as has been the case with previous
research). Moreover, the introduction of layers reserved for vertical avoidance maneuvers
further improved the efficacy of conflict resolution.

Applying RL with different environments and rewards showed how optimal structur-
ing is directly related to the behavior of aircraft. In an environment where aircraft actively
try to resolve conflicts, focusing on prioritizing layers for specific directions reduced the
total number of conflicts and LoSs. Without conflict resolution, the RL model preferred
structures in which aircraft were uniformly distributed throughout the available airspace.
Additionally, rewards should be carefully tuned. Safety-wise, focus may be placed on
reducing the total number of conflicts and/or LoSs. Prioritization of one of these two
elements, or the weights given to each, must be set in accordance with the number of
occurrences during the operation.

Nevertheless, a few considerations remain before this method can be implemented in a
real-world scenario. Future work should look into transitions between different structures,
and the impacts on safety that may arise from the necessary vertical deviations in order
for aircraft to adapt to the new structure. Finally, this work can be extended to more
heterogeneous operational environments, in terms of differences in performance limits, as
well as preference for efficiency over safety.

Author Contributions: Conceptualization, M.R., J.E. and J.H.; methodology, M.R., J.E. and J.H.;
software, M.R., J.E. and J.H; writing—original draft preparation, M.R.; writing—review and editing,
J.E. and J.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sesar Joint Undertaking. U–Space, Supporting Safe and Secure Drone Operations in Europe; Technical Report; Sesar Joint Undertaking:

Brussels, Belgium, 2020.
2. Galster, S.M.; Duley, J.A.; Masalonis, A.J.; Parasuraman, R. Air Traffic Controller Performance and Workload Under Mature Free

Flight: Conflict Detection and Resolution of Aircraft Self-Separation. Int. J. Aviat. Psychol. 2001, 11, 71–93. [CrossRef]
3. Sunil, E.; Ellerbroek, J.; Hoekstra, J.; Vidosavljevic, A.; Arntzen, M.; Bussink, F.; Nieuwenhuisen, D. Analysis of Airspace Structure

and Capacity for Decentralized Separation Using Fast-Time Simulations. J. Guid. Control. Dyn. 2017, 40, 38–51. [CrossRef]
4. Doole, M.; Ellerbroek, J.; Knoop, V.L.; Hoekstra, J.M. Constrained Urban Airspace Design for Large-Scale Drone-Based Delivery

Traffic. Aerospace 2021, 8, 38. [CrossRef]
5. Gunarathna, U.; Xie, H.; Tanin, E.; Karunasekara, S.; Borovica-Gajic, R. Real-Time Lane Configuration with Coordinated

Reinforcement Learning. In Proceedings of the Machine Learning and Knowledge Discovery in Databases: Applied Data Science
Track, Ghent, Belgium, 14–18 September 2020; Dong, Y., Mladenić, D., Saunders, C., Eds.; Springer International Publishing:
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