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Abstract: To improve the resolution and accuracy of the high-order weighted compact nonlinear
scheme (WCNS), a new ε-adaptive algorithm based on local smoothness indicators is proposed. The
new algorithm introduces a high-order global smoothness indicator to adjust the value of ε according
to the local flow characteristics. Specifically, the algorithm increases ε in smooth regions, which
can help cover up the disparity in smoothness indicators of sub-stencils and make the nonlinear
scheme approach the background linear scheme. As a result, optimal order accuracy can be achieved
in smooth regions, including critical points. While near discontinuities, the algorithm decreases ε,
thereby strengthening the stencil selection mechanism and further attenuating spurious oscillations.
Meanwhile, the new algorithm makes nonlinear schemes scale-invariant of flow variables. The results
of approximate dispersion relation (ADR) show that the new algorithm can greatly reduce spectral
errors of nonlinear schemes in the medium and low wavenumber range without inducing instability.
Numerical results indicate that the new algorithm can significantly improve resolution of small-scale
structures and suppress numerical oscillations near discontinuities with only a minor increment in
computational cost.

Keywords: adaptive algorithm; critical points; high-resolution; shock-capturing; WCNS/WENO
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1. Introduction

High-order accurate and high-resolution numerical schemes have always been the
forefront of research in the field of CFD. In the past few decades, high-order shock-capturing
schemes have flourished, laying the foundation for the refined simulation of multi-scale
complex flow phenomena with discontinuities. The weighted essentially non-oscillatory
(WENO) scheme is one of the most widely used shock-capturing schemes due to its
balanced performance for resolving both small-scale flow structures and discontinuities.
Harten [1] first put forward the essential non-oscillatory (ENO) scheme, then Liu et al. [2]
constructed the famous weighted ENO (WENO) scheme by introducing the nonlinear
weighting technique. The WENO scheme has higher order accuracy and higher resolution
while retaining the essential non-oscillatory property. Later, Jiang and Shu [3] made
important improvements to the nonlinear weights, formulating the classic WENO-JS,
which promoted extensive research on the WENO scheme. They proposed a new local
smoothness indicator to help the WENO scheme achieve optimal order accuracy on the
original stencil.

However, the WENO-JS scheme can be dissipative for fine-scale simulations and suffers
a loss of accuracy at critical points in smooth regions. Henrick et al. [4] found the reason for
this and proposed the mapped WENO scheme (WENO-M), which recovers optimal order
accuracy at first-order critical points. Compared with the WENO-JS scheme, the WENO-M
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scheme has higher resolution; however, the computational cost is increased by about 25%.
Later, Borges et al. [5] put forward an ingenious weight function by introducing a high-order
global smoothness indicator, and established the WENO-Z scheme with lower dissipation
and higher resolution. The advantage of the WENO-Z scheme is that it can ensure optimal
order accuracy at first-order critical points at the expense of minorly increased computational
cost. Since then, a series of improved and optimized schemes [6–11] were developed based
on these two representative works. Meanwhile, some researchers [4,6,12–18] paid attention
to the small quantity ε in weight functions to further improve the performance of schemes.

The small quantity ε in the nonlinear weight function was originally introduced to
avoid the denominator becoming zero. To capture the shock stably, ε is generally taken as a
small constant. With further research, it was found that the value of ε can greatly influence
the convergence speed, the accuracy at critical points, and the numerical oscillations near
discontinuities. Henrick et al. [4] pointed out that the convergence order of the WENO-JS
scheme depends on ε and grid spacing, and there are numerical oscillations of order ε2

near discontinuities. Shen et al. [12] found that the weights of the original WENO-JS
scheme oscillate even in smooth regions, and increasing ε to 10−2 can significantly suppress
oscillations of nonlinear weights while maintaining the shock-capturing capability. However,
it only works for subsonic and transonic flows. For supersonic and hypersonic flows,
increasing ε may cause serious numerical oscillations near strong shock waves, and even
lead to calculation failure. Therefore, setting ε as a constant has great limitations.

To avoid the empirical selection of ε, and to diminish the influence of ε on the accuracy
at critical points and the numerical oscillations near discontinuities, some adaptive algo-
rithms for ε have been developed. Yamaleev and Carpenter [13] set ε as a power-function
of grid spacing, which can achieve optimal order accuracy regardless of critical points.
Hu and Adams [14] set ε as 10−8h2 in the scale separation study of implicit large eddy
simulation, which yielded more accurate results. Don and Borges [6] derived the accu-
rate conditions for the power-function to make WENO-JS and WENO-Z schemes achieve
optimal order accuracy at high-order critical points. Aràndiga et al. [15] pointed out that
the method proposed by Yamaleev and Carpenter [13] has only first-order accuracy near
discontinuities, which is reflected as serious numerical oscillations in the numerical tests.
They modified the weight function to improve the order accuracy near discontinuities
and alleviate numerical oscillations. Although these ε-adaptive algorithms based on the
power-function of grid spacing can theoretically ensure optimal order accuracy regardless
of critical points, they will also aggravate numerical oscillations near high-order critical
points and discontinuities and affect the convergence of calculation with limited number of
grid points.

Another representative class of adaptive algorithms is constructed based on the
smoothness indicators of sub-stencils. Peer et al. [16] proposed an adaptive ε that de-
pends on the difference of smoothness indicators. The algorithm adopts 10−6 in smooth
regions and switches to a smaller value near discontinuities, which further suppresses the
numerical oscillations of the WENO-JS scheme near discontinuities. Based on the global
smoothness indicator, Jia et al. [17] designed a piecewise function to calculate ε to reduce
nonlinear errors in smooth regions and suppress numerical oscillations near discontinuities.
However, this adaptive algorithm contains four free empirical parameters to be manually
adjusted in practical computations, which hinders the application and popularization of
the algorithm. Recently, Zheng et al. [18] proposed a parameter-free ε-adaptive algorithm,
which can help reduce numerical dissipation in smooth regions, suppress numerical oscil-
lations near discontinuities, and lessen susceptibility to flux functions and interpolation
variables. Unfortunately, these adaptive algorithms will inevitably lose accuracy near
critical points due to the large relative disparity in smoothness indicators of sub-stencils.

In this paper, a new simple ε-adaptive algorithm based on smoothness indicators
of sub-stencils is proposed to address the issues of accuracy at critical points and nonlin-
ear error in smooth regions. The wavenumber analysis and numerical results show that
compared with the existing adaptive algorithms, the nonlinear scheme with the new adap-
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tive algorithm has higher resolution and lower dissipation and dispersion errors, further
suppresses numerical oscillations near discontinuities while maintaining optimal order
accuracy at critical points, and has a lower computational cost. The present work is based
on the weighted compact nonlinear scheme (WCNS) [19,20], which adopts the nonlinear
weighting technique of WENO and has been widely applied to numerical simulations of
various complex flows [21–25].

The organization of this paper is as follows. Section 2 briefly introduces the fifth-order
WCNS scheme, followed by the development of a new ε-adaptive algorithm, then the
accuracy at critical points and the spectral properties are discussed. Section 3 presents a
series of benchmark tests to validate the new adaptive algorithm. Finally, conclusions are
given in Section 4.

2. Numerical Methods
2.1. Difference Scheme

For simplicity, we consider the following one-dimensional hyperbolic conservation law

∂u
∂t

+
∂ f (u)

∂x
= 0, x ∈ [a, b], t ∈ [0, ∞) (1)

where u(x, t) is the conserved quantity, and f (u) is the flux. Consider a uniform mesh
defined by xj = jh(j = 0, 1, ..., N), where h = (b− a)/N, then the semi-discrete form of
Equation (1) yields

duj(t)
dt

= −F′j (2)

where uj(t) and F′j are numerical approximations of u(xj, t) and ∂ f
∂x |xj , respectively.

The original WCNS scheme mostly used compact difference schemes to compute
F′j . Later, it was found that the form of the difference schemes, explicit or compact, has
few effects on spectral properties and numerical results. Therefore, the more efficient and
simple explicit difference schemes are recommended [24,26]. In this paper, we use the
sixth-order explicit central difference scheme to compute F′j

F′j =
75

64h

(
F̂j+1/2 − F̂j−1/2

)
− 25

384h

(
F̂j+3/2 − F̂j−3/2

)
+

3
640h

(
F̂j+5/2 − F̂j−5/2

)
(3)

where F̂j±k/2 = F̂(ũL
j±k/2, ũR

j±k/2)(k = 1, 3, 5) are numerical fluxes at cell-edges j ± k/2,
which can be obtained with different types of convective flux functions, such as Steger-
Warming and Roe splitting schemes. ũL

j+1/2 and ũR
j+1/2 are interpolated variables at the

cell-edge. Assuming that numerical fluxes in Equation (3) are equal to exact fluxes, e.g.,

F̂j+1/2 = f j+1/2 = f j +
∞

∑
n=1

f j
(n) (h/2)n

n!
(4)

Then, by replacing numerical fluxes in Equation (3) with these Taylor series expansions,
we have

F′j = f ′j +
5 f (7)j

7168
h6 + O(h8) (5)

Thus, Equation (3) with exact cell-edge fluxes, gives an approximation of f ′j with
sixth-order accuracy.

2.2. Interpolation Scheme

The interpolation scheme dominates the resolution characteristics of the WCNS
scheme [20,24,26], which is briefly introduced in this section. Only interpolation of ũL

j+1/2
is considered here and the superscript L is removed for simplicity. The interpolation of
ũR

j+1/2 has a mirror form with ũL
j+1/2 and is not shown to save space.
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As shown in Figure 1, the fifth-order WCNS scheme conducts nonlinear interpolation
of ũj+1/2 on a five-point stencil, denoted by S5 =

{
xj−2, xj−1, xj, xj+1, xj+2

}
. The five-point

stencil is divided into three three-point sub-stencils, denoted by Sk
3 =

{
xj+k−2, xj+k−1, xj+k

}
(k = 0, 1, 2). On each three-point sub-stencil Sk

3, a quadratic interpolation polynomial pk(x)
can be obtained as follows

p0(x) =
uj−2 − 2uj−1 + uj

2

( x− xj

h

)2
+

uj−2 − 4uj−1 + 3uj

2

( x− xj

h

)
+ uj

p1(x) =
uj−1 − 2uj + uj+1

2

( x− xj

h

)2
+

uj+1 − uj−1

2

( x− xj

h

)
+ uj

p2(x) =
uj − 2uj+1 + uj+2

2

( x− xj

h

)2
+
−3uj + 4uj+1 − uj+2

2

( x− xj

h

)
+ uj

(6)

Figure 1. Interpolation stencils for the fifth-order WCNS scheme.

Then the third-order linear interpolations at xj+1/2 are

ũ0
j+1/2 = p0

(
xj+1/2

)
=

1
8
(
3uj−2 − 10uj−1 + 15uj

)
ũ1

j+1/2 = p1

(
xj+1/2

)
=

1
8
(
−uj−1 + 6uj + 3uj+1

)
ũ2

j+1/2 = p2

(
xj+1/2

)
=

1
8
(
3uj + 6uj+1 − uj+2

) (7)

Taylor series expansion of Equation (7) yields

ũ0
j+1/2 = uj+1/2 −

5u(3)
j+1/2

16
h3 + O

(
h4
)

ũ1
j+1/2 = uj+1/2 +

u(3)
j+1/2

16
h3 + O

(
h4
)

ũ2
j+1/2 = uj+1/2 −

u(3)
j+1/2

16
h3 + O

(
h4
)

(8)

To capture discontinuities stably, a nonlinear combination of these third-order linear
interpolations is performed

ũj+1/2 =
2

∑
k=0

ωkũk
j+1/2 (9)

where ωk(k = 0, 1, 2) are nonlinear weights. When the flow variable is sufficiently smooth
on S5, the nonlinear weights ωk will approach the linear weights dk(d0 = 1/16, d1 =
10/16, d2 = 5/16). Setting ωk = dk in Equation (9), we can obtain a five-point linear
interpolation

ũj+1/2 =
1

128
(
3uj−2 − 20uj−1 + 90uj + 60uj+1 − 5uj+2

)
(10)
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Taylor series expansion of Equation (10) yields

ũj+1/2 = uj+1/2 −
3u(5)

j+1/2

256
h5 + O(h6) (11)

Thus, interpolation in Equation (10) is fifth-order accuracy.
The WCNS scheme adopts the nonlinear weighting technique of the WENO scheme,

and its core idea is to make the nonlinear weight approach the linear weight in smooth
regions to achieve optimal order accuracy and approach zero near discontinuities to avoid
interpolations across discontinuities.

Various kinds of nonlinear weight functions can be used in Equation (9). This paper
considers two classes of widely used nonlinear weight functions, including the classic JS
weight function [3]

ωJS
k =

αJS
k

2
∑

m=0
αJS

m

, αJS
k =

dk

(βk + ε)2 (12)

and the improved Z weight function [5]

ωZ
k =

αZ
k

2
∑

m=0
αZ

m

, αZ
k = dk

[
1 +

(
τ

βk + ε

)q]
(13)

where τ = |β0 − β2| is the global smoothness indicator. The power parameter q affects
numerical dissipation by controlling discrepancy of the smoothness indicators of sub-
stencils, and is set to 2 in this paper to ensure optimal order accuracy at first-order critical
points [5]. ε is a small quantity to avoid division by zero. ε = 10−6 and ε = 10−40 are
usually used in the JS and Z weight functions, respectively. A detailed discussion of ε
is given in Section 2.3. βk(k = 0, 1, 2) are the smoothness indicators of three candidate
sub-stencils, which combine first- and second-order derivatives at xj for each sub-stencil.

β0 =
1
4
(
−uj−2 + 4uj−1 − 3uj

)2
+
(
uj−2 − 2uj−1 + uj

)2

β1 =
1
4
(
uj−1 − uj+1

)2
+
(
uj−1 − 2uj + uj+1

)2

β2 =
1
4
(
3uj − 4uj+1 + uj+2

)2
+
(
uj − 2uj+1 + uj+2

)2

(14)

2.3. Adaptive Algorithms of ε

It was mentioned in Section 1 that constant ε has many defects, which promotes
the development of two kinds of ε-adaptive algorithms. This section makes a detailed
discussion on ε, which points out the shortcomings of constant ε and existing ε-adaptive
algorithms, then a new ε-adaptive algorithm is proposed.

For the convenience of discussion, the following definitions [6,8] are introduced

Definition 1. When u′(xj) = u′′(xj) = . . . = u(k)(xj) = 0 and u(k+1)(xj) 6= 0, xj is called a
critical point of u(x), with an order of ncp = k ≥ 0.

Definition 2. For a function g(h), θ(g(h)) denotes the power of h in the leading term of the
Taylor series expansion of g(h). In other words, θ(g(h)) denotes the order of g(h). For instance, if
g(h) = 5h3 + 2h4 + 7h5, then θ(g(h)) = 3.

Definition 3. g(h) = O(hn) denotes θ(g(h)) ≥ n, g(h) = Ω(hn) denotes θ(g(h)) ≤ n, and
g(h) = Θ(hn) denotes θ(g(h)) = n.
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2.3.1. Discussion on ε

As mentioned earlier, the initial purpose of introducing ε in Equations (12) and (13) is
to avoid the denominator becoming zero, which is mostly set as a small constant. However,
the value of ε has a profound influence on the performance of nonlinear schemes [4,6,27].

Normally, the constant ε is manually selected beforehand based on the specific prob-
lems being solved, which is inefficient. Moreover, setting ε as a constant is unlikely to meet
the needs of simulations for both smooth regions and discontinuities. Specifically, selecting
a very small ε may deviate the nonlinear weight from the linear weight near critical points
and result in a loss of accuracy. For example, the WENO-JS scheme with ε = 10−40 can
only achieve third-order accuracy at first-order critical points [4]. Although the problem
can be solved using the mapping function or Z weight function, it is insufficient to achieve
optimal order accuracy at higher-order critical points [6]. Conversely, a large ε is also prone
to induce numerical oscillations near smooth regions of large gradient and discontinu-
ities. Therefore, ε should be large enough in smooth regions to conceal the difference in
smoothness indicators to achieve optimal order, and small enough near discontinuities so
as not to hinder the nonlinear mechanism to suppress numerical oscillations. Two kinds of
ε-adaptive algorithms have been developed recently to improve accuracy at critical points
or further suppress numerical oscillations, respectively.

To avoid accuracy loss at critical points, the ε-adaptive algorithm based on the power-
function of grid spacing is developed [6,13,15]. For the WENO-JS scheme, if ε = Ω(h2),
it can maintain the highest order accuracy in smooth regions, otherwise the scheme will
lose accuracy at critical points. For the WENO-Z scheme with q = 2, if ε = Ω(h4), it can
also achieve optimal order accuracy regardless of critical points, otherwise the scheme
will lose accuracy at critical points above first-order (ncp > 1) [6]. This conclusion also
applies to the WCNS scheme [18]. This adaptive algorithm chooses the low power-function
of grid spacing for ε to make it large enough to cover up the difference of smoothness
indicators near critical points, thus avoiding loss of accuracy. However, this effect will also
act on discontinuities, which can impair the nonlinear mechanism and intensify numerical
oscillations near discontinuities.

To further attenuate numerical oscillations, another kind of ε-adaptive algorithm
based on smoothness indicators is developed [16–18]. A recently proposed parameter-free
ε-adaptive algorithm [18] has the following form

εadp =
βaveβmin

βstd
(15)

where

βave =
1
3

2

∑
k=0

βk, βmin = min(β0, β1, β2), βstd =

√√√√1
3

2

∑
k=0

(βk − βave)
2 (16)

This algorithm can adjust ε depending on the disparity in smoothness indicators,
which can suppress numerical oscillations and improve resolution. In addition, it makes the
scheme scale-invariant of flow variables. Nonetheless, due to the large relative discrepancy
in βk near high-order critical points, Equation (15) will yield a small ε, treating those
large gradient regions, either caused by critical points or discontinuities, as discontinuities
numerically. In this way, numerical oscillations are effectively suppressed, but that also
inevitably leads to a loss of accuracy at critical points.

In a word, it is difficult for the existing two kinds of ε-adaptive algorithms to achieve
both optimal order accuracy at critical points in smooth regions and effective suppression
of numerical oscillations near discontinuities. To overcome this dilemma, a new simple
and effective adaptive algorithm for ε is proposed in the following section.
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2.3.2. New ε-Adaptive Algorithms

To achieve high-order accuracy in smooth regions and suppress numerical oscillations
near discontinuities, ε should be chosen according to following two criteria [12,18]

(1) In smooth regions, the smoothness indicator βk of each sub-stencil is uniformly small.
To make the nonlinear weights approach the optimal weights, ε should take a much
larger value than βk to cover up the difference of βk, thereby reducing the nonlinear
error and improving accuracy.

(2) In discontinuous regions, βk of the sub-stencil with discontinuity is very large. To
avoid interpolation across discontinuities, ε should take a much smaller value than
βk to preserve the difference of βk, thereby reducing the weight of the discontinuous
sub-stencil to suppress numerical oscillations.

Based on these two criteria, we try to exploit βk to construct the new ε-adaptive
algorithm, aiming to rationally adjust ε according to the local flow characteristics. To avoid
accuracy loss at critical points, we consider that ε should also be as large as possible, at
least for low-order critical points with less notable discrepancy in βk. Therefore, we first
seek a high-order quantity that can reflect the disparity in βk of the local flow field. In
Ref. [18], the standard deviation βstd of sub-stencils is adopted to measure this discrepancy.
However, the calculation of βstd is cumbersome, and the order of βstd is not high enough to
conceal the disparity in βk near critical points, thus it cannot guarantee optimal order at
critical points.

In this paper, we consider a simple combination of βk to construct a high-order quantity
that can reflect smoothness of the whole stencil S5. A simple and efficient option is to use
the high-order global smoothness indicator in the Z weight function [5]

τ = |β0 − β2| (17)

Then, to resolve multi-scale flow structures, the nondimensionalizing process on
τ is performed

τ̃ =
τ

βmax
(18)

where βmax = max(β0, β1, β2). In this way, we have τ̃ ∈ [0, 1], and the value of τ̃ also
reflects the smoothness of S5. For example, local flow fields are obviously less smooth
with larger τ̃, which means that S5 may contain discontinuities and a much smaller ε than
βk should be used to avoid interpolation across discontinuities. Therefore, based on the
aforementioned two criteria, the new adaptive algorithm, denoted by ε̃adp hereafter, should
be negatively correlated with τ̃, namely

ε̃adp ∼
1

τ̃p (19)

where the positive integer p is introduced to regulate the performance of ε̃adp. Increasing
the value of the free parameter p can make the scheme approach the corresponding linear
scheme faster in smooth regions, thereby further reducing the nonlinear error.

It is important for numerical schemes to be scale-invariant of flow variables, thus to
consistently resolve various flows with different scales. For the classic WCNS scheme (JS
weight function), when flow variable u is scaled to Cu (C is a constant), βk of sub-stencils
will be scaled to C2βk, whereas the dimensionless variable τ̃ remains unchanged. Then the
nonlinear weight becomes

ωJS,1
k =

αJS,1
k

2
∑

m=0
αJS,1

m

6= ωJS,0
k

αJS,1
k =

dk(
C2β0

k + ε
)2

(20)
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where superscript 0/1 denotes before/after scaled values. Therefore, neither a constant
value nor a power-function of grid spacing for ε can make schemes scale-invariant of
flow variables. To overcome this defect, the new ε is also required to satisfy ε1 = C2ε0.
Yamaleev and Carpenter [13] and Yan et al. [27] adopted the square of initial flow variables
or their derivatives to obtain C2 to meet scale-invariant property for WENO and WCNS,
respectively. Considering that smoothness indicators are scaled by C2, i.e., β1

k = C2β0
k,

we use a linear function of βk to construct the relevant numerator which is denoted by
σ hereafter.

To maintain the stability of nonlinear schemes in capturing discontinuities, we set
σ = βmin, then ε̃1

adp = σ/τ̃p = C2ε̃0
adp. The reason for this is that if βmax is chosen, ε̃adp

may become very large near discontinuities, which will cause serious numerical oscillations.
For the same reason, quantities positively correlated with βmax are eliminated.

Finally, we obtain the complete form of the new ε-adaptive algorithm for fifth-
order WCNS

ε̃adp =
σ

τ̃p = βmin

(
βmax

|β0 − β2|

)p
(21)

where βmin = min(β0, β1, β2). Near a discontinuity, βmax/|β0 − β2| is close to the lower
bound 1, then ε̃adp mainly depends on βmin. Obviously, βmin only depends on the smoothest
sub-stencil, which will result in a small ε̃adp and suppressed numerical oscillations. Fur-
thermore, we notice that ε̃adp � βmin holds in smooth regions due to the introduction of
high-order quantity |β0 − β2|.

In summary, ε̃adp makes nonlinear schemes scale-invariant of flow variables, which will
be further verified in Section 3.2.1. In addition, ε̃adp meets the aforementioned two criteria,
which means that ε̃adp can reasonably change according to the local flow characteristics.

To facilitate the comparative analysis and discussion, we introduce ε̃adp into the classic
JS weight function. Then, a new nonlinear weight can be obtained as follows

ωAT
k =

αAT
k

2
∑

m=0
αAT

m

αAT
k =

dk(
βk + ε̃adp

)2 =
dkτ̃2p

(βkτ̃p + σ)2

(22)

Some basic arithmetic rules should be observed during programming to prevent
possible extreme cases:

(1) When one or more of β0, β1, and β2 is equal to 0, both ε̃adp and βk are equal to 0 in
the denominator of Equation (22);

(2) When β0 = β2, |β0 − β2| is equal to 0 in the denominator of Equation (21);
(3) The introduction of the free parameter p makes ε̃adp very large in smooth region, thus

1/(βk + ε̃adp)
2 is equal to 0 in Equation (22).

Therefore, f (θ) = max(small, ϕ) is introduced to avoid denominators becoming zero,
where ϕ denotes all the aforementioned quantities in Equations (21) and (22), and small is
the square root of the smallest positive number allowed for a machine.

In the following sections, unless otherwise specified, the fifth-order WCNS scheme
adopting the classic JS weight function and Z weight function are denoted by WCNS5-JS
and WCNS5-Z, respectively. Moreover, the WCNS5-JS scheme with εadp [18] and the
new ε̃adp are denoted by WCNS5-AS and WCNS5-AT, respectively, where A represents
the adaptive algorithm, S represents the standard deviation of βk, and T represents the
high-order global smoothness indicator. The fifth-order linear upwind scheme is simply
denoted by Linear5.
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2.4. Analysis of ε̃adp

2.4.1. Convergence Accuracy

For existing convergence analysis [3–5], ε was usually assumed to be 0. This subsection
discusses whether the introduction of ε̃adp has any effect on the convergence of the WCNS5-
AT scheme, i.e., whether it can achieve fifth-order accuracy in the smooth region of the flow
field. Convergence at critical points will be studied in the next subsection.

First, the Taylor series expansion of smoothness indicators of each sub-stencil in
Equation (14) yields

β0 = u′2j h2 +

u′′2j −
2u′ju

(3)
j

3

h4 +

−2u′′j u(3)
j +

u′ju
(4)
j

2

h5 + O
(

h6
)

β1 = u′2j h2 +

u′′2j +
u′ju

(3)
j

3

h4 + O
(

h6
)

β2 = u′2j h2 +

u′′2j −
2u′ju

(3)
j

3

h4 +

2u′′j u(3)
j −

u′ju
(4)
j

2

h5 + O
(

h6
)

(23)

If ncp = 0, it can be easily derived from Equation (23) that

βk = D(1 + O(h2)) (24)

where D is a non-zero constant independent of k. From Equation (23) we know that
D = u′2j h2. Expanding Equation (17) in Taylor series, we have

τ = |β0 − β2| =
(
−4u′′j u(3)

j + u′ju
(4)
j

)
h5 + O

(
h7
)
= O

(
h5
)

(25)

From Equation (18), it can be easily deduced that

τ̃ =
τ

βmax
=

O(h5)

D(1 + O(h2))
= O(h3) (26)

Thus, using Equations (22), (24) and (26), we obtain

αAT
k =

dkτ̃2p

(βkτ̃p + σ)2 =
dk
(
O
(
h3))2p(

D(1 + O(h2))(O(h3))
p + D(1 + O(h2))

)2

=
dk
E

(
1 + O

(
h2
)) (27)

where E = D2/τ̃2p. Considering that the linear weight dk satisfies ∑2
k=0 dk = 1, the sum of

these terms αAT
k is given by

2

∑
k=0

αAT
k =

1
E
(1 + O(h2)) (28)

Substituting Equations (27) and (28) into Equation (22) gives

ωAT
k = dk + O(h2) (29)

Therefore, for the JS weight function, the new weight function meets the convergence
requirements in Refs. [5,20], which proves that the WCNS5-AT scheme can achieve fifth-
order accuracy at non-critical points.



Aerospace 2022, 9, 369 10 of 29

2.4.2. Convergence at Critical Points

The convergence at critical points may become more complicated. The JS weight
function fails to satisfy the conditions for fifth-order convergence due to the vanishment
of the low-order derivatives at critical points, which results in a loss of accuracy. In this
subsection, we analytically demonstrate that the introduction of ε̃adp makes the JS weight
function recover fifth-order convergence at critical points.

Table 1 gives the Taylor series expansion for βk and τ for the fifth-order WCNS scheme,
which yields

βk = O
(

h2(ncp+1)
)

,

τ =

{
O
(
h5), ncp = 0

O
(

h2(ncp+1)+1
)

, ncp ≥ 1

= O
(

hmax(5,2(ncp+1)+1)
) (30)

In addition, it can be seen from Table 1 that if only the first derivative vanishes, i.e.,
ncp = 1, then β0,2 = D(1 + O(h)), implying that ωk = dk + O(h), which will cause the
convergence to degrade to third-order accuracy.

Table 1. Taylor series expansion of βk and τ for WCNS5.

ncp β0 β1 β2 τ

0 u′2j h2(1 + O
(
h2)) u′2j h2(1 + O

(
h2)) u′2j h2(1 + O

(
h2)) (

−4u′′j u(3)
j + u′ju

(4)
j

)
h5(1 + O

(
h2))

1 u′′2j h4(1 + O(h)) u′′2j h4(1 + O
(
h2)) u′′2j h4(1 + O(h)) −4u′′j u(3)

j h5(1 + O
(
h2))

2 10
9 u(3)2

j h6(1 + O(h)) 1
36 u(3)2

j h6(1 + O
(
h2)) 10

9 u(3)2
j h6(1 + O(h)) − 8

3 u(3)
j u(4)

j h7(1 + O
(
h2))

3 29
72 u(4)2

j h8(1 + O(h)) 1
144 u(4)2

j h8(1 + O
(
h2)) 29

72 u(4)2
j h8(1 + O(h)) − 7

10 u(4)
j u(5)

j h9(1 + O
(
h2))

For the WCNS5-AT scheme, even if β0,2 = D(1+O(h)) at first-order critical points, we
still have σ = min(β0, β1, β2) = D(1 + O(h2)) as in Equation (28). It is not difficult to find
that the fifth-order accuracy can be restored when the free parameter p satisfies a certain
condition. For simplicity, this condition is determined directly based on the conclusion
about ε derived by Don and Borges [6]. Substituting Equation (30) into Equation (21), if
ncp = 1, we can obtain

ε̃adp = Θ(h4−p) (31)

Hence, the condition ε̃adp = Ω(h2) can be satisfied with p ≥ 2, indicating that the
WCNS5-AT scheme can maintain the optimal order accuracy at first-order critical points in
smooth regions. Here, this theoretical conclusion will be verified by a simple numerical test.

Consider the following family of test functions [6]

gn(x) = Ce0.75(x−1)xn (32)

where x ∈ [−1, 1], C is a constant, and n is a non-negative integer. x = 0 is the only critical
point with an order of ncp = n− 1. We first consider g2(x) = Ce0.75(x−1)x2(ncp = 1). g′2(0)
is calculated using the WCNS5-JS scheme with ε = 10−40, 10−6, h, h2, h3, εadp [18] and
ε̃adp(p = 1, 2, 3), respectively. Grid spacing is set as h = 0.02× 2n(n = 1, 2, ..., 9). The
results of the Linear5 scheme are used as references. Figure 2 presents the error of g′2(0)
with C = 1 and C = 103.
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Figure 2. The error of g′2(0) calculated by WCNS5-JS schemes with different ε: (a) C = 1; (b) C = 103.

The results in Figure 2 indicate that when C = 1, the small ε = 10−40 yields only
third-order accuracy (βk � ε), while the larger ε = 10−6 recommended in Ref. [3] first
shows super convergence, then gradually reaches the fifth-order accuracy (βk � ε) as grid
refines. This suggests that the performance of the WCNS5-JS scheme is very sensitive to the
relative magnitudes of ε and βk. More specifically, the larger value (ε = 10−6) will dominate
over the smoothness indicators in the refined grid, which in fact hides the deficiency of
the classical JS weight function at critical points [4,5]. Setting ε = Ω(h2), the WCNS5-JS
scheme can achieve fifth-order accuracy, whereas setting ε = h3 or ε = εadp, it only has
fourth-order accuracy, which is consistent with the conclusions drawn in Refs. [6,18].

Moreover, increasing the amplitude of g2(x) can also have an impact on the accuracy
at the critical point. For instance, it is clear from Figure 2 that when C is increased to 103, βk
will increase synchronously. In this test, βk � ε = 10−6 holds in coarse grids, thus there
is only third-order accuracy, leading to super convergence as grid refines. Furthermore,
when ε is set as a low power-function of grid spacing, the accuracy is also affected due to
changes in the relative sizes of ε and βk, which is similar to the case using ε = 10−6, such
as loss of accuracy or super convergence shown in Figure 2. Therefore, the accuracy of the
WCNS5-JS scheme with the aforementioned ε may be uncertain due to the influence of the
size of ε, the grid resolution and the flow variable.

It can be clearly observed from Figure 2 that the new ε̃adp(p ≥ 2) helps the WCNS5-JS
scheme achieve optimal order accuracy at first-order critical point regardless of C, which
is consistent with the theoretical conclusion derived from Equation (31). In other words,
βk � ε̃adp is always satisfied near first-order critical point, and the accuracy of the WCNS5-
AT scheme is not affected by grid resolution or flow variables. Moreover, when C is
increased from 1 to 103, the error increases for all schemes, while the WCNS5-AT scheme
with p ≥ 2 has the lowest error and the slowest increase of error among the nonlinear
schemes. Furthermore, increasing the free parameter p in ε̃adp helps to further decrease the
error to the level of Linear5. These results benefit from the properties of ε̃adp being both
adaptive and scale-invariant. In conclusion, the new ε̃adp can help the JS weight function
improve convergence accuracy and decrease nonlinear error, which provides a better choice
for the scheme to maintain accuracy at critical points than other choices of ε.

For higher-order critical points ncp ≥ 2, we can also theoretically derive an expression
similar to Equation (31) for ε̃adp to give the condition to restore the optimal order accuracy.
For instance, for ncp = 2 and ncp = 3, p ≥ 4 and p ≥ 6 should be satisfied, respectively. Un-
fortunately, the situation of high-order critical points is complicated. We see in Equation (14)
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that βk of each sub-stencil is a combination of the first- and second-order derivatives at
the stencil midpoint xj. If both derivatives vanish, βk will no longer approximate non-
zero quantities, and is mainly determined by the lowest order term in the Taylor series
expansion [4]. As shown in Table 1, the low-order terms gradually show a difference in
magnitude for ncp ≥ 2, e.g., β0,2/β1 = 40 and 58 for ncp = 2 and 3, and this difference
grows rapidly as ncp increases. In other words, if ncp ≥ 2, then βk = D(1+O(1)), implying
ωk = dk + O(1), i.e., Equation (29) is not satisfied. The adaptive idea of ε̃adp is based on
the discrepancy in βk, thus ε̃adp is unable to solve the dilemma, which results in loss of
accuracy, same as the classical WCNS scheme.

Table 2 presents βk, ωAT
k , and ε̃adp(p = 2, 4, 6) of gn(x)(n = 2, 3, 4) with C = 103

near xj = 0 for the WCNS5-AT scheme, and the grid spacing is h = 6.25× 10−4. It can
be seen from Table 2 that the difference of βk is small and ε̃adp � βk holds for ncp = 1,
indicating the dominating role of ε̃adp in the denominator of the JS weight function, which
facilitates the recovery of linear weights with O(h2) error. Near the high-order critical
points, although the absolute magnitude of βk is very small, the relative difference of βk
can become very large. At these points, choosing either a relatively large constant or low
power-function of grid spacing for ε can alleviate this local disparity in smooth regions.
However, βmax/τ approximates 1 around high-order critical points, implying ε̃adp ≈ βmin,
then the nonlinear weights ωAT

k are O(1) away from linear weights dk, which means that
ε̃adp treats high-order critical points as discontinuities. This results in an inevitable loss of
accuracy. Notice that ε̃adp � βk holds only if the stencils S5 are centered at the high-order
critical points xj. This is mainly owing to the fact that the introduction of τ into ε̃adp
can satisfy Equation (29), which is verified through the theoretical derivation on stencils
symmetrical about critical points.

Table 2. The βk, ωAT
k , and ε̃adp(p = 2, 4, 6) of gn(x)(n = 2, 3, 4) near xj = 0 for WCNS5-AT.

ncp S5 Midpoint β0 β1 β2 ωAT
0 ωAT

1 ωAT
2 ε̃adp

1

xj−1 2.72× 10−7 2.72× 10−7 2.72× 10−7 6.25× 10−2 6.25× 10−1 3.13× 10−1 3.45× 10−2

xj 1.36× 10−7 1.36× 10−7 1.37× 10−7 6.25× 10−2 6.25× 10−1 3.13× 10−1 4.32× 10−3

xj+1 2.72× 10−7 2.73× 10−7 2.73× 10−7 6.25× 10−2 6.25× 10−1 3.13× 10−1 3.45× 10−2

2

xj−1 1.92× 10−12 6.90× 10−13 1.33× 10−14 3.86× 10−5 2.92× 10−3 9.97× 10−1 1.36× 10−14

xj 5.31× 10−13 1.33× 10−14 5.33× 10−13 6.25× 10−2 6.25× 10−1 3.13× 10−1 3.27× 10−5

xj+1 1.33× 10−14 6.93× 10−13 1.94× 10−12 9.85× 10−1 1.44× 10−2 9.46× 10−4 1.37× 10−14

3

xj−1 1.35× 10−17 1.35× 10−18 4.16× 10−20 7.66× 10−6 7.23× 10−3 9.93× 10−1 4.23× 10−20

xj 1.20× 10−18 2.08× 10−20 1.21× 10−18 6.25× 10−2 6.25× 10−1 3.13× 10−1 4.61× 10−6

xj+1 4.16× 10−20 1.35× 10−18 1.36× 10−17 9.65× 10−1 3.49× 10−2 1.84× 10−4 4.23× 10−20

Based on previous discussion, the excessive relative disparity in βk near high-order
critical points results in high gradient for both high-order critical points and discontinuities.
Nonetheless, high-order critical points differ from discontinuities in essence. The flow
field containing critical points with arbitrary high order is still smooth. Therefore, we can
construct a new higher-order global smoothness indicator composed of local flow variables,
which takes the following form

τ̂ =
(
uj−2 − 4uj−1 + 6uj − 4uj+1 + uj+2

)2 (33)

The Taylor series expansion of Equation (33) gives

τ̂ = u(4)2
j h8 +

1
3

u(4)
j u(6)

j h10 + O
(

h12
)

(34)
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indicating that τ̂ is O(h8). Substituting τ by τ̂ in Equation (18), we obtain a new ε, denoted
by ε̂adp hereafter, which can cover up the disparity in βk for second-order critical points.
With ε̂adp , p ≥ 1 and p ≥ 2 need to be satisfied to achieve design order for ncp = 1 and 2,
respectively, which can be derived similarly to Equation (31). Figure 3 presents the error of
g′n(0) using ε̂adp , which validates this conclusion. For ncp = 3, loss of accuracy arises due
to θ(τ̂) = θ(βk) = 8. To solve this problem, a higher-order global smoothness indicator
can be introduced on expanded stencils, e.g., S6 =

{
xj−2, xj−1, xj, xj+1, xj+2, xj+3

}
can give

τ̂ = O(h10). To sum up, ε̂adp provides a new idea for the fifth-order WCNS scheme to
avoid loss of accuracy near critical points with arbitrary high order. In fact, it may not be
necessary to implement the optimal order accuracy for higher-order critical points in prac-
tical computations, since the performance of the scheme will not be substantially improved.
If the optimal order accuracy is forced to be maintained, serious numerical oscillations
may arise near high-order critical points and discontinuities, reducing the stability of the
scheme [15,18]. Therefore, ε̃adp in Equation (21) is recommended. The adaptive mechanism
eliminates influence of the discrepancy in βk at low-order critical points to recover optimal
order accuracy, and treats high-order critical points as discontinuities to effectively suppress
numerical oscillations. This will be further verified by numerical tests in Section 3.

h
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n
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C =1

Figure 3. The error of g′n(0)(n = 2, 3, 4) calculated by ε̂adp.

2.4.3. Spectral Properties

This subsection investigates the spectral properties of the new WCNS5-AT scheme,
which is also used to determine the value of the free parameter p. Specifically, the approxi-
mate dispersion relation (ADR) [28] is used to analyze the dispersion and dissipation errors,
and the minimum numerical dissipation required to damp spurious high wavenumber
errors in the solution is estimated by the dispersion-dissipation relation [29]

r =

∣∣∣ d(Re(ω∗))
dω − 1

∣∣∣+ 10−3

−Im(ω∗) + 10−3
(35)

where Re(ω∗) and Im(ω∗) are the real and imaginary parts of the modified wavenumber,
respectively. A smaller r indicates more numerical dissipation.

The spectral properties of the WCNS5-AT scheme with different parameter p are
shown in Figure 4, where the Linear5 scheme is used as a reference to help determine
the value of p. The results indicate that increasing p can improve the performance of the
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WCNS5-AT scheme. More specifically, the curves of the dispersion-dissipation relation
with p ≥ 2 are roughly similar. With a further increase of p, spectral properties of the
WCNS5-AT scheme are highly consistent with those of the Linear5 scheme in the low
wavenumber range, and the difference gradually weakens in the mid to high wavenumber
range. The reason for this is that ε̃adp increases with p, which further conceals the disparity
in smoothness indicators, thereby making the WCNS5-AT scheme approach the Linear5
scheme faster.

Nevertheless, it can also be seen from Figure 4 that the spectral error of the WCNS5-AT
scheme decreases slowly for p ≥ 10. If p is too large, the dissipation curve in the high
wavenumber range will also approach the Linear5 scheme, which may intensify numerical
oscillations. To balance the dispersion and dissipation errors, we hope that the WCNS5-AT
scheme can still possess appropriate numerical dissipation in the high wavenumber range
to suppress the non-physical oscillations, thereby ensuring the stability of the calculation.
Therefore, p = 10 with a balanced performance is used in the following sections.

Figures 5 and 6 present the spectral properties of different WCNS schemes mentioned
in Section 2.3. It can be clearly observed from Figure 5 that the WCNS5-JS scheme yields the
largest dispersion and dissipation errors, while the new WCNS5-AT scheme has the fewest
errors over the whole wavenumber range. The approximate dispersion-dissipation relation
in Figure 6 shows that 0 < r < 5.8 holds, which indicates that these WCNS schemes are free
from spurious waves [29]. Moreover, for ω < 1.5, the dispersion and dissipation curves of
the WCNS5-AT scheme almost coincide with those of the Linear5 scheme without exceeding
it, indicating that the Linear5 scheme sets the limit of the improvement with ε̃adp. To sum
up, the introduction of the new ε -adaptive algorithm optimizes the spectral properties of
the WCNS5-JS scheme.
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Figure 4. Spectral properties of the WCNS5-AT scheme with the different parameter p: (a) dissipation;
(b) dispersion-dissipation relation.
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Figure 5. Approximate dispersion and dissipation properties of different fifth-order WCNS schemes:
(a) dispersion; (b) dissipation.
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Figure 6. Approximate dispersion-dissipation relation of different fifth-order WCNS schemes.

3. Numerical Tests

In this section, several canonical numerical tests are carried out to investigate the
performance of the new WCNS5-AT scheme. These tests cover one-dimensional linear
advection equation, one-dimensional Euler equations, two-dimensional Euler equations,
and three-dimensional Navier–Stokes equations. It is verified that the WCNS5-AT scheme
has high-resolution, good discontinuity capturing ability, and high computational efficiency
compared with the classical WCNS5-JS, WCNS5-Z, and WCNS5-AS schemes. For the
Euler and Navier–Stokes equations, the convective fluxes at cell-edges are evaluated
by the Steger-Warming′s splitting method [30], and the characteristic decomposition is
used in the nonlinear interpolation to suppress numerical oscillations near discontinuities.
The strong stability preserving (SSP) third-order Runge–Kutta scheme [31] is chosen for
time discretization.
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3.1. One-Dimensional Linear Advection Equation
3.1.1. Wave Packet

The one-dimensional multi-scale wave packet problem is used to validate the convergence
order of proposed schemes. The initial condition is u0(x) = 1

20 ∑20
k=1 sin(2πkx), x ∈ [0, 1],

with 1 + 25× 2n(n = 1, 2, 3, 4, 5) grid points. The time step dt is bounded by 0.5h5/3 to
eliminate the influence of time discretization error on the convergence accuracy. For one-
dimensional linear advection tests, periodic boundary conditions are applied to the left and
right boundaries if not specified.

Figure 7 presents L1 and L∞ errors of different WCNS schemes after advancing
by 1 and 10 advection periods. It is evident that all schemes achieve fifth-order accuracy
as grid refines. The WCNS5-JS scheme has larger errors than others, while the introduc-
tion of ε̃adp reduces the error level to that of the Linear5 scheme. This shows that ε̃adp
can effectively reduce the nonlinear error and help the nonlinear scheme approach the
corresponding linear scheme in smooth regions, which is more remarkable for 10 advec-
tion periods.
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Figure 7. L1 and L∞ errors of u0(x) = 1
20 ∑20

k=1 sin(2πkx): (a) L1 error, 1 period; (b) L∞ error, 1 period;
(c) L1 error, 10 periods; (d) L∞ error, 10 periods.

3.1.2. Square Wave

The ability to capture discontinuity is tested on a square wave. The computation is
advanced to 1 advection period, with 101 grid points and CFL = 0.1.

Figures 8 and 9 present the computational results and error distribution, respectively.
It can be observed that the WCNS5-AT scheme significantly outperforms the WCNS5-JS,
WCNS5-Z, and WCNS5-AS schemes. The WCNS5-AT scheme yields the highest resolution
for discontinuities and the lowest error across the computational domain. Moreover, the
previously discussed WCNS5-JS scheme with ε = h2 is also tested, and the results are
shown in Figures 8 and 9, which indicate that serious numerical oscillations and large errors
arise in discontinuous regions and smooth regions, respectively. Therefore, choosing ε = h2

will damage the quality of the flow field and the convergence of numerical calculations,
which is consistent with conclusions in Ref. [15] and Section 2.3.1. ε̃adp helps improve
resolution without numerical oscillations near discontinuities.
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Figure 8. Computational results of a square wave.
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Figure 9. Error distribution of square wave.

3.1.3. Composite Wave

The composite wave [3] formed by a Gaussian wave, a square wave, a triangle wave,
and a semi-elliptical wave is adopted to investigate the ability to resolve various waveforms.
The initial condition is as follows

u(x, 0) =


[G(x, β, z− δ) + 4G(x, β, z) + G(x, β, z + δ)]/6 x ∈ [−0.8,−0.6]
1 x ∈ [−0.4,−0.2]
1− |10(x− 0.1)| x ∈ [0, 0.2]
[F(x, α, a− δ) + 4F(x, α, a) + F(x, α, a + δ)]/6 x ∈ [0.4, 0.6]
0 else

(36)

where G(x, β, z) = e−β(x−z)2
, F(x, α, a) =

√
max(1− α2(x− a)2, 0), β = log 2/36δ2,

δ = 0.005, z = −0.7, a = 0.5, α = 10. The computation is advanced to 1 and 20 ad-
vection periods, with 401 grid points and CFL = 0.1.

Computational results and error distribution are given in Figures 10 and 11, respec-
tively. It can be seen that ε̃adp can help the WCNS5-JS scheme to improve the resolution of
various waveforms, which is basically consistent with the conclusion obtained from the
square wave test. An important indicator for evaluating the shock-capturing scheme is the
suppression effect on numerical oscillations near discontinuities. The JS weight function
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with a constant ε induces relatively large numerical oscillations near discontinuous and
large gradient smooth regions, and contaminates the numerical solutions in the upstream
and downstream, which poses a great risk to the stability of the calculation. With ε̃adp,
these numerical oscillations are significantly suppressed and the error in smooth regions is
maintained at a very low level. Notice that although the magnitude of the numerical oscil-
lations in WCNS5-JS is visually small, for problems, such as aeroacoustics and turbulence,
which are sensitive to small disturbances, these numerical oscillations should be handled
carefully in the calculations.
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Figure 10. Computational results of composite wave: (a) 1 period; (b) 20 periods.

For 20 advection periods, the waveforms computed using WCNS5-JS and WCNS5-Z
are distorted, and large errors arise due to excessive dissipation, while the WCNS5-AT
scheme maintains the waveform with the least distortion. This indicates that the WCNS5-AT
scheme has the lowest numerical dissipation, which is desirable for long-time simulations.
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Figure 11. Error distribution of composite wave: (a) 1 period; (b) 20 periods.

3.2. One-Dimensional Euler Equations
3.2.1. Shock Tube Problem

This example is a canonical example to evaluate the shock-capturing ability. We
consider the typical shock tube problems of Lax [32] and Sod [33], and the initial condition
is given by

Lax : (ρ, u, p) =
{

(0.445λ, 0.698, 3.528λ), x ∈ [0, 5]
(0.5λ, 0, 0.571λ), x ∈ (5, 10]

Sod : (ρ, u, p) =
{

(1, 0, 1), x ∈ [0, 5]
(0.125, 0, 0.1), x ∈ (5, 10]

(37)

where the scale factor λ is introduced to validate the scale-invariant property of the WCNS5-
AT scheme. The computation is advanced to t = 1.3 and t = 2.0, respectively, with 201 grid
points and CFL = 0.1.

Figure 12 compares the density distribution given by WCNS5 schemes with exact solu-
tions for λ = 1. The introduction of ε̃adp not only improves resolution for discontinuities,
but also suppresses the numerical oscillations.

Figure 13 presents the result of the Lax problem with a smaller scale λ = 10−3. It
can be observed that when the scale is reduced, the constant ε conceals the difference of
smoothness indicators in both smooth and discontinuous regions, which will aggravate
numerical oscillations near discontinuities for the WCNS5-JS scheme, while ε̃adp makes
the WCNS5-JS scheme scale-invariant of flow variables, yielding consistently good per-
formance. Notice that the scale-invariance is nearly achieved for the WCNS5-Z scheme
due to the much smaller ε (10−40) used in Equation (13), which is valid for most practical
computations. In short, the new ε-adaptive algorithm provides a good choice to make
nonlinear schemes scale-invariant of flow variables.

3.2.2. Shu-Osher Problem

This example describes the interaction between a Mach 3 right-traveling shock and
an entropy wave [34]. The entropy wave is compressed and amplified through the shock,
and a series of sound waves propagating downstream are produced. It is widely used to
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investigate the resolution of the numerical schemes for shocks and high-frequency waves.
The initial condition is as follows:

(ρ, u, p) =
{

(3.857143, 2.629369, 10.333333), x ∈ [−5,−4]
(1 + 0.2 sin 5x, 0, 1), x ∈ (−4, 5]

(38)
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Figure 12. Density distribution of shock tube problem of Lax and Sod: (a) Lax; (b) Sod.
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Figure 13. Density distribution of Lax shock tube problem with λ = 10−3.

The computation is advanced to t = 1.8, with 201 grid points and CFL = 0.1. Figure 14
presents density distribution results. The reference solution is given by the WCNS5-JS
scheme using 6401 grid points. Compared with other WCNS5 schemes, the WCNS5-AT
scheme yields higher resolution for both shocks and smooth waves, especially for the
high-frequency waves behind the main shock.
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Figure 14. Density distribution of Shu-Osher problem.

3.2.3. Titarev-Toro Problem

This example is a variant of the Shu-Osher [34] problem. The entropy wave has a
higher frequency, which is a more challenging test [35]. The initial condition is

(ρ, u, p) =
{

(1.515695, 0.523346, 1.805), x ∈ [−5,−1.5]
(1 + 0.1 sin 20πx, 0, 1), x ∈ (−1.5, 5]

(39)

The computation is advanced to t = 4.0, with 1601 grid points and CFL = 0.1. The
reference solution is obtained with the WCNS5-JS scheme using 6401 grid points. Results
of density distribution are presented in Figure 15. The wave magnitude computed by
the WCNS5-JS scheme attenuates rapidly after passing through the shock wave, while
the WCNS5-Z, WCNS5-AS, and WCNS5-AT schemes can resolve high-frequency waves
more accurately. The WCNS5-AT scheme has the highest resolution without spurious
amplification of high-frequency waves.
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Figure 15. Density distribution of Titarev-Toro problem.

3.3. Two-Dimensional Euler Equations
3.3.1. Isentropic Vortex Transport

The vortex transport problem [36] is used for accuracy test. This example simulates the
motion of an isentropic vortex superimposed on the uniform flow of (ρ, u, v, p) = (1, 1, 0, 1).
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The temperature is given by T = p/ρ, and the entropy is given by S = p/ργ. The
perturbation in velocity and temperature caused by the vortex is

(δu, δv) =
α

2π
exp

(
0.5
(

1− r2
))

(−ȳ, x̄)

δT = − (γ− 1)α2

8γπ2 exp
(

1− r2
) (40)

where (xc, yc) = (5, 5) is the center of the vortex, r2 = x̄2 + ȳ2, and vortex strength α = 1.
The computational domain is set as [0, 10]× [0, 10], with periodic boundary conditions in
both directions. The time step is dt = 0.5h5/3 with [1+ 10× 2n]× [1+ 10× 2n](n = 1, 2, 3, 4)
grid points.

Figure 16 presents L1 and L∞ errors of density for 1 and 10 advection periods. All
schemes achieve fifth-order accuracy as grid refines. The WCNS5-Z, WCNS5-AS, and
WCNS5-AT schemes can greatly reduce the nonlinear error compared with the WCNS5-
JS scheme, while the error level of the WCNS5-AT scheme is closest to that of the Lin-
ear5 scheme.
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Figure 16. L1 and L∞ errors of density of isentropic vortex transport problem: (a) L1 error, 1 period;
(b) L∞ error, 1 period; (c) L1 error, 10 periods; (d) L∞ error, 10 periods.

3.3.2. Two-Dimensional Riemann Problem

This example contains multi-scale complex structures with the interaction of shock
waves, vortices, and contact discontinuities, which can test the resolution of the numerical
schemes [37]. The computational domain is set as [0, 1]× [0, 1] with the following initial con-
dition.

(ρ, u, v, p) =


(1.5, 0.0, 0.0, 1.5), 0.8 ≤ x ≤ 1, 0.8 ≤ y ≤ 1
(0.5323, 1.2, 0, 0.3), 0 ≤ x < 0.8, 0.8 ≤ y ≤ 1
(0.138, 1.206, 1.206, 0.029), 0 ≤ x < 0.8, 0 ≤ y < 0.8,
(0.5323, 0.0, 1.206, 0.3), 0.8 < x ≤ 1, 0 ≤ y < 0.8

(41)

The computation is advanced to t = 0.8, with 401 × 401 grid points and CFL = 0.5.
The results calculated by different fifth-order WCNS schemes are given in Figure 17. It can
be seen that the WCNS5-Z and WCNS5-AS schemes yield similar resolution higher than
the WCNS5-JS scheme. In contrast, the WCNS5-AT scheme captures more details of the
vortex structures, indicating excellent multi-scale resolution.
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Figure 17. Density contours of the two-dimensional Riemann problem with 401 × 401 grid points.
24 equally distributed contours ranging from 0.2 to 1.7: (a) WCNS5-JS; (b) WCNS5-Z; (c) WCNS5-AS;
(d) WCNS5-AT.

3.3.3. Rayleigh-Taylor Instability

This example describes the motion of two fluids with different densities in the initial
flow field [38]. With a disturbance of the vertical velocity, the initial interface between the
two fluids becomes unstable, and finally forms a complex flow field containing fine-scale
structures, which can be used to examine the resolution of the numerical schemes. The
computational domain is set as [0, 0.25]× [0, 1], and the initial condition is given by

(ρ, u, v, p) =

{
(2, 0,−0.025

√
γp/ρ · cos(8πx), 2y + 1), 0 6 y < 0.5

(1, 0,−0.025
√

γp/ρ · cos(8πx), y + 1.5), 0.5 6 y < 1
(42)

where γ = 5/3 is the specific heat ratio. A source term S = (0, 0, ρ, ρv) is added to the
right-hand side of the Euler equations to simulate the gravity effect. The left and right
boundaries are set with reflective conditions, and the upper and lower boundaries are
imposed with fixed values

(ρ, u, v, p) =

{
(1, 0, 0, 2.5), y = 1
(2, 0, 0, 1), y = 0

(43)
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The computation is advanced to t = 1.95, with 241 × 961 grid points and CFL = 0.5.
The results of density contours are shown in Figure 18. It is evident that the WCNS5-AT
scheme yields the highest resolution of flow field. Specifically, small-scale flow structures
near y = 0.35 and 0.65 are clearly captured compared with the other three schemes. This
indicates that ε̃adp helps reduce the numerical dissipation, and effectively improves the
resolution of small-scale structures in smooth regions.
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Figure 18. Density contours of the Rayleigh-Taylor instability problem with 241 × 961 grid points.
14 equally distributed contours ranging from 0.9 to 2.2: (a) WCNS5-JS; (b) WCNS5-Z; (c) WCNS5-AS;
(d) WCNS5-AT.

3.3.4. Double Mach Reflection

This example describes a Mach 10 shock moving from left to right along the x-axis
initially with an incident angle of 60◦ [39]. It is widely used to examine the resolution
capability of numerical formats for strong discontinuities and small-scale structures in the
resulting flow field. The computational domain is set as [0, 4]× [0, 1], with initial condition
as follows

(ρ, u, v, p) =


(
8, 8.25 cos π

6 ,−8.25 sin π
6 , 116.5

)
, x ≤ 1

6 + y
tan π

3

(1.4, 0, 0, 1), x > 1
6 + y

tan π
3

(44)

where the top boundary of the computational domain describes the exact motion of the
shock, the bottom boundary is imposed as the post-shock state for x ≤ 1/6 and the
reflective wall for x > 1/6, and the left and right boundary are fixed at post-shock and
pre-shock state, respectively. The computation is advanced to t = 0.2, with 961 × 241 grid
points and CFL = 0.5. Figure 19 presents the result of density contours. It can be seen that
the WCNS5-AT scheme yields the highest resolution for small-scale vortices rolled up along
the slip line with clear capture of shocks and Mach stems.
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Figure 19. Density contours of the double Mach reflection problem with 961 × 241 grid points.
23 equally distributed contours ranging from 2.0 to 23.0: (a) WCNS5-JS; (b) WCNS5-Z; (c) WCNS5-
AS; (d) WCNS5-AT.

3.3.5. Forward Facing Step

This example describes a Mach 3 shock entering the wind tunnel with a front step and
generating an off-body shock at the head, followed by multiple reflections on the walls [39].
This is often used to investigate the resolution and stability of numerical schemes. The
reflective boundary condition is imposed for the wind tunnel and the step, and the inflow
condition and outflow condition are set for the left and right boundary, respectively. The
computational domain is set as [0, 4]× [0, 1], and the computation is advanced to t = 4.0,
with 601 × 201 grid points and CFL = 0.5. The density contours shown in Figure 20 indicate
that the WCNS5-AT scheme captures the vortices rolled up along the slip line more clearly
than other schemes.
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Figure 20. Density contours of the forward facing step problem with 601× 201 grid points. 60 equally
distributed contours ranging from 0.2568 to 6.607: (a) WCNS5-JS; (b) WCNS5-Z; (c) WCNS5-AS;
(d) WCNS5-AT.
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3.4. Three-Dimensional Navier–Stokes Equations

This section examines the performance of ε̃adp in three-dimensional Navier–Stokes
equations by testing the viscous Taylor-Green vortex [40]. As a challenging example in the
International Workshops on High-Order CFD Methods, the viscous Taylor-Green vortex is
widely used to assess the resolution and numerical dissipation of schemes. The viscous
terms are discretized using a sixth-order central explicit scheme. The computational domain
is set as x, y, z ∈ [−π, π], and the initial condition is as follows

u = V0 sin
( x

L

)
cos
( y

L

)
cos
( z

L

)
, v = −V0 cos

( x
L

)
sin
( y

L

)
cos
( z

L

)
,

w = 0, p = p0 +
ρ0V2

0
16

(
cos
(

2x
L

)
+ cos

(
2y
L

))(
cos
(

2z
L

)
+ 2
) (45)

Periodic boundary conditions are imposed on the three directions. The Reynolds
number is Re = 1600. The computation is advanced to t = 20tc with dt = 5 × 10−4,
where tc and dt are characteristic convective time and constant nondimensional time
step, respectively. The remaining setup can be found in Ref. [41]. A uniform grid with
257× 257× 257 points is used. Figure 21 presents the temporal evolutions of the kinetic
energy, kinetic energy dissipation rate, and enstrophy, and the reference solution is given
by the spectral method with 512× 512× 512 grid points in Ref. [42]. For t > 4, the statistics
begin to deviate from the reference solution, and the results of the Linear5 scheme are
more accurate due to smaller dissipation. The WCNS5-AT scheme gives the most accurate
results compared with other nonlinear schemes, which indicates that the improvement of
the dissipation and resolution for the JS weight function using ε̃adp is very significant.

3.5. Computational Efficiency

To demonstrate the advantages of ε̃adp more comprehensively, this section selects
four representative numerical examples from the aforementioned tests to analyze the
computational efficiency of ε̃adp. Table 3 shows the computational time of different WCNS
schemes and the increment in computational cost relative to the WCNS5-JS scheme. It
should be noted that the computational time is averaged over five numerical tests, and the
time of advancing 200 steps is recorded for the three-dimensional viscous Taylor-Green
vortex example. It can be clearly drawn from Table 3 that the introduction of ε̃adp brings
little computational increment to the JS weight function. Notice that this additional cost
is further reduced as the dimension and scale of the problem increase. In addition, the
new WCNS5-AT scheme is much more efficient than the WCNS5-AS scheme since the
calculation of the standard deviation is omitted.

Table 3. CPU time (unit: s) and time increment (compared with the WCNS5-JS scheme).

Schemes Composite Wave Titarev-Toro Double Mach Viscous Taylor-Green Vortex

WCNS5-JS 4.896 - 13.259 - 272.297 - 298.975 -

WCNS5-Z 5.021 2.55% 14.078 6.17% 277.783 2.02% 299.995 0.34%

WCNS5-AS 14.479 195.73% 25.744 94.16% 473.617 73.93% 364.610 21.95%

WCNS5-AT 5.473 11.2% 14.343 8.17% 291.249 6.96% 303.341 1.46%
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Figure 21. Temporal evolutions of the results for viscous Taylor-Green vortex with 257× 257× 257
grid points: (a) kinetic energy; (b) kinetic energy dissipation rate; (c) enstrophy.

4. Conclusions

In this paper, we propose a new ε-adaptive algorithm for improving the fifth-order
WCNS scheme. A high-order global smoothness indicator is introduced to increase ε in
smooth regions to improve resolution and accuracy, while decrease ε near discontinuities to
suppress numerical oscillations. The convergence accuracy at critical points is discussed in
detail. The nonlinear mechanism treats high-order critical points as discontinuities due to
excessive relative disparity in smoothness indicators, resulting in a loss of accuracy, which
is solved by the new adaptive algorithm. A series of theoretical analyses and numerical
tests are carried out, and following conclusions can be obtained

(1) ε̃adp helps the WCNS5-JS scheme recover spectral characteristics of the background
linear scheme in the medium and low wavenumber range, and maintain design order
at critical points by concealing the relative disparity in smoothness indicators.

(2) ε̃adp makes nonlinear schemes scale-invariant of flow variables, which yields con-
sistent suppression for strong numerical oscillations near discontinuities caused by
scaling down, thus improving the applicability and robustness of the WCNS scheme.
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(3) ε̃adp significantly reduces nonlinear error in smooth regions, improves resolution for
both complex small-scale flow structures and discontinuities, and further suppresses
numerical oscillations, with a minor increment in computational cost.

To sum up, the well-balanced performance of the new adaptive algorithm makes it
a good alternative for improving weighted schemes. It is worth noticing that ε̃adp can be
easily extended to various WCNS/WENO schemes, which is left for future work.
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