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Abstract: In aerospace engineering, high-order computational fluid dynamics (CFD) solvers suit-
able for three-dimensional unstructured meshes are less developed than expected. The Runge–
Kutta discontinuous Galerkin (RKDG) finite element method with compact weighted essentially
non-oscillatory (WENO) limiters is one of the candidates, which might give high-order solu-
tions on unstructured meshes. In this article, we provide an efficient parallel implementation
of this method for simulating inviscid compressible flows. The implemented solvers are tested
on lower-dimensional model problems and real three-dimensional engineering problems. Re-
sults of lower-dimensional problems validate the correctness and accuracy of these solvers. The
capability of capturing complex flow structures even on coarse meshes is shown in the results
of three-dimensional applications. For solving problems containing rotary wings, an unsteady
momentum source model is incorporated into the solvers. Such a finite element/momentum
source hybrid method eliminates the reliance on advanced mesh techniques, which might provide
an efficient tool for studying rotorcraft aerodynamics.

Keywords: high-order CFD solvers; three-dimensional unstructured meshes; RKDG method;
compact WENO limiter; parallel implementation; momentum source models

1. Introduction

Computational fluid dynamics (CFD) solvers, widely used in aerospace engineering,
are based either on finite difference (FD) schemes or on finite volume (FV) schemes. How-
ever, FD schemes are restricted on structured meshes, while most FV schemes have only
first- or second-order accuracy. One way to develop higher-order schemes suitable for
unstructured meshes is to use the discontinuous Galerkin (DG) finite element (FE) methods.
As with other FE methods, DG methods assume continuous approximation in each ele-
ment (i.e., cell). However, they allow discontinuities to exist on intercell boundaries. Such
discontinuities are then resolved by numerical fluxes, e.g., exact or approximate Riemann
solvers, as with Godunov-type schemes [1]. The original DG scheme was not proposed for
CFD but for solving the linear neutron transport equation [2]. For nonlinear conservation
laws, Chavent and Salzano [3] designed an explicit Euler DG cheme, which is second-order
accurate in space but only first-order accurate in time. To improve the accuracy of time
discretization, Cockburn and Shu [4] replaced the first-order forward Euler method with
high-order Runge–Kutta (RK) methods, which led to the family of Runge–Kutta discon-
tinuous Galerkin (RKDG) schemes for scalar conservation laws [5,6], for one-dimensional
conservation law systems [7], for multi-dimensional scalar conservation laws [8] and for
multi-dimensional conservation law systems [9]. The last case includes the Euler system
that depicts inviscid compressible flows, which is the first application of RKDG in CFD. We
will give a concise derivation of this scheme in Sections 2.1 and 2.2.
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The Euler system is hyperbolic, and might have discontinuities in its solutions. Ap-
proximating such solutions with finite terms of continuous functions would generate
numerical oscillations near discontinuities (known as the Gibbs phenomenon [10]). There-
fore, any useful high-order scheme must incorporate some mechanism for suppressing
such spurious oscillations. For second-order FD and FV schemes, there are slope and flux
limiters [11]. These limiters work well on shock capturing but might reduce the order of
accuracy when used in smooth regions. Furthermore, they are not applicable to higher-
order schemes. To overcome these drawbacks, the essentially non-oscillatory (ENO) [12]
and weighted ENO (WENO) [13] limiters for high-order FD schemes, which can essentially
suppress spurious oscillations and maintain high-order accuracy in smooth regions, were
developed. Similar ideas were later incorporated into FV [14] and DG [15,16] schemes,
which are suitable for unstructured meshes. However, such early versions of unstructured
WENO limiters have to query not only a cell’s immediate neighbors, but also the neighbors’
neighbors, and so on. To preserve the compactness of RKDG schemes, Zhong [17] and
Zhu [18] proposed a compact WENO limter for two-dimensional structured and unstruc-
trued meshes. In our early work [19], we extended it to three-dimensional and presented
an efficient parallel implementation. We will summarize the key steps of this compact
WENO limiter in Section 2.3.

The parallel implementation of the RKDG scheme with a compact WENO limiter
can be used for solving many practical problems in aerospace engineering. However,
for problems with moving boundaries (such as rotary wings on a helicopter or blades
on a wind turbine), advanced meshing techniques (such as dynamic meshing, overset
meshes or adaptive mesh refinement) have to be applied. On the other hand, typical
lifting bodies (such as rotary wings) have been successfully modeled as various momentum
sources in FD/FV schemes. Rajagopalan and Mathur [20,21] proposed the first FD/FV-
based momentum source model, which models the time-averaged effect of a rotor as an
actuator disk. Such a steady model was used by Kang and Sun [22,23] for solving the
flow fields of rotors in ground effect. Shi [24] compared this model with an unsteady
overset mesh method, and found that the steady momentum source model can predict
complex aerodynamic interactions between a rotor and a flight deck at a much cheaper
cost. Shen [25] and Kim [26] refined the model by replacing the actuator disk for the entire
rotor with an actuator surface for each blade of the rotor, so that unsteady effects of rotary
wings can be captured. Such early works are either oversimplified by ignoring unsteady
effects (such as [20–23]), or restricted to structured meshes (such as [24,25]). To overcome
these drawbacks, our parallel RKDG solvers are augmented with an unsteady actuator line
model, which successfully captures unsteady effects of a rotor on unstructured meshes.
The formulation of this finite element/momentum source hybrid method will be given in
Section 2.4. Some demonstrative results are presented in Section 3.3.

2. The RKDG Method with WENO Limiters and Momentum Sources

Mathematically, the problems that we are going to solve in Section 3 are defined by
the three-dimensional Euler system

∂t


ρ

ρux
ρuy
ρuz
ρe0

+ ∂x


ρux

ρuxux + p
ρuyux
ρuzux
ρh0ux

+ ∂y


ρuy

ρuxuy
ρuyuy + p

ρuzuy
ρh0uy

+ ∂z


ρuz

ρuxuz
ρuyuz

ρuzuz + p
ρh0uz

 =


0
bx
by
bz
0

 (1)

with certain boundary and initial conditions, which describes inviscid compressible flows.
In Equation (1),

• Variables in the first column are called conservative variables;
• The density ρ, the velocity components ux, uy, uz and the pressure p are called primi-

tive variables;
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• The thermodynamic quantities e0 and h0 are the specific total energy and the specific
total enthalpy, respectively; for ideal gases, they can be written as functions of the five
primitive variables:

e0 =
p/ρ

γ− 1
+

u2
x + u2

y + u2
z

2
, h0 = e0 +

p
ρ

,

in which γ is the heat capacity ratio of the gas, and we use γ = 1.4 in this article;
• The body force components bx, by, bz are assumed to be 0s, except in Section 3.3.

The method that we use for solving the Euler system (1) is the RKDG method with a
WENO limiter. A detailed formulation of this method for sourceless problems has been
given in our previous work [19]. In this section, we give a more complete formulation,
which takes source terms into consideration. If all source terms were canceled, it would
reduce to the form in [19].

2.1. The DG Space Discretization

Equation (1) can be written as

∂tU +∇ · ~F = Q, (2)

in which ~F = Fx~ex + Fy~ey + Fz~ez is the flux vector whose components Fx, Fy, Fz, and U,
Q are all 5× 1 matrices, each row of which is a scalar function depending on position ~x
and time t. By multiplying both sides with an arbitrary test function ψ(~x) and integrating
the products on the i-th element (i.e., cell) Ei, and applying integral by parts and Gauss’s
divergence theorem, Equation (2) can be turned into a weak form:

ˆ
Ei

(
ψ ∂tU − ~F · ∇ψ

)
+

ˆ
∂Ei

(
~ν · ~F

)
ψ =

ˆ
Ei

Q ψ, (3)

where~ν is the outer normal unit vector of ∂Ei (which is the boundary of E).
By choosing an orthonormal basis of the linear space spanned by polynomials less

than the p-th degree over E, denoted as φ(~x) :=
[
φ1(~x) · · · φL(~x)

]
, the unknowns U

and the arbitrary test function ψ can be approximated as

U(~x, t) ≈ Uh(~x, t) =
L

∑
l=1

Ûl(t) φl(~x), ψ(~x) ≈ ψh(~x) =
L

∑
l=1

ψ̂l φl(~x),

in which each Ûl(t) is a 5× 1 matrix of temporal functions, and each ψ̂l is an arbitrary
constant number. Substituting them into the weak form (Equation 2) gives

∑
l

ψ̂l

[
∑
k

(ˆ
Ei

φlφk

)
dÛk
dt

+

ˆ
Ei

(
~F · ∇φl −Q φl

)
+

˛
∂Ei

φl Fν

]
= O, (4)

where~ν · ~F =: Fν is the normal flux at some point on ∂Ei, whose value could be given by
an exact or approximate Riemann solver of Equation (2); see [27] for details.

Recall the arbitrariness of
{

ψ̂l
}L

l=1 and adopt the inner product notation

〈 f |g〉 :=
ˆ

Ei

f (~x) g(~x),

and we could turn Equation (4) into a system of ordinary differential equations:

dÛ
dt

= R(Û), (5)
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in which

Û(t) =

〈U1|φ1〉 · · · 〈U1|φL〉
...

. . .
...

〈U5|φ1〉 · · · 〈U5|φL〉


is a 5× L matrix of temporal functions (which will be solved in Section 2.2), and

R =

ˆ
Ei

[Fx Fy Fz]
∂xφ

∂yφ

∂zφ

−Q φ

− ˛
∂Ei

Fν φ (6)

is a variable matrix depending on Û. The integrals in Equation (6) are evaluated by
Gaussian quadrature rules, such as those given by [28].

2.2. The RK Time Discretization

Equation (5) is a typical system of nonlinear ordinary differential equations. In this
article, we use the following explicit Runge–Kutta methods:

first-order:
Ûn+1

= Ûn
+ Rn∆t;

second-order:
Ûn+1/2

= Ûn
+ Rn∆t,

Ûn+1 ≡ Ûn+2/2
=

1
2

Ûn
+

1
2

(
Ûn+1/2

+ Rn+1/2∆t
)

;

third-order:
Ûn+1/3

= Ûn
+ Rn∆t,

Ûn+2/3
=

3
4

Ûn
+

1
4

(
Ûn+1/3

+ Rn+1/3∆t
)

,

Ûn+1 ≡ Ûn+3/3
=

1
3

Ûn
+

2
3

(
Ûn+2/3

+ Rn+2/3∆t
)

;

(7)

in which the Rµ := R(Ûµ
)s are the values mapped by the nonlinear operator R from the

corresponding Ûµs.
It has been proven by Gottlieb and Shu that they are all total variation diminishing

(TVD) [29] or strong stability preserving (SSP) [30] (which is a desired feature for hyper-
bolic problems), and fourth-order Runge–Kutta methods cannot be TVD or SSP without
introducing the adjoint operator of R, denoted as R†, which satisfies

Ûn+1
= Ûn − R†(Ûn

)∆t.

It is non-trivial to implement such an adjoint operator and thus we do not implement
Runge–Kutta methods whose accuracy order is higher than three.

2.3. The Compact WENO Limiter

Following our previous work [19], we use the three-dimensional extension of the
two-dimensional WENO limiters by Zhong [17] and Zhu [18]. For simplicity, we denote
the index set of Ei’s neighbors as Ki. For each k ∈ Ki, we first transform Equation (2) to the
ν-split form on the interface shared by Ei and its neighbor Ek:

∂tU + ∂νFν ≡ (∂t + Aν ∂ν)U = Q, (8)

in which the flux Jacobian can be approximated by the average value of U on Ei:

Aν ≡ ∂Fν

∂U
≈ ∂Fν

∂U

∣∣∣∣
〈U〉i

. (9)
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From the hyperbolicity of Equation (2), there always exists the eigenvalue decomposition

Aν = Rν


uν − a

uν

uν

uν

uν + a

(Rν)−1, (10)

in which

Rν =


1 1 0 0 1

ux − aνx ux σx πx ux + aνx
uy − aνy uy σy πy uy + aνy
uz − aνz uz σz πz uz + aνz

h0 − uνa
u2

x+u2
y+u2

z
2 uσ uπ h0 + uνa

,

uν

uσ

uπ

 =

νx σx πx
νy σy πy
νz σz πz

−1ux
uy
uz

,

(Rν)−1 =



1
2
(

B2 +
uν
a
) −1

2
(

B1ux +
νx
a
) −1

2

(
B1uy +

νy
a

)
−1
2
(

B1uz +
νz
a
) 1

2 B1

1− B2 B1ux B1uy B1uz −B1
−uσ σx σy σz 0
−uπ πx πy πz 0

1
2
(

B2 − uν
a
) −1

2
(

B1ux − νx
a
) −1

2

(
B1uy −

νy
a

)
−1
2
(

B1uz − νz
a
) 1

2 B1

,

where B1 := (γ− 1)/a2 and B2 := B1(u2
ν + u2

σ + u2
π). The original conservative variable U is

then projected into the space spanned by the columns of R, which defines the characteristic
variable:

V := (Rν)−1 U.

Each scalar component of V can now be treated as independent functions, to which any
suitable scalar WENO limiter (such as the one in [17,18]) can be applied. Once obtaining
the reconstructed characteristic variable Vnew, it is turned back to the original conservative
variable:

Unew
i|k := Rν Vnew, (11)

The subscript i|k emphasizes the fact that it is a function defined on Ei with the help of Ek.
There is one such reconstructed Unew

i|k for each k ∈ Ki, so the final step is to weight them by
the volume of the corresponding adjacent element:

Unew
i :=

∑k∈Ki
Unew

i|k |Ek|
∑k∈Ki

|Ek|
. (12)

2.4. The Momentum Source Model

To model a fixed or rotary wing with a high aspect ratio, we use the actuator line
model, which is a special case of the more general momentum source model. In this model,
a wing is sliced into a series of thin pieces, each of which is perpendicular to the wing’s
axis. When moving relative to the air, a piece feels a pair of aerodynamic forces:[

L ds
D ds

]
=

1
2

ρ(u2 + w2)

[
CL(α)
CD(α)

]
c ds ,

in which

• c is the chord length of the piece, and s is the arc length parameter of the axis;
• α is the angle of attack, which is related to u and w (velocity components resolved in

the airfoil’s local frame) by tan α = w/u;
• CL and CD are the lift and drag coefficients of the airfoil, respectively;
• L and D are the lift and drag per unit length, respectively.
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Using Newton’s third Law, the force per unit length felt by the air surrounding the
piece is

~bL(~r(s)) = −
[
~eL(s) ~eD(s)

][L(s)
D(s)

]
,

in which ~eL and ~eD are unit vectors along and perpendicular to the direction of airflow
relative to the airfoil. To avoid ambiguity, we denote the force per unit length as~bL and use
~bV to denote the force per unit volume. If the intersection of a wing’s axis PQ and a DG
element E is the line segment RT, then the body integral of the source term in Equation (6)
is actually a line integral:

ˆ
Ei

Q φ =

ˆ
Ei

 0
~bV(~r)

0

φ(~r) =

 0´
RT
~bL(~r) φ(~r)

0

, (13)

By parameterizing the line segment RT, the line integral in Equation (13) can be evaluated
as a definite integral:

ˆ
RT
~bL(~r) φ(~r) =

ˆ ξT

ξR

~bL(~r(ξ)) φ(~r(ξ))
∥∥∥∥ ∂~r

∂ξ

∥∥∥∥dξ ,

to which the standard Gaussian quadrature can be applied.

3. Results of Model Problems and Engineering Problems

In this section, we give the results of various problems to show the accuracy and
performance of the methods described in Section 2.

3.1. Lower-Dimensional Model Problems
3.1.1. Shock Tube Problems

These problems are usually defined as one-dimensional problems, but we treat them
as three-dimensional ones. All these problems are considered in a [0.0, 5.0]× [0.0, 1.0]×
[0.0, 0.5] box with all boundaries closed but the left and right ends open. Using the method
described in [27], their exact solutions can be obtained, which can be used for assessing
the accuracy of our solvers. In our earlier work [19], we have given the results obtained by
running our solvers on an unstructured hexahedral mesh. This time, we use an unstructured
tetrahedral mesh instead.

Problem 1 (Sod). Solve the Euler system Equation (1) for t ∈ [0.0, 1.0] with the initial condition

[
ρ u v w p

]
t=0 =


[
1 0 0 0 1

]
, x < 2.5;[

1
8 0 0 0 1

10

]
, x > 2.5.

This is a classical problem of inviscid compressible flows. It contains all three types of
discontinuities: a shock wave and a contact discontinuity running towards the right and an
expansion wave running towards the left. In Figure 1, we plot the density contour given
by our third-order solver with an EigenWeno limiter. In Figure 2, we compare the density
distributions given by various solvers along the longitudinal axis (on which y = 0.5 and
z = 0.25) of the box. The accuracy of our solvers and the effect of p-refinement are clear in
these figures.
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Figure 1. Third-order solution of ρ(t = 1.0) in Problem 1.

0 1 2 3 4 5
x

0.2

0.4

0.6

0.8

1.0 Exact
p = 1
p = 2
p = 3

Figure 2. Comparison between solutions of ρ(t = 1.0) in Problem 1.

It is predictable that both mesh refinement (decreasing h) and order increment (in-
creasing p) can help to improve accuracy. To compare the performance of solvers with
different orders more fairly, it is better to use finer meshes for running lower-order solvers.
After a few trials, we find that the solutions given by the h-p pairs listed in Table 1 roughly
have the same level of accuracy, as shown in Figure 3. It is clear, at least for Problem 1,
that high-order solvers are better than low-order ones in the sense of obtaining the same
level of accuracy with less time and space costs. Similar conclusions were drawn in our
previous work [19], in which the p = 3 solution of a linear advection problem on an h ≈ 1/4
mesh defeated the p = 1 solution of the same problem on an h ≈ 1/32 mesh in accuracy
but saved quite a lot of time. These encouraging results justify our efforts to implement
higher-order solvers.

Table 1. Comparison between time costs and file sizes of various h–p pairs.

h p #Cells #Steps Time Cost File Size

1/50 1 2469675 1500 1492.16 s 1.23 GB
1/18 2 117045 500 279.119 s 213 MB
1/10 3 19815 250 201.034 s 89.1 MB
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0 1 2 3 4 5
x

0.2

0.4

0.6

0.8

1.0

3.3 3.4 3.5

0.3

0.4

Exact Solution
p = 1, h 1/50
p = 2, h 1/18
p = 3, h 1/10

Figure 3. Comparison between solutions given by various h–p pairs.

Problem 2 (Lax). Solve the Euler system Equation (1) for t ∈ [0.0, 0.6] with the initial condition

[
ρ u v w p

]
t=0 =


[
0.445 0.698 0.000 0.000 3.528

]
, x < 2.5;[

0.500 0.000 0.000 0.000 0.571
]
, x > 2.5.

This is another problem that involves all three types of discontinuities. It is more
difficult than the previous one in the sense that its solution contains values beyond the range
of initial values and the discontinuities are much steeper. As before, we plot the density
contour of our third-order solution in Figure 4 and compare the density distributions given
by various solvers in Figure 5. Both figures demonstrate the effect of p-refinement and the
ability of our high-order solvers to suppress numerical oscillations.

Figure 4. Third-order solution of ρ(t = 0.5) in Problem 2.
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0 1 2 3 4 5
x

0.4

0.6

0.8

1.0

1.2
Exact
p = 1
p = 2
p = 3

Figure 5. Comparison between solutions of ρ(t = 0.5) in Problem 2.

Problem 3 (Vacuum). Solve the Euler system Equation (1) for t ∈ [0.0, 0.4] with the initial condition

[
ρ u v w p

]
t=0 =


[
1 −4 0 0 0.4

]
, x < 2.5;[

1 +4 0 0 0.4
]
, x > 2.5.

This problem is easier than the previous two in the sense that no strong discontinuities
(shock or contact discontinuity) occur in the solution. However, there is a region of vacuum,
which does not occur in the previous problems, generated between the left- and right-
running expansion waves. The velocity u inside the vacuumed region (denoted by a ∗
in subscript) is undefined, but its boundary values should be determined from the left
(denoted by an L in subscript) and right (denoted by an R in subscript) initial values by the
two Riemann invariants:

u∗L = uL +
2aL

γ− 1
, u∗R = uR −

2aR
γ− 1

.

See [27] for more detailed discussions. Unfortunately, approximate Riemann solvers usually
(have to) neglect this condition. For this reason, we use an exact Riemann solver to obtain
fluxes on cell boundaries. As before, we plot the results in Figures 6 and 7, which again
validate the correctness and robustness of our solvers.

Figure 6. Third-order solution of ρ(t = 0.4) in Problem 3.
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0 1 2 3 4 5
x

0.0

0.2

0.4

0.6

0.8

1.0

Exact
p = 1
p = 2
p = 3

Figure 7. Comparison between solutions of ρ(t = 0.4) in Problem 3.

3.1.2. The Forward Step Problem

This is a classical two-dimensional problem [31], but we treat it as a three-dimensio-
nal one:

Problem 4. Solve the Euler system (Equation 1) in a [0, 3]× [0, 1]× [0, Z] box (representing a
wind tunnel), where the thickness Z could be any positive value, with a [0.6, 3]× [0, 0.2]× [0, Z]
box removed (representing a forward-facing step). The x = 0 surface is open as an inlet and the
x = 3 surface is open as an outlet. All other boundary surfaces are closed as solid walls. The initial
condition is given as a uniform state:[

ρ u v w p
]

t=0 =
[
1.4 3.0 0.0 0.0 1.0

]
.

To show the applicability of our solvers on structured meshes, we solve this problem
on meshes such as the one in Figure 8. As a common practice, we plot the density contours
at various time steps in Figures 9–19.

Figure 8. A coarse (h = 1/20) mesh for solving Problem 4. This mesh is too coarse to capture details
of the flow field but clear enough to demonstrate the distribution of nodes and cells. Actually, we use
a much finer (h = 1/200) mesh to produce Figures 9–19.
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Figure 9. Third-order solution of Problem 4 at t = 0.2 on an h = 1/200 mesh.

Figure 10. Third-order solution of Problem 4 at t = 0.4 on an h = 1/200 mesh.

Figure 11. Third-order solution of Problem 4 at t = 0.6 on an h = 1/200 mesh.
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Figure 12. Third-order solution of Problem 4 at t = 0.8 on an h = 1/200 mesh.

Figure 13. Third-order solution of Problem 4 at t = 1.0 on an h = 1/200 mesh.

Figure 14. Third-order solution of Problem 4 at t = 1.2 on an h = 1/200 mesh.
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Figure 15. Third-order solution of Problem 4 at t = 2.0 on an h = 1/200 mesh.

Figure 16. Third-order solution of Problem 4 at t = 2.4 on an h = 1/200 mesh.

Figure 17. Third-order solution of Problem 4 at t = 2.8 on an h = 1/200 mesh.
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Figure 18. Third-order solution of Problem 4 at t = 3.2 on an h = 1/200 mesh.

Figure 19. Third-order solution of Problem 4 at t = 4.0 on an h = 1/200 mesh.

The flow starts from a uniform supersonic (M = 3.0) state. In Figures 9 and 10, a
curved bow shock wave generates in front of the forward-facing step and a fan-shaped
expansion wave generates at the corner (x = 0.6, y = 0.2). The bow shock then hits the top
of the tunnel (Figure 11) and reflects from it (Figures 12 and 13). At approximately t = 1.2
(Figure 14), the reflected shock hits the bottom of the tunnel (the top of the step) and reflects
from it. Both of the two reflections are regular at these moments. Shortly before t = 2.0
(Figure 14), a Mach stem that characterizes a Mach reflection is generated from the first
reflection point. A wavy contact discontinuity generating from the triple point is captured
by Figures 16–19. This flow structure would be smeared off if we solved Problem 4 using
lower-order solvers or coarser meshes.

3.2. Three-Dimensional Engineering Problems

In this section, we solve the Euler system Equation (1) on a three-dimensional unstruc-
tured mesh, which discretizes the space around a YF-17 aircraft by tetrahedral cells, as
shown in Figure 20.
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Figure 20. A zoomed-in view of the most important boundaries of the mesh for solving prob-
lems in Section 3.2.

3.2.1. YF-17 in Subsonic Flight

Problem 5. Solve the Euler system Equation (1) in the surroundings of a YF-17 aircraft. The initial
condition is given as a subsonic flow (M = 0.3) with a 20-deg angle of attack:[

ρ u v w p
]

t=0 =
[
1.4 0.2819 0.0 0.1026 1.0

]
.

All boundaries of the aircraft are defined as solid walls, except the intake of the engine, which is
defined as a subsonic outlet of the condition equal to the initial condition, and the exhaust of the
engine, which is defined as a supersonic (M = 3.0) inlet of the condition:[

ρ u v w p
]

ex. =
[
1.4 2.4 0.0 0.0 1.44

]
.

We solve this problem via two of our finite element solvers and plot the streamlines
released from the strake and the wing at t = 10 in Figures 21 and 22. It can be seen that the
streamlines obtained from the high-order (p = 3) solution are smoother than those from
the low-order (p = 1) solution, which shows the benefit of p-refinement. The difference in
accuracy is more obvious in Figure 23, which clearly shows a more detailed flow structure in
the third-order solution (left half) and the piecewise constantness of the first-order solution
(right half). Both solutions are able to capture the vortex trailing from the wing tip, which
is generated from the the pressure difference between the upper and lower surfaces of the
wing. When the wing generates positive lift, the pressure on the lower wing surface is
higher than that on the upper wing surface. Under the action of this pressure difference,
the air under the wing rolls up around the tip and flows backward, and the tip vortex is
thus formed. The vortex trailing from the strake is generated from a similar mechanism.
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Figure 21. Streamlines given by the first-order solution of Problem 5.

Figure 22. Streamlines given by the third-order solution of Problem 5.

Figure 23. Comparison between the third-order solution (left half) and the first-order solution (right
half) of Problem 5.
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3.2.2. YF-17 in Supersonic Flight

Problem 6. Solve the Euler system Equation (1) in the surroundings of a YF-17 aircraft. The initial
condition is given as a supersonic flow (M = 2.0) with a 0-deg angle of attack:[

ρ u v w p
]

t=0 =
[
1.4 2.0 0.0 0.0 1.0

]
.

All boundaries of the aircraft are defined as solid walls, except the intake of the engine, which is
defined as a supersonic outlet of the condition equal to the initial condition, and the exhaust of the
engine, which is defined as a supersonic (M = 3.0) inlet of the condition:[

ρ u v w p
]

ex. =
[
1.4 2.4 0.0 0.0 1.44

]
.

We solve this problem using the same solvers as for Problem 5. Density contours
on the y = 0 surface obtained from the first- and the third-order solutions are given in
Figures 24 and 25, respectively. It is obvious that shock waves are captured well (without
spurious oscillations) by both of them. To show the difference more clearly, we compare the
two solutions in Figures 26 and 27. As in the subsonic case, the third-order solution (which
is piecewise quadratic) outperforms the first-order one (which is piecewise constant). Shock
waves (red) are generated on surfaces facing the wind, since the relative speed of air is
larger than the speed of sound. Expansion waves (blue) are generated on leeward surfaces,
since the solid body contracts there, which leaves more room for the supersonic flow.

Figure 24. Density contour obtained from the first-order solution of Problem 6.
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Figure 25. Density contour obtained from the third-order solution of Problem 6.

Figure 26. Comparison between the third-order solution (upper half) and the first-order solution
(lower half) of Problem 6 on the z = 0 surface (top view).

Figure 27. Comparison between the third-order solution (upper half) and the first-order solution
(lower half) of Problem 6 on the z = 0 surface (bottom view).
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3.2.3. Parallel Efficiency

Since the mesh in Figure 20 is highly unstructured and non-uniform, simple geometric
partitioning cannot achieve a relatively balanced distribution of computational effort. In our
code, we use the METIS library [32] to partition the dual graph of the mesh, which gives
the results in Figures 28 and 29. The fluctuation of cell numbers is under 2%, which is
quite good since the optimal partitioning of an unstructured mesh is an NP-hard problem.
With such an approximately optimal partitioning, the parallel efficiency, which is defined as

E =
Tserial

PTparallel
× 100%,

in which P is the number of processes, could surpass 99% in theory. In practice, however,
the E values given by our numerical experiments are only around 80%, as shown in
Figure 30, which is derived from the measured time costs given in Table 2. The main
reason for the gap between theory and practice is that in the derivation of the ideal E value,
inter-process communications are assumed to overlap in time with inner-cell computations,
which is an over-optimistic assumption. Nevertheless, the acceleration is still significant,
which reduces the wall clock time to an acceptable level.

Figure 28. A 100-part partitioning of the mesh used for solving problems in Section 3.2.
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Figure 29. Distribution of cells in the mesh partitioning given in Figure 28.
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Figure 30. Parallel efficiency of the third-order solver for solving Problem 6.

Table 2. Time costs of the third-order solver running on different numbers of cores.

P T100 T399 T400 P T399−T100
399−100 P T400−T100

400−100

1 10,511.3 42,466.5 42,593.0 106.873 106.939
5 2389.25 9740.13 9769.96 122.925 123.012
10 1246.37 5086.62 5101.95 128.436 128.519
15 839.554 3420.17 3430.75 129.462 129.560
20 645.737 2632.32 2640.57 132.882 132.989
40 325.269 1310.72 1319.73 131.833 132.595
60 222.890 923.043 931.754 140.499 141.773
80 168.862 672.439 681.445 134.736 136.689

100 137.787 543.081 552.682 135.550 138.298

3.3. Problems with Momentum Sources

In this section, we solve two problems of rotorcraft aerodynamics using the momentum
source model described in Section 2.4. The problems are set to simulate wind tunnel tests of
a rotor (a pair of rotary wings), using the mesh shown in Figure 31. All of the boundaries of
the outside box are solid walls, except he left and right ends, which are set as the inlet and
outlet, respectively. The spherical region is the circumscribed sphere of the rotor, whose
rotating axis could point in any direction. The smaller box enclosing the sphere is used for
refining the mesh in the surrounding and downstream regions of the rotor.

Figure 31. A schematic mesh for solving problems in Section 3.3.
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3.3.1. A Climbing Rotor

Problem 7. Solve Equation (1) in the surroundings of a rotor, whose rotating axis points in the
direction of (−1, 0, 0). The initial condition is given as a uniform flow:[

ρ u v w p
]

t=0 =
[
1.29 1.0 0.0 0.0 101325.0

]
,

which is also the background state at the two ends of the wind tunnel.

Third- and first-order solutions at the same moment (t = 1) are shown in Figures 32 and 33,
respectively, in which density contours and velocity directions are plotted on selected slices.
Large-scale flow structures, such as the contraction of airflow near the rotor disk and the rolled-up
airwake, are captured in both figures. However, finer details, such as the ripples generated from
the rotor disk and the strong vortex ring in the downstream, are only visible in the third-order
solution. The nearly axisymmetric flow structure is caused by the periodic movement of the rotary
wings. The density of air immediately below the rotor (red) is greater than that above the rotor
(blue), which means that the rotor is compressing the air flowing across it. According to Newton’s
third law, the rotor must be experiencing a force in the opposite direction exerted by the air. This
is where the rotor thrust comes from.

Figure 32. Third-order solution of Problem 7 at t = 1.

Figure 33. First-order solution of Problem 7 at t = 1.
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3.3.2. A Rotor in Forward Flight

Problem 8. Solve Equation (1) in the surrounding of a rotor, whose rotating axis points in the
direction of (0, 0, 1). The initial condition is given as a uniform flow:[

ρ u v w p
]

t=0 =
[
1.29 10.0 0.0 0.0 101325.0

]
,

which is also the background state at the two ends of the wind tunnel.

As with the climbing problem, we plot the third- and first-order solution at the same
moment (t = 1) in Figures 34 and 35, respectively. As before, both of them can capture
large-scaled structures, such as the skewed and rolled-up airwakes. The rolled-up structure
is more clear in Figure 36, in which streamlines are plotted and colored by the magnitude
of velocity. The piecewise constant first-order solution is much vaguer and loses many
details, which shows again the value of developing high-order solvers.

Figure 34. Third-order solution of Problem 8 at t = 1.

Figure 35. First-order solution of Problem 8 at t = 1.
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Figure 36. Streamlines of the solution in Figure 34.

4. Discussion

In this article, we give a concise but complete formulation of an RKDG scheme with a
compact WENO limiter for solving inviscid compressible flows, possibly with momentum
sources, on three-dimensional unstructured meshes. The algorithms are implemented
on top of public available libraries, which support unstructured mesh partitioning, inter-
process communication and distributed memory parallelization. The correctness and
accuracy of the solvers are validated by lower-dimensional reference problems. Results of
real three-dimensional applications are also presented, in which complex flow structures
are captured by the third-order solver even on very coarse unstructured meshes. Future
works may include implementing higher-order solvers under this framework and testing
them on larger meshes and on larger high-performance computing platforms.
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Abbreviations and Nomenclature
The following abbreviations are used in this manuscript:

CFD Computational Fluid Dynamics
FD Finite Difference
FV Finite Volume
FE Finite Element
DG Discontinuous Galerkin
RK Runge–Kutta
TVD Total Variation Diminishing
SSP Strong Stability Preserving
ENO Essentially Non-Oscillatory
WENO Weighted ENO
∂t, ∂x, ∂y, ∂z partial derivative with respect to t, x, y, z
α angle of attack
γ heat capacity ratio of the gas
~ν outer normal vector at some point on ∂Ei
~π,~σ tangential vectors at some point on ∂Ei
ρ density of the gas
φk k-th function in an orthonormal basis
ψ an arbitrary test function
ψh approximation of ψ

ψ̂k projection of ψ on φk
Aν Jacobian of Fν with respect to U
~bL body force per unit length
~bV body force per unit volume
bx, by, bz x, y, z-component of body force per unit volume
c chord length of a blade
Ei and ∂Ei i-th element (cell) and its boundary
e0 specific total energy of the gas
~F flux vector whose components are matrices
Fν projection of ~F on~ν

Fx, Fy, Fz x, y, z-component of ~F
h0 specific total enthalpy of the gas
p pressure of the gas
Q column matrix of source terms
R changing rate of Û
Rν matrix whose j-th column is the j-th eigenvector of Aν

U column matrix of conservative variables
Uh and Unew approximation of U and its WENO reconstruction
Unew

i|k WENO reconstruction of Uh on Ei with the help of Ek

Û coefficient matrix whose k-th column is Ûk
Ûk projection of U on φk
Ûn and Rn Û and R at the n-th time step
ux, uy, uz x, y, z-component of velocity
V column matrix of characteristic variables
Vh and Vnew approximation of V and its WENO reconstruction
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