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Abstract: Accurately identifying the peak value of impact load acting on the helicopter structure
during weapon launch is of great significance to the design and finalization of weapon pylons. Firstly,
a method of standardized preprocessing load signal is proposed by analyzing the vibration response
and the characteristics of the impact load. Then, the test model of the weapon pylon is designed,
and the position of the strain gauge is determined; the static load calibration test and the ground
impact test are carried out on the test model. Next, the time-domain response measured by the strain
gauge is filtered and de-noised. Impact load is processed by a standardized method. The response
and load are used to train BP neural network and the mapping relationship between response and
load is established. The impact load generated by a specific weapon is statistically processed to
obtain the normalized average load time history, and the identified standard load is converted back
to the original load pattern. Finally, the network that meets the error requirements is tested. Both the
standardized pattern and the original pattern have high identification accuracy, which shows that an
effective load identification model can be established based on the time-domain response signal and
the standardized processed load signal.

Keywords: impact load; standardized processing; time-domain signal; BP neural network

1. Introduction

Invisible damage to the helicopter structure caused by the impact load while launching
weapons is the huge threat and hidden danger to flight safety. Therefore, timely and
accurately identifying the peak value of impact load and checking the strength of the
weapon pylon structure are of great significance for the design and finalization of the
weapon pylon as well as the life evaluation.

There are several studies on dynamic loads caused by weapon launches. Yu, X.Y. [1]
indirectly identified the impact load generated by the weapon launch during the flight of
the helicopter through the response signal collected by the airborne acquisition equipment.
Cheng W.Z. et al. [2] identified the recoil force of the airborne gun system and proposed the
method of “piecewise linear transfer function” to solve the nonlinear problem of the system.
Zhou F. et al. [3] conducted a force analysis on the structure of the aircraft missile pylon and
established the missile pylon load–strain coefficient matrix. Zheng J.H et al. [4] obtained
the time history variation law of the weapon pylon load under typical flight conditions by
analyzing the force of the helicopter weapon pylon structure.

According to the difference in using the response information, the load identification
can be divided into the frequency domain method and the time-domain method. In contrast,
the time-domain method has more advantages [5]. It does not require Fourier transform
of the signal and has high recognition accuracy. Traditional dynamic load identification
methods are carried out on the basis of knowing accurate model information and transfer
functions [6–8]. However, in practice, accurate structural models are often difficult to obtain.
When there is a deviation in the structural model, these traditional identification methods
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often fail to obtain good identification results when identifying loads on structures with
complex working environments.

Artificial neural network is an interdisciplinary subject that emerged in the 1950s with
a wide range of applications [9–11]. Its core is to use a computer-simulated neuron network
system to imitate the human brain’s ability to solve problems, reason, and learn [12]. The
load identification method based on the neural network does not need to establish the
theoretical expression between vibration response and dynamic load as traditional methods,
avoiding difficulty in structural modeling accuracy. It is one of the research hotspots of
load identification methods.

In 1997, Zhang, F. et al. [13] deduced the autoregressive function used in the neural
network algorithm in the time domain according to the theory of structural dynamics and
established a neural network dynamic load identification model with time delay feedback.
In 1998, Cao, X. et al. [14] proposed a new idea of using neural network technology to
identify wing loads in the process of cantilever load identification.

In 2000, Staszewski, W.J. et al. [15] used a neural network model to identify the impact
load acting on the composite box panel and used a genetic algorithm to optimize the
arrangement of the sensors. In 2009, He, F.D. et al. [16] used a combination of Bayesian
regularization and BP network to construct a three-layer BP network for analyzing aircraft
wing loads.

In 2013, Cao, S.C. et al. [17] proposed a BP neural network model that optimizes and
improves the setting parameters by using the set aside method and genetic algorithm for
the identification of flight load parameters, combined with typical maneuvering actions.

In 2018, Samson, B.C. et al. [18] used a feedforward neural network to realize the
identification of large wing rib loads, but they only identified the static load of the structure.
In 2019, Chen, G.R. et al. [19] used a deep neural network (DNN) to realize the impact load
identification of a rigid body on a hemispherical shell structure. The DNN network with
double hidden layers is trained and tested by taking the five characteristic parameters of
the impact load’s first contact point position, load amplitude, impact duration, rigid body
tangential velocity, and normal velocity as output. The same year, Zhou et al. [20] used
a deep Recurrent Neural Network (RNN) for identifying the impact load on nonlinear
structures and verified the method by three nonlinear cases: damped Duffing oscillator,
nonlinear three-degree-of-freedom system, and nonlinear composite plate.

In 2020, Chen, Q. et al. [21] took the wing load as an example to build a BP neural net-
work model of load-flying parameters and analyzed the generalization ability of the neural
network model by comparing the error between the predicted load and the measured load.

In 2021, XIA Peng et al. [22] combined the “memory” characteristics of time-delay neu-
ral networks, the theory of causal finite impulse response (FIR) systems, and the solution
principle of vibration response, and proposed a time-domain dynamic model using time-
delay neural networks load reverse sequence identification method. T. Feng et al. [23] pro-
posed a deep learning-based identification method to identify the static load amplitude and
position of the bulkhead plate. Wang, L.J. et al. [24] proposed a new computational inverse
method to reconstruct impact loads acting on composite laminated cylindrical shells based
on the augmented Tikhonov regularization (ATR) method and matrix perturbation method.

Among the above methods, the traditional method is suitable for the identification of
simple models, and it is difficult to fit complex mapping relationships. Relatively speaking,
the artificial neural network can establish a more accurate model, but still have oscillations
at the tail of identified load, resulting in inaccurate identification of the load impulse. The
subsequent interception processing will inevitably introduce additional errors. Compared
with continuous loads, the identification of impact load has a certain peculiarity, that is, the
duration of the load is very short relative to the response. Therefore, some identification
models suitable for continuous loads may require some processing before they can be used
for impact load problems.

In this paper, a standardized processing load method is proposed, the mapping re-
lationship between the standardized load and the time-domain response and measuring
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point position information is deduced, and a high-precision BP neural network identi-
fication model is established. Refer to the actual weapon pylon design test model, and
it is more convincing to verify the effectiveness of the method with test data. Using the
time-domain response signal, the processing of the signal is also carried out in the time
domain, to avoid the introduction of errors in the Fourier analysis process of the finite
response signal. By selecting the appropriate sampling points in the response signal, the
problem that the load and the response duration are very different is solved, and a one-to-
one mapping relationship is established. The response of a specific structure is relatively
stable, the standard load is used to establish a mapping relationship, and the identified
load impulse is more accurate. When establishing the recognition model, the response
signal and the position information of the measuring point are used to establish a more
complete recognition model.

The rest of the paper is organized as follows. In Section 2, through the vibration
analysis, the method of the standardized preprocessing load is obtained and the mapping
relationship between the load and the response is established, and the BP neural network
is briefly introduced. Design weapon pylon model and carry out several test studies in
Section 3. In the next section, the test data is processed, the recognition effect of the model
is analyzed, and the method in this paper is further discussed and prospected. The whole
work is summarized in Section 5.

2. Methodology
2.1. Theoretical Analysis of Standardized Processing Methods and Mapping Relationship
2.1.1. Structural Response Analysis

Under the unit impact force, the structure’s response signal corresponding to a specific
position of a certain mode can be approximately expressed as:

x = Asin(ωt + φ) (1)

where ω is the frequency of the response, and φ is the phase, representing the delay of
the response relative to the excitation, which can be assumed to be a constant value for a
given structure. The response of the linear structure satisfies the superposition theorem.
Assuming that the start time of the excitation is t1 and the end time is tn, finally, the
response is:

x =
n

∑
i=1

Aisin(ωt + ω(ti − t1) + φ) (2)

In the above formula, ti is the i-th sampling point of the load and Ai is the response
amplitude, which is approximately proportional to the amplitude of the impact force at
the moment. ω(ti − t1) = ω × (i − 1)× ∆t, corresponds to the response phase of the force
excitation acting at the ti moment, where ∆t is the sampling time interval.

For the structure, different modes correspond to the response of different frequencies,
and the response of the structure is the superposition of sine waves with different ampli-
tudes and different phase offsets described by Equation (2). Through the calculation of
trigonometric functions, the final result of each order mode superposition contains two
independent parameters, namely the amplitude and phase of the signal.

2.1.2. Impact Load Analysis

The impact load has a short-acting time. Compared with the low-order mode, the time
width of the impact load is much smaller than the time width of the vibration response.
Through the analysis of the vibration response, in the time range of the impact load,
the phase shift of the vibration response corresponding to the force at different times is
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very small. Using the trigonometric function calculation formula, the vibration response
expression (2) is expanded as follows:

x =
n

∑
i=1

Aicos(ω(ti − t1)) ∗ sin(ωt + φ) +
n

∑
i=1

Aisin(ω(ti − t1)) ∗ cos(ωt + φ) (3)

The phase difference ω(ti − t1), as the independent variable of the cosine function
in the first term, when its absolute value is much smaller than π, the value of the cosine
function is approximately equal to 1; in the second term, as the independent variable of
the sine function, under the same condition, the sine function is approximately equal to 0.
Therefore, the vibration response can be simplified as:

x =
n

∑
i=1

Aisin(ωt + φ) (4)

From the simplified expression of vibration response, it can be seen that for low-
frequency signals, the vibration response of impact load is approximately proportional to
the sum of the amplitudes of the load at each moment but has little to do with the change
history of the load during the action time.

2.1.3. Impact Load Standardization

The discrete-time signal of the impact load is obtained by the method of equal-spaced
sampling. The parameters related to the load include the load amplitude at the sampling
time and the action width of the load. The load amplitude at the sampling time can be
regarded as a representative value of the load within a certain time width. The sum of the
impact load amplitudes in the above analysis should be multiplied by the corresponding
time width. The standardized processing method is obtained through the above analysis:
for the collected load signal, it can be approximately replaced by a standard impact load
with the same impulse, a specific variation, and a specified time width.

2.1.4. Mapping Relationship between Standard Load and Time-Domain Response

For the actual structure, considering the effect of damping, the vibration response of
the point in the system with the label j and the spatial coordinates of

(
Xj, Yj, Zj

)
is shown

in Equation (5).

xj = ∑
k

Aj
k(ζ)e

−ζωktsin
(√

1 − ζ2ωk + ϕ

)
= ∑

k
f
(
Xj, Yj, Zj

)
g(Ak, ωk, ζ)e−ζωktsin

(√
1 − ζ2ωk + ϕ

)
(5)

where k is the modal order, ζ is the structural damping coefficient, Aj
k(ζ) is the amplitude

corresponding to the eigenfrequency ωk under damping, and Ak is the corresponding
amplitude without damping. The amplitude of the vibration response Amplitude_xj can
be expressed as Equation (6):

Amplitude_xj = ∑
k

ck Aj
k(ζ) = ∑

k
ck f
(
Xj, Yj, Zj

)
g(Ak, ωk, ζ) (6)

where ck is the constant. Without damping, the relationship between the amplitude Ak
corresponding to the characteristic frequency ωk and the approximate impulse of the impact
load can be expressed as I ∝ Ak. Substituting the above relationship into Equation (6), the
relationship between the approximate impulse and the spatial position information, the
maximum value of the structural response and the structural characteristic parameters is
obtained, as shown in Equation (7):

I = f1

((
Xj, Yj, Zj

)
, Amplitude_xj, ω, ζ

)
(7)
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In this paper, the overall time-domain response is used, and the single-frequency
signal extraction is not performed to avoid introducing additional errors during extraction.
Intercepting first n oscillations, the eigenfrequency ω of each order is estimated by the
width of each oscillation widthk, and the damping ζ of the structure is estimated by the
attenuation of the response signal, that is, the ratio of the oscillation amplitude, as shown
in Equation (8):

ω̂ = f2(width1, width2, . . . , widthn), ζ̂ = f3

(
a2

a1
,

a3

a1
, . . . ,

an

a1

)
(8)

where ai is the amplitude of the i-th oscillation, the estimated eigenfrequency, and the
estimated damping value ζ̂ are substituted into Formula (7), and the standard load is
obtained from the approximate impulse. Finally, the mapping relationship between the
standard load and the spatial position information of the selected measuring point and the
vibration response of the measuring point is established as shown in Formula (9):

Standard Load = F
((

Xj, Yj, Zj
)
, Amplitude_xj, f2(width1, width2, . . . , widthn), f3

(
a2

a1
,

a3

a1
, . . . ,

an

a1

))
(9)

2.1.5. Summary

Firstly, by analyzing the characteristics of the response signal and impact load of the
undamped system, a method of standardized preprocessing load signal is proposed. The
structural response under damping is further analyzed, and the characteristic frequency and
damping of the structure are estimated through the time-domain response. The mapping
relationship between the impact load and the spatial position of the point, the time-domain
response signal, and the structural parameters is established.

For a specific structure, its response signal has relatively stable characteristics. There-
fore, using a standard load, with a specific width and change history, can better establish
the mapping relationship with the response signal.

Due to the complexity of the structural response, only an implicit mapping relationship
can be established. The relevant parameters are determined, and the neural network model
can be further applied to fit the mapping relationship.

2.2. BP Neural Network

An artificial neural network does not need to determine the mathematical equation
of the mapping relationship between input and output in advance, and only through its
own training and specific learning rules, it can obtain the result closest to the expected
output value when the input value is given. BP neural network is a multi-layer feedforward
network trained by error backpropagation, called BP algorithm, its basic idea is gradient
descent method [25]. The gradient search technique is used to minimize the error mean
square error between the actual output value and the expected output value of the network.

In this paper, the neural network adopts the mean square error (MSE) as the evaluation
method, and the expression is as follows:

εn =
1
2 ∑ e2

j +
1
2

λω2 (10)

The first term is the sum of squares of errors between the neuron output and the
expected output; the second term is the sum of squares of neuron weights and biases; λ
is the regularization parameter. Appropriate selection of parameters λ can alleviate the
problem of over-fitting while training the network.

3. Results
3.1. Design of Weapon Pylon Model

Through the analysis and research of a helicopter weapon pylon structure, an all-steel
test piece is designed. The main beam and the counterweight are connected by bolts and the
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distance between them can be adjusted flexibly. Simulate the impact load under different
conditions by loading and unloading counterweights. The test model is shown in Figure 1.
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Figure 1. Test model of weapon pylon.

3.2. Determination of Measuring Point Position of Pylon Model

Select the position with large strain and no stress concentration to place the strain
gauge and avoid obstacles and sections with excessive stress gradient to ensure data
reliability. According to the above analysis and taking into account the actual structure
of the pylon and the response to stress and strain, the arrangement of the strain gauge is
determined as shown in Figure 2. In the figure, S1, S2, S3, and S4 are the positions of the
strain gauges, and F is the striking position of the force hammer.
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For the ground test, the specific position coordinates of the strain gauge and the force
hammer are shown in Tables 1 and 2:



Aerospace 2022, 9, 388 7 of 18

Table 1. Coordinates of strain gauge.

S1 S2 S3 S4

Coordinates/mm (10, −14, 0) (51.6, −17.2, −13.8) (0, −14, 90.15) (74.6, −5.2, 71.5)

Table 2. Coordinates of striking point.

F

Coordinates/mm (617.6, −59.8, −156.2)

3.3. Test of Pylon Model
3.3.1. Test of Static Load Calibration

Loading is achieved through the counterweight mass block on the long bolt connecting
the hanging bomb and the main beam. During the static load calibration process, firstly
measure the strain value generated by the background noise. Then, load an 11 kg counter-
weight mass, and record after stabilization. Continue to load 7 kg counterweight mass for a
total of 18 kg, record the strain and finally unload all counterweights.

3.3.2. Test of Ground Impact

The impact load test system of the weapon pylon is shown in Figure 3. The whole test
system includes LMS Test Lab acquisition system, portable data acquisition device of LMS
SCADAS Mobile SCM01; force hammer (PCB 086C03), its range is ±2225 N and sensitivity
is 12.5 mV/N.
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Figure 3. Impact load test system of weapon pylon.

During the test process, the impact load test was carried out under the two working
conditions of a single pylon and a double pylon, respectively. Use the data collector to
connect the hammer data to the first channel. According to the position and number of
the strain gauges on the pylon, the response signals of the strain gauges are connected to
the second, third, fourth, and fifth channels, respectively. Set the sampling frequency to
4096 Hz, that is, the sampling interval is 0.00025 s, and the total time of each sampling is
100 s. In order to ensure that the response of the previous tapping will not affect the next
response signal, tap once every 13 s. Use the force hammer to excite at the center of the
weapon’s tail, as shown in Figure 4, for the experiment of the single pylon.
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4. Discussion
4.1. Test of Static Load Calibration
4.1.1. Test Data Processing

Obtain the signal of the strain gauges S1, S2, S3, and S4 during the static load test.
Figure 5 shows the value of strain gauge S1 of the single pylon model. It can be seen that the
experimental device has a certain amount of background noise and the response changes
in steps during the loading process. (The signal form recorded by the rest of the strain
gauges is similar to that of S1, the difference lies in the noise floor and the magnitude of the
response value).
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The stable steps in the strain gauge data are averaged to obtain the strain value under
the corresponding static load, and the relationship between the strain and the static load is
drawn, as shown in Figures 6 and 7.
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4.1.2. Result Analysis

By processing the strain signals at different positions obtained in the static load
calibration test, it can be seen that the strain value and the load are basically linear, that is,
the weapon pylon model satisfies the assumption of a linear structure, which verifies the
rationality of applying the superposition theorem to analyze the response signal.

4.2. Test of Ground Impact
4.2.1. Test Data Processing

(1) Response signal noise reduction processing

Ideally, before the tapping moment, the response signal of the strain gauge is zero, but
due to insufficient strain gauge trimming, electromagnetic interference, and the movement
of people in the laboratory, the test model has background noise.

Taking the noise signal of channel 2, as shown in Figure 8, you can see a fixed devia-
tion of about 10 µε and an oscillating part around the deviation. The frequency domain
characteristics of the noise signal are shown in Figure 9, and it can be seen that the noise
energy is mainly concentrated around 50 Hz.
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Part of the response signal is intercepted. It can be seen from Figure 10 that the
collected strain response is approximately a sinusoidal signal, which is the result of the
superposition of signals of different frequencies, which conforms to the assumption that
the structure is a linear system. The frequency domain characteristics of the response are
shown in Figure 11. The strain response is dominated by low-frequency components, and
more than 80% of the energy is concentrated in the first two-order eigenfrequencies. Design
a low-pass filter according to the sampling frequency and the characteristics of the noise to
reduce the noise and preserve the main properties of the structural strain response.
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Figure 11. Frequency-domain response signal.

An elliptical filter is selected, and the specific parameters are set as follows: the
sampling frequency is 4096 Hz, the pass frequency is 35 Hz, the cutoff frequency is 40 Hz,
and the passband ripple is 0.5 dB, and the stopband attenuation is 80 dB. After polynomial
removal of the trend, the above-mentioned low-pass filter is applied to filter the strain
response signal to obtain the response signal for load identification. The filtered signal
is shown in Figures 12 and 13. The response in the time-domain graph is smoother and
the number of extremums in the frequency domain graph is reduced, indicating that the
filtering operation can reduce noise and high-frequency response signals and preserve the
main characteristics of the response signal.
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(2) Standardized processing of impact force signal

The impact load, shown in Figure 14, is much smaller in width (about 15 samples)
than the lower-order modal response (about 200 samples). In line with the assumption of
standardized treatment, the specified standardized load action width is 17 sampling points,
and the impact load is standardized to obtain the standard load in a symmetrical triangle
type, as shown in Figure 15:
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(3) Determination of the neural network structure

Take the position information of the strain gauge as the first group of input. Intercept
the first nine oscillations of the filtered response signal, mark the extreme value of each
oscillation and obtain eight marked points at equal distances before and after the extreme
value, and number the marked points corresponding to each extreme value in turn. Estab-
lish the mapping relationship between the signal marker and the standard load, as shown
in Figure 16. Through intercepting multiple oscillations of the signal and selecting multiple
markers per oscillation, the time-domain information of the response signal can be more
fully utilized.
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average load variation history and the standard deviation of each sampling point can be 
obtained by performing statistical processing on multiple launches. For the test in this 
paper, the tapping process is completed by the same person, which can be regarded as a 
“specific weapon launch”. The normalized average time history by statistical processing 
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Figure 16. Mapping relationship between response signal and standard load.

Establish a three-layer network structure, as shown in Figure 17. The first layer
preprocesses the position information of the measuring point. The second layer processes
the output signal of the first layer and the response signal and then outputs the integrated
information. The third layer integrates the output signal of the second layer to complete
the identification of the corresponding load.
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(4) Acquisition of the average time history of the impact load

For a specific weapon, although the time history of the impact load generated by each
launch is different, the overall trend of the change is basically the same. Therefore, the
average load variation history and the standard deviation of each sampling point can be
obtained by performing statistical processing on multiple launches. For the test in this
paper, the tapping process is completed by the same person, which can be regarded as a
“specific weapon launch”. The normalized average time history by statistical processing is
shown in Figure 18.
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4.2.2. Analysis of Identification Effect

(1) Identification effect of different working conditions

In this paper, two cases of the pylon model are, respectively, studied to simulate the
load of the real weapon pylon when the weapon is launched under different working
conditions. The recognition effect is shown in Table 3.

Table 3. Identification effect of different working conditions.

Working Condition Data (Group) Maximum Relative Error

Single pylon 527 7.21%
Double pylon 459 6.93%

It can be seen that the maximum relative error of load identification under the two
working conditions is less than 10%, which can meet the requirements of the project. In
the case of a single pylon, a response that does not participate in training and verification
is selected for testing. As shown in Figure 19a, the load identified by the neural network
is compared with the standardized impact load, and the identified load is a little small.
The maximum identification error is 8.87% and the average error is 4.29%, which meets
the requirements. As shown in Figure 19b, the maximum identification error of the double
pylon is 4.70% and the average error is 2.46%. The overall identified load is larger than the
applied impact load.

According to the principle of the equivalent area and the normalized average time
history obtained by statistics, the standard load is converted back to the original form, as
shown in Figure 20. Compared with the load applied in the test, it can be seen that the
deviation between the identified load and the applied load near the peak value under the
two working conditions is basically within the standard deviation range. Although the
identification deviation of some sampling points at the end exceeds the standard deviation
range, the degree of excess is very small. It has high recognition accuracy, and the average
error around peak value is less than 10%. By increasing the number of tests, the average
change history obtained by statistics will better reflect the change characteristics of the
“specific weapon” impact load, and further reduce the identification error.
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(2) Influence of retaining different order modes on the identification effect

The signal used for identification above retains the mode corresponding to the first
second order frequency of the response signal. Now for the working condition of a single
pylon, the modes corresponding to the first order, the first second order and the first
third order frequencies are, respectively, retained during the filtering process. First of all,
these filtered signals can basically eliminate the influence of the noise signal, retain the
main characteristics of the response signal, and the response width corresponding to the
highest-order frequency can basically meet the requirements of standardizing the load, that
is, the width of the load is much smaller than the width of the response. The recognition
effect is shown in Table 4. The response width corresponding to the high-order frequency
decreases and the applicability of standardization becomes worse. As the reserved highest
frequency order increases, the recognition effect will decrease to a certain extent, but the
overall recognition accuracy can basically meet the engineering requirements.

Table 4. Influence of retaining different order modes on the identification effect.

Mode First Order First Second Order First Third Order

Maximum relative error 6.05% 7.21% 8.76%

4.3. Analysis, Prospects and Limitations

Analysis: In this paper, the cantilever beam model and the flat plate test model com-
monly used in other articles are not used for verifying the proposed method. The test model
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is designed with reference to the real weapon pylon structure, and the ground impact test is
carried out to verify the effectiveness of the proposed method and obtain a high recognition
accuracy. The results can better illustrate the effectiveness and robustness of the method.
The time-domain information of the response signal is used to identify the impact load, and
the signal processing is carried out in the time domain to avoid additional errors introduced
by the Fourier transform of the finite signal. The frequency domain figures in this paper are
only to demonstrate the effectiveness of the processing method. The standard load and the
response signal establish a good mapping relationship, and the impulse of the load can be
accurately identified. The identified load will not appear the phenomenon of oscillation at
the tail as in other literature. The standard deviation range of each sampling point obtained
by statistics can provide a reference threshold for the load carrying capacity of the structure.
When establishing the mapping relationship, the response signals commonly used in the
literature as well as the spatial position information of the measuring points are considered.
A more complete identification model is established.

Prospects: By increasing the number of taps, the accuracy of the recognition can be
further improved. Increasing the number of strain gauges in the test to make full use
of the spatial position information of the strain gauges is expected to establish a more
complete identification model. The model parameters were appropriately adjusted, and
the real weapon pylon impact test was further carried out to verify the effectiveness and
applicability of the method.

Limitations: The proposed method is suitable for approximately linear structures, and
the applicability to nonlinear structures needs further verification. If the interval between
two consecutive taps is short and the response of the second tap is significantly affected,
the method needs to be further adjusted.

5. Conclusions

(1) Through the theoretical analysis of the vibration response and the characteristics
of impact load, a method for standardizing the impact load based on the principle of
approximately equal impulse is proposed and the mapping relationship between the
impact load and the spatial position of the point, the time-domain response signal and the
structural parameters is established.

(2) According to the design test model of a helicopter weapon pylon, determine the
position of the strain gauge, carry out the static load calibration test and the impact test.

(3) By analyzing the results of the static load calibration test, it is shown that the
weapon pylon model conforms to the linear structural assumption; noise reduction is
performed on the response signal of the impact test and the force signal is standardized.
The processed signals are used for neural network training, and the recognition accuracy
of neural network models under different working conditions all meet the engineering
requirements. The average change history of the impact load is obtained by statistical
processing, and the identification load is converted back to the original pattern by using the
principle of equivalent area and the average change history of the load. In both working
conditions, the identification accuracy near the peak value is high. The influence of filter
parameter selection on the recognition effect is further analyzed.
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