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Abstract: Regenerative cooling is considered promising in the thermal protection of hypersonic
propulsion devices such as SCRamjet. However, the heat transfer deterioration (HTD) of hydrocarbon
fuel is a severe threat to the thermal structure safety, especially under axially nonuniform heat flux
caused by the thermal load difference in different components. In this work, the heat transfer of
trans-critical n-decane in a mini-horizontal channel is numerically investigated. The influences of the
axially nonuniform heat flux on the heat transfer is focused on. Two types of HTD are recognized
and analyzed. The first type of HTD is induced by the near-wall flow acceleration and the local
thickening of the viscous sublayer. The second type of HTD is closely related to the expansion of the
low thermal conductivity λ and specific heat cp region, which is seriously worsened under axially
nonuniform heat flux, especially when the heat flux peak locates where Tw ≥ Tpc. The minimum
HTC deteriorates by 40.80% and the Tw_max increases from 857 K to 1071 K by 27.5%. The maximum
fluctuation in pressure drop is 6.8% in the variation in heat flux distribution with Φ = 2. This work is
expected to offer a reference to the proper match of fuel temperature distribution and the engine heat
flux boundary in SCRamjet cooling system design.

Keywords: heat transfer deterioration; regenerative cooling; hydrocarbon fuel; non-uniform heat
flux; viscous sublayer

1. Introduction

Air-breathing hypersonic flight vehicles offer brand new options for rapid air strike
and transportation, which draw continuous research focus. SCRamjet is the key hypersonic
propulsion device [1,2]. However, the aerodynamic and combustion heating during hyper-
sonic flights becomes so serious that the engine faces risks of structure over-temperature
and failure. Multiple thermal protection technologies are needed, in which regenerative
cooling is considered promising and feasible [3,4]. Before being injected and burnt, the en-
dothermic hydrocarbon fuel flows through the cooling channels inside the hot engine walls
as coolant which effectively improves both the cooling effect and engine performance [5,6].

To avoid the phase change and offer essential injection pressure, the operating pressure
in the regenerative cooling channel is usually supercritical. During the cooling process, the
hydrocarbon fuel experiences the trans-critical process [7]. Thermo-physical properties vary
dramatically (Figure 1). Heat transfer deterioration (HTD) easily occurs in this zone [8,9],
which most likely causes structure failure [10–13]. To better design the regenerative cooling
system, the heat transfer characteristics of the trans-critical/supercritical hydrocarbon fuel
should be carefully studied.
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Figure 1. Thermo-physical properties of n-decane at a pressure of 3 MPa from NIST database (Pc, 
critical pressure; Tc, critical temperature). 

The HTD of supercritical carbon dioxide draws numerous research interests in the 
effects of buoyancy lift [14–16], micro-scale channels [17–19], thermal properties [20], and 
the working conditions [21,22]. Regarding the supercritical hydrocarbon fuel, two types 
of HTD of the supercritical hydrocarbon fuel in mini-tubes are observed, where the wall 
and bulk fluid temperature exceeds the pseudo-critical temperature [23–25]. The HTD 
mechanism is investigated both experimentally and numerically. 

First, the effects of buoyancy and thermal acceleration on the HTD are found to be 
distinct in certain regions [26–28]. The buoyancy effects are more obvious in vertical tubes 
because of the gravity. Kim et al. [29] presented a criterion of thermal acceleration factor 
Kv ≈ 4q+/Reb, where q+ = 𝛽bqw/ρubcp,b (𝛽b is the bulk thermal expansion coefficient, qw is the 
local wall heat flux, ρ is the density, ub is the bulk velocity, cp,b is the bulk specific heat). 
Zhang et al. [30] concluded that HTD occurs when the thermal acceleration parameter Kv 
< 1.5 × 10−8 or the buoyancy factor Bo* = ீ௥∗ோ௘య.రమఱ௉௥బ.ఴ < 1.6 × 10−10 in 1.8 mm downward tubes. 

Fu et al. [31] found that Bo* = ீ௥∗ோ௘య.రమఱ௉௥బ.ఴ = 1.0 × 10−8 is the critical criterion to evaluate the 
buoyancy effect in vertical tubes with inner diameters of 0.538 mm, 1.09 mm, and 1.82 
mm. The work of Liu et al. [32] showed that for lower inlet Reynolds numbers (e.g., 2700–
4000), buoyancy may significantly deteriorate the heat transfer of upward flow and en-
hance the heat transfer of downward flow. A threshold for Bo* is obtained as 2 × 10−7, 
above which buoyancy influences the heat transfer obviously in the 2.0 mm inner-diame-
ter vertical tubes. As for the thermal acceleration, it links the heating process and the tur-
bulence variation. Dang et al. [33] claimed that the turbulent kinetic energy and the tur-
bulence production term in the vicinity of a wall presented the minimum values where 
HTD occurred. In rectangular channels [34–36], the strong thermal stratification phenom-
enon may occur. The HTD is attributed to the decline in turbulent kinetic energy driven 
by thermal acceleration [34], as well as the formation of large thermal resistance in both 
the viscous sublayer and the core turbulent field [35]. Kurganov et al. [37] discovered that 
the velocity profile of supercritical fuel tends to be M-shaped under heating, which de-
creases the turbulent kinetic energy and causes HTD [38–40]. Wang et al. [24] and Sun et 
al. [25] also discovered that the abnormal distributions of near-wall turbulent kinetic en-
ergy and the radial velocity or laminar-like flow are the reasons of the HTD. 

Thermo-physical properties also affect the heat transfer obviously. Koshizuka et al. 
[13] found that the variations in viscosity and Pr number in the near-wall region affect the 
heat transfer significantly. Zhang et al. [41] pointed out that variations in thermal conduc-
tivity and specific heat capacity affect the heat transfer deterioration with large mass flow 
rate remarkably. Yang et al. [42] found that the dramatic increase in isobaric specific heat 
capacity enhances the heat transfer in the laminar flow regime and the pseudo-critical 
region. As the fuel temperature exceeds a threshold value, around 800 K for most 
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critical pressure; Tc, critical temperature).

The HTD of supercritical carbon dioxide draws numerous research interests in the
effects of buoyancy lift [14–16], micro-scale channels [17–19], thermal properties [20], and
the working conditions [21,22]. Regarding the supercritical hydrocarbon fuel, two types
of HTD of the supercritical hydrocarbon fuel in mini-tubes are observed, where the wall
and bulk fluid temperature exceeds the pseudo-critical temperature [23–25]. The HTD
mechanism is investigated both experimentally and numerically.

First, the effects of buoyancy and thermal acceleration on the HTD are found to be
distinct in certain regions [26–28]. The buoyancy effects are more obvious in vertical tubes
because of the gravity. Kim et al. [29] presented a criterion of thermal acceleration factor
Kv ≈ 4q+/Reb, where q+ = βbqw/ρubcp,b (βb is the bulk thermal expansion coefficient, qw is
the local wall heat flux, ρ is the density, ub is the bulk velocity, cp,b is the bulk specific heat).
Zhang et al. [30] concluded that HTD occurs when the thermal acceleration parameter
Kv < 1.5× 10−8 or the buoyancy factor Bo* = Gr∗

Re3.425Pr0.8 < 1.6× 10−10 in 1.8 mm downward
tubes. Fu et al. [31] found that Bo* = Gr∗

Re3.425Pr0.8 = 1.0 × 10−8 is the critical criterion to
evaluate the buoyancy effect in vertical tubes with inner diameters of 0.538 mm, 1.09 mm,
and 1.82 mm. The work of Liu et al. [32] showed that for lower inlet Reynolds numbers
(e.g., 2700–4000), buoyancy may significantly deteriorate the heat transfer of upward flow
and enhance the heat transfer of downward flow. A threshold for Bo* is obtained as
2 × 10−7, above which buoyancy influences the heat transfer obviously in the 2.0 mm
inner-diameter vertical tubes. As for the thermal acceleration, it links the heating process
and the turbulence variation. Dang et al. [33] claimed that the turbulent kinetic energy and
the turbulence production term in the vicinity of a wall presented the minimum values
where HTD occurred. In rectangular channels [34–36], the strong thermal stratification
phenomenon may occur. The HTD is attributed to the decline in turbulent kinetic energy
driven by thermal acceleration [34], as well as the formation of large thermal resistance in
both the viscous sublayer and the core turbulent field [35]. Kurganov et al. [37] discovered
that the velocity profile of supercritical fuel tends to be M-shaped under heating, which
decreases the turbulent kinetic energy and causes HTD [38–40]. Wang et al. [24] and
Sun et al. [25] also discovered that the abnormal distributions of near-wall turbulent kinetic
energy and the radial velocity or laminar-like flow are the reasons of the HTD.

Thermo-physical properties also affect the heat transfer obviously. Koshizuka et al. [13]
found that the variations in viscosity and Pr number in the near-wall region affect the heat
transfer significantly. Zhang et al. [41] pointed out that variations in thermal conductivity
and specific heat capacity affect the heat transfer deterioration with large mass flow rate
remarkably. Yang et al. [42] found that the dramatic increase in isobaric specific heat capacity
enhances the heat transfer in the laminar flow regime and the pseudo-critical region. As
the fuel temperature exceeds a threshold value, around 800 K for most hydrocarbon fuels,
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an endothermic pyrolytic chemical reaction occurs, which leads to a great variation in the
fuel components and thermal properties. From the experimental results of Yang et al. [42],
the heat transfer is improved by the thermo-physical property variation, thermoacoustic
oscillation, and endothermic reactions of the hydrocarbons. The gas resistance and coke
deposition in the boundary fluid deteriorate the heat transfer. Significant research efforts
are expended to the heat transfer process under pyrolysis and coke formation [43–45].

The operational conditions influence the hydrocarbon fuel heat transfer as well.
Jackson et al. [26] pointed out that q/G (where G is mass flux) can be used to evaluate
the thermal diffusion features in the near-wall region of the supercritical fluid heat transfer.
Urbano et al. [46,47] focused on the initial condition for the HTD phenomenon of three
light hydrocarbons (methane, ethane, and propane) in the forced convection regime in
a 4 mm circular tube. The occurrence of HTD is strongly affected by the critical ratio of
the wall heat flux to the mass flow rate. Wang et al. [48] and Hua et al. [49] studied the
effects of key operational parameters on the heat transfer of methane and n-heptane inside
a 2 mm horizontal miniature tube, which includes the operating pressure, the wall heat
flux, the inlet velocity, and the inlet temperature. The HTD occurs once the wall temper-
ature reaches the pseudo-critical temperature. Fu et al. [31] analyzed the heat transfer
characteristics of aviation kerosene RP-3 with various tube diameters. The tube diameter
effect becomes significant when Tb/Tpc > 0.8. Liu et al. [32] experimentally investigated the
effect of the heat flux on the heat transfer of n-decane under 3 MPa and 5 MPa. The HTD
regions are determined for different inlet Reynold numbers. In addition, considering the
practical demand of hypersonic flight missions, the heat transfer of hydrocarbon fuel under
accelerating states was also studied [50–52]. The results show that the HTD is significantly
affected by acceleration and the overall average surface heat transfer coefficient increases by
27.5% under the maximum acceleration of 6 g. The HTD suppression method is also a hot
topic [53,54]. Huang et al. [23] found that HTD can be effectively eliminated by increasing
the mass flow rate and pressure and decreasing the heat flux and inlet temperature.

It can be seen that various experimental and numerical studies have been carried
out to study the flow and heat transfer characteristics of hydrocarbon fuel at supercritical
pressure. However, the wall heat flux in the SCRamjet is usually nonuniform [55], which
exhibits a distinct effect on heat transfer. For example, the heat flux of the combustor
wall is usually highest because of the combustion heat release. The heat flux of the inlet
wall is usually lowest because no combustion occurs in this section. Even in the same
axial position, the circumferential heat flux can be nonuniform, which has received much
attention [56–58]. Yet, the effects of the axially nonuniform heat flux boundary on the heat
transfer deserve more focus to better understand the regenerative cooling of SCRamjet.

In this work, the heat transfer features of the trans-critical n-decane in a mini-horizontal
circular tube is numerically studied. The mechanisms of the HTD are focused on, especially
the influence of axially nonuniform heat flux on the HTD. The results of this work are
expected to offer possible references for the design of the SCRamjet cooling system.

2. Model Description
2.1. Geometry Description and Boundary Conditions

As shown in Figure 2, dozens of cooling channels are arranged in the SCRamjet
combustor wall, which are exposed to the large combustion heat release. Considering that
the circumferential nonuniform heat flux is not the focus of this work, each cooling channel
is assumed to be heated equally. Thus, a single channel is studied as a representative of the
cooling channels, as shown in Figure 2B. Uniform and nonuniform heat flux boundaries are
imposed on the heated section to simulate the axial thermal boundary in SCRamjet. The
inner diameter d of circular tube is set to be 1 mm. Two 50 mm (50 d) long-adiabatic-domains
are set as the inlet and outlet sections. The mesh is also presented.
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2.2. Solution Methods and Boundary Conditions

Commercial software Fluent 19.0 is adopted to conduct the simulation. The governing
equations include mass, momentum, and energy conservation equations, which can be
found in the ANSYS Fluent theory guide release 19.0 [59]. Considering the circular tube
geometry, a 2D axisymmetric setup is adopted to balance the computational time and
accuracy. The finite-volume method and double-precision pressure-based solver are used.
The convection terms are discretized with the second-order upwind scheme. The second-
order central scheme is used to discretize diffusion terms. The Semi-Implicit Method
for Pressure Linked Equations-Consistent (SIMPLEC) algorithm is applied to couple the
pressure and velocity. The present simulations are considered as converged when the
normalized residual of each equation is less than 10−6. It takes 10,000–20,000 iterations
to converge. The inlet fuel temperature (Tin) is 300 K. The inlet velocity (Vin) is 2.25 m/s.
The average heat flux on the heated wall is 1.2 MW/m2. To effectively capture the HTD
behaviors and avoid fuel pyrolysis, the length of the heated section is set as 500 mm to
ensure the average outlet fuel temperature is below 750 K [60]. The back pressure (P) is set
as 3 MPa. The property data of n-decane is from NIST REFPROP [61]. The effect of gravity
is neglected considering the small horizontal channel and sufficiently high velocity [62].

2.3. Turbulence Model and Validation

Considering the similarity in flow behaviors of supercritical fluids, different turbulence
models are compared with the published experimental results of supercritical water and
n-decane to validate the model’s prediction capability about supercritical fluid flow and heat
transfer. Both experiments are operated in a circular tube under a wide temperature range,
including a trans-critical process [63,64]. In Zhu et al. [64], the errors of the fuel and wall
temperature measurement were dependent upon the K-type thermocouples (accuracy of
0.4%). The computational fluid domain setups are similar to Figure 2B. The solid domain of
the tube wall is also considered to compare with the experimental results. The geometry and
boundary parameters are listed in Table 1. The streamwise distribution of wall temperature
is considered as a significant physical parameter to validate the turbulence model.

As illustrated in Figure 3a, for supercritical water, the SST k-ω turbulent model predicts
the wall temperature best among five turbulence models (maximum error: 1.29%). The
following is the n-decane comparison with Zhu’s experiment, which has been presented in
our previous published work [58]. The wall temperature (Tw) distribution calculated by
the SST k-ω model compares well with the experimental data (maximum error: 2.40%), as
shown in Figure 3b. Overall, the predicting accuracy of the current numerical model in the
flow and heat transfer of supercritical fluid is considered acceptable and adopted for the
following research.
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Table 1. Details of conditions chosen from the corresponding experimental research.

References Fluid din
(mm)

dout
(mm)

Lh
(mm)

Tin
(K)

Mass Flow
(g/s) Thermal Boundary P

(MPa)

Ackerman [63] water 24.38 27.66 1828.8 583.00 189.90 284.00 kW/m2

Nominal heat flux
24.80

Zhu et al. [64] n-Decane 2.00 3.00 940 625.93 0.6083 648.89 W
Volume heat source in wall 4.19
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Figure 3. Validation of turbulent models by comparison with published experimental data: (a) wall
temperature for water; (b) wall/bulk temperature for n-decane.

2.4. Mesh Independence Analysis

As shown in Table 2, four different mesh sizes are set for the fluid domain and solid
domain. The cell distance adjacent to the boundary wall is set as 10−6 mm (y+ < 1)
with a growth factor of 1.05 to improve the accuracy of calculation, especially in the near-
wall region. The mesh is refined by increasing the nodes number to 1.44 times in each
coordinate direction.

Table 2. Detailed information of the mesh generation for independence analysis.

Case A Case B Case C Case D

Thickness of 1st layer (mm) 10−6 10−6 10−6 10−6

Radius growth factor 1.05 1.05 1.05 1.05
y+ <1 <1 <1 <1

Axial No. × Radius No.
(Heated section) 483 × 33 695 × 47 1000 × 67 1440 × 96

Total elements 16,282 (coarsest) 33,212 67,928 139,579 (finest)

The wall temperature distributions of Case B\C\D are quite close (Figure 4a). Taking
the maximum wall temperature (Tw, max) for further analysis (Figure 4b), it can be seen that
Tw, max converges to the result of finest mesh case D as the grid number increases, which is
an asymptotic distribution. The deviation in Case C and Case D is only 0.23%. Thus, the
mesh size of Case C is adopted in this work as a balance of calculation time and accuracy.
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3. Results and Discussion

For the convenience of analysis, the heat transfer coefficient (HTC) is defined as:

h =
q

Tw − Tb
(1)

where Tb is the bulk fluid temperature and is calculated as:

Tb =

∫
A ρuCPTdA∫
A ρuCpdA

(2)

where A is the flow cross-sectional area; ρ, u, CP, and T are the local density, velocity,
specific heat, and temperature of n-decane in the same cross profile, respectively.

To present the mechanism of heat transfer deterioration (HTD) clearly, the uniform
heat flux boundary is first studied before the nonuniform heat flux boundary, as shown in
Figure 5. HTC first begins to decrease from x/d = 225 to 350, which recovers slightly from
x/d = 350 to 390. The whole zone is defined as the 1st HTD (x/d = 225 to 390, marked with
red stars). From x/d = 390, HTC decreases again and reaches a local nadir, which begins
to recover afterward. It is defined as the second HTD (x/d = 390 to 418, marked with blue
stars). HTC reaches a local minimum at x/d = 400. Although the second HTD is not that
significant under uniform heat flux, it is different under the nonuniform heat flux boundary
and is worth studying.

3.1. Mechanism of the First HTD under Uniform Heat Flux

The first HTD starts from the point x/d = 225, where Tw exceeds the fuel pseudo-critical
temperature (Tpc = 648 K). The wall temperature increasing rate shows a dramatic increase
accordingly, as shown in Figure 5. The radial distributions of thermo-physical properties
in the HTC decreasing zone of the first HTD are demonstrated in Figure 6. It is noted
that all four properties vary gently along the flow direction in the core region, where the
fluid temperature is much lower than Tpc. Meanwhile, in the near-wall region, the fuel
temperature (Tf) is much higher to trigger the trans-critical process. The variations in
thermophysical properties become sharp. The density and viscosity fall sharply with x,
which causes the “thermal acceleration effect” [27] in the near-wall region. The thermal
conductivity falls and the specific heat capacity increases. The influences on the heat
transfer are opposite and largely neutralized. The results of density and viscosity variations
are further considered.
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Figure 5. Variations in the wall temperature and HTC along the flow direction.

As shown in Figure 7, axial temperature gradients (dT/dx) are presented to denote the
heat transfer resistance. In the deteriorated section x/d = 225–350, dT/dx of r/R = 1.00 is
much larger than r/R = 0.96 and 0.88, which indicates that the heat transfer resistance in
this section mainly locates in the near-wall region r/R = 0.96–1.00. It is consistent with the
sharp variation zone of density and viscosity.

As shown in Figure 8a, the turbulent kinetic energy (k) increases slowly along the
flow direction when x/d ≤ 200, which is due to the drop of fluid viscosity versus x/d
(Figure 6b). When x/d exceeds 200, the turbulent kinetic energy begins to decrease versus
x/d. Meanwhile, in the near-wall region, du/dx (axial velocity gradient) is much higher when
x/d ≥ 225 (Figure 8b), which is the result of the dramatic density decreasing rate when Tf
approaches Tpc. The axial flow acceleration ability is notably enhanced in the near-wall
region, which decreases the velocity difference between the near-wall and the core region
visibly. Consequently, the turbulence weakens and the heat transfer is deteriorated, which
is similar to the results of Huang et al. [23] and Jackson et al. [26]. That also explains
the higher heat transfer resistance in the near-wall region r/R = 0.96–1.00. In addition,
the decrease in thermal conductivity in the near-wall region also helps cause the first
HTD (Figure 6c).

It is also worth noting that a negative axial velocity gradient occurs in the near-wall
supercritical fluid when x/d exceeds 225 (Figure 8b) and the low-velocity zone in the near-
wall region (Figure 9a). Only the part of interest is presented, i.e., r/R = 0.98–1.00. The
decrease in density represents the “thermal acceleration” ability. Beginning from x/d = 225,
the fluid density decreases sharply along the x direction as the fuel temperature approaches
the pseudo-critical point (Figure 9b). This high-density-decreasing-rate zone radially
moves toward the core region and gradually expands. In addition, as x/d increases, the wall
temperature exceeds Tpc. Therefore, the decreasing rate of fluid density in the near-wall
region falls obviously. The flow acceleration ability degenerates. In some regions, velocity
even decreases. As shown in Figure 9c, the near-wall low velocity zone is accompanied by
the thickening of the viscous sublayer (y+ < 5), which increases the fluid residence time in
the viscous sublayer and increases the local radius heat transfer resistance. It also helps
to cause the first HTD. It is noticed that the near-wall low-velocity zone disappears from
the position x/d = 380 and the viscous layer becomes much thinner. Because more and
more fuel reaches the pseudo-critical temperature and the velocity is high enough in the
near-wall region, the HTC begins to recover.
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3.2. Mechanism of the Second HTD under Uniform Heat Flux

According to Figure 5, a new sharper rise in wall temperature appears from x/d = 390,
which is more evident judging from the wall temperature rising rate in Figure 7. dT/dx
(r/R = 1.00) rises dramatically from x/d = 390. The HTC first decreases slightly and then
recovers. Thus, the zone of x/d = 390 to 418 is considered as the influence region of the
second HTD. The second HTD is observed where Tb→ Tpc and Tw� Tpc (Figures 5 and 10).
Therefore, the variations in fluid physical-properties in the near-wall region become mild
again and hardly affect the second HTD. Moreover, the viscous layer becomes much thinner
when x/d > 380. The mechanism of the second HTD is completely different from the first
HTD and deserves further analysis. Although the second HTD is not that obvious under
the uniform heat flux boundary, it will be notable under the nonuniform heat flux boundary
and deserves further study.
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As shown in Figure 7, the distributions of dT/dx at three radial positions in the second
HTD zone (x/d = 390–418) are totally opposite to those of the first HTD zone (x/d = 225–350).
The dT/dx distributions at r/R = 0.88 and 0.96 are close and much higher than that of the
r/R = 1, indicating that the main heat transfer resistance of the second HTD moves to
the region r/R < 0.96, the thermal properties of which are focused. A “U”-type radial
distribution of λ is noticed (Figure 11). The nadir point moves gradually to the core
region as x/d increases, which causes a region with low λ (r/R = 0.6–0.96). Meanwhile, the
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“mountain”-type radial distribution of cp offers a similar influence (Figure 12). The peak of
cp moves to the core region as x/d increases, which causes a low-cp region (r/R = 0.6–0.96).
The decrease in both λ and cp in this region results in the high heat transfer resistance and
causes the second HTD.

Aerospace 2022, 9, x FOR PEER REVIEW 11 of 22 
 

 

 
Figure 10. Bulk flow parameters along the flow direction. 

As shown in Figure 7, the distributions of dT/dx at three radial positions in the second 
HTD zone (x/d = 390–418) are totally opposite to those of the first HTD zone (x/d = 225–
350). The dT/dx distributions at r/R = 0.88 and 0.96 are close and much higher than that of 
the r/R = 1, indicating that the main heat transfer resistance of the second HTD moves to 
the region r/R < 0.96, the thermal properties of which are focused. A “U”-type radial dis-
tribution of λ is noticed (Figure 11). The nadir point moves gradually to the core region as 
x/d increases, which causes a region with low λ (r/R = 0.6–0.96). Meanwhile, the “moun-
tain”-type radial distribution of cp offers a similar influence (Figure 12). The peak of cp 
moves to the core region as x/d increases, which causes a low-cp region (r/R = 0.6–0.96). 
The decrease in both λ and cp in this region results in the high heat transfer resistance and 
causes the second HTD.  

 
Figure 11. Radial distributions of thermal conductivity in the second HTD zone. Figure 11. Radial distributions of thermal conductivity in the second HTD zone.

Aerospace 2022, 9, x FOR PEER REVIEW 12 of 22 
 

 

 
Figure 12. Radial distributions of specific heat capacity in the second HTD zone. 

Finally, the second HTD disappears. As the x/d continues increasing, the turbulent 
diffusion between the near-wall region and the core region intensifies accordingly. The 
near-wall high fluid temperature zone expands to the core region. The turbulent kinetic 
energy (k) and thermal diffusion coefficient (α) are analyzed in Figure 13. In the region r/R 
< 0.96, the turbulent kinetic energy increases versus x/d. α also increases versus x/d. The 
variations in k and α both enhance the heat transfer, the effect of which begins to outweigh 
the effect of the low-λ and -cp region. Finally, the domination of thermal properties ends 
in the area x/d > 418 and the heat transfer is enhanced again. 

 
Figure 13. Radial distributions of turbulent kinetic energy (a) and thermal diffusion coefficient (b) 
in the second HTD zone. 

3.3. Heat Transfer under Axially Nonuniform Heat Flux 
The combustion heat release and aerodynamic heating of the SCRamjet differ in dif-

ferent engine components, which leads to the nonuniform wall heat flux in the flow direc-
tion [55]. As shown in Figure 14a, nine axially nonuniform heat flux distributions with the 
same average value (1.2 MW/m2) and degree of nonuniformity (Φ = qfmax/qfmin = 2) are de-
ployed to simulate the nonuniform heat flux boundary in the SCRamjet. The distances 
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outlet fuel temperature is the same in different cases because of the same heating power. 
The distance between the adjacent heat flux peaks is 50 mm. The maximum wall 

Figure 12. Radial distributions of specific heat capacity in the second HTD zone.

Finally, the second HTD disappears. As the x/d continues increasing, the turbulent
diffusion between the near-wall region and the core region intensifies accordingly. The
near-wall high fluid temperature zone expands to the core region. The turbulent kinetic
energy (k) and thermal diffusion coefficient (α) are analyzed in Figure 13. In the region
r/R < 0.96, the turbulent kinetic energy increases versus x/d. α also increases versus x/d. The
variations in k and α both enhance the heat transfer, the effect of which begins to outweigh
the effect of the low-λ and -cp region. Finally, the domination of thermal properties ends in
the area x/d > 418 and the heat transfer is enhanced again.
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3.3. Heat Transfer under Axially Nonuniform Heat Flux

The combustion heat release and aerodynamic heating of the SCRamjet differ in
different engine components, which leads to the nonuniform wall heat flux in the flow
direction [55]. As shown in Figure 14a, nine axially nonuniform heat flux distributions with
the same average value (1.2 MW/m2) and degree of nonuniformity (Φ = qfmax/qfmin = 2) are
deployed to simulate the nonuniform heat flux boundary in the SCRamjet. The distances
between the heat flux peak and the tube inlet in nine cases are defined as Lq_C1 to Lq_C9.
The outlet fuel temperature is the same in different cases because of the same heating
power. The distance between the adjacent heat flux peaks is 50 mm. The maximum wall
temperature (Tw, max) is selected to be a cooling effect indicator, which directly determines
the structure safety. As shown in Figure 14b, there is a peak in the Tw, max distribution
from Case No.1 to Case No.9, which occurs at the middle part of the tube (x/d = 350, Case
No.6). According to the variation in Tw, max, Case No.1, No.6, and No.9 are selected as
representatives for the detailed analysis of the axially nonuniform heat flux effects.
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Figure 14. Axially nonuniform heat flux distributions (a) and heat flux peak positions (b) in differ-
ent cases.

As shown in Figure 15, the wall temperature distribution is closely related to the heat
flux peak position. The onset points of HTD are defined as Lhtd1_Cn and Lhtd2_Cn for the first
and second HTD, respectively, in which n is Case No. In Case No.1, the second HTD is not
serious. Both the first and second HTD are successfully captured in Case No.6 and No.9.
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3.3.1. Evolution of First HTD under Axially Nonuniform Heat Flux

The first HTD begins from x/d = 125 because the location of the heat flux peak is in
the upstream. The HTC of Case No.1 stops increasing with fuel temperature and remains
at a lower level compared with the same x/d zone in Case No.6 and No.9. As shown in
Figure 16, the integral levels of du/dx and k are lowest in Case No.1, which explains why
the HTC of Case No.1 is lowest when the first HTD occurs. When the heat flux peak moves
downstream, the near-wall local peak of du/dx in Case No.6 is similar to that of Case No.9,
which are both more obvious than that of Case No.1. The flow acceleration is thus more
serious and k decreases more rapidly versus x/d, which cause a more serious first HTD in
Case No.6 and No.9 than in Case No.1. The HTC curves in the first HTD of Case No.6 and
Case No.9 are highly similar, the difference of which is mainly in the starting point.

The thickness of the viscous sublayer is affected by the heat flux distribution and heat
flux (Figure 17). When the first HTD occurs, the viscous sublayer begins to thicken. The
thickening phenomenon is most obvious in Case No.6. in different cases. The corresponding
heat transfer resistance is largest. It helps explain the first HTD difference with different
heat flux distributions.

3.3.2. Evolution of Second HTD under Axially Nonuniform Heat Flux

The second HTD is seriously amplified by the nonuniform heat flux, which results in
the wall temperature peak (Figure 15) and becomes a severe risk to the thermal structure.
As we know, a higher heat flux tends to induce heat transfer deterioration. The heat flux
peak of Case No.1 locates in the front section of the tube and Lq_C1 is shortest. However, the
onset point of the second HTD in Case No.1 is faraway downstream and very mild. The
Lhtd2_C1 is even larger than Lhtd2_C6. As concluded in Section 3.2, the second HTD is affected
jointly by the turbulence and the thermal properties degeneration (region with low λ and
cp). As shown in Figure 18a, α is lowest in Case No.6 and highest in Case No.1. Different
nonuniform heat flux distributions change the balance of these two aspects obviously.
Tb of Case No.1 increases most rapidly along the flow direction because of the nonuniform
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heat flux (Figure 18c), which results in the most rapid increase in velocity. As shown in
Figure 18b, k is highest in Case No.1. Before the second HTD occurs, Tb of Case No.1 is in
the lead and the turbulence becomes more violent, which is more dominant and greatly
limits the influences of the low-λ and -cp zone. As a result, the second HTD in Case No.1 is
alleviated to a weak level and moves to the downstream.
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Regarding the second HTD in Case No.6 and No.9, the effects of turbulence and
thermal properties both degenerate, which lead to obvious heat transfer deterioration
together with the local heat flux peak. As analyzed in Section 3.2, the second HTD oc-
curs where the Tb → Tpc. The heat flux peak of Case No.6 locates right at the position
(Lq_C6 = 350 mm) where Tb → Tpc (Figure 18c). As shown in Figure 18d, in the second HTD
onset point of Case No.6, the near-wall fluid is greatly overheated and the fluid temperature
in the core region is lowest in three cases, which indicates the largest heat transfer resistance
in the radius direction and intensifies the second HTD greatly. As a result, the second HTD
is most serious in Case No.6.

From the analysis above, it can be known that the heat flux peak position has a
remarkable effect on the heat transfer deterioration. When the heat flux peak is at the
trans-critical zone Tb → Tpc, as with Case No.6, the balance of the k and λ is changed
and the second HTD is intensified, which leads to high wall temperature and possible
structure failure. When the heat flux peak is far from the trans-critical zone, the second
HTD alleviates. Especially in Case No.1, the first HTD and second HTD both miss the
heat flux peak, both of which are mild. It is concluded that in the cooling design, the fuel
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flow direction and bulk temperature should be carefully designed based on the thermal
boundary to avoid HTD.
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When compared with the uniform heat flux case (Figure 5), the minimum HTC
deteriorates by 40.80% with a nonuniform heat flux boundary (Φ = 2, Case No.6). It
presents a remarkable influence of nonuniform heat flux distribution on the heat transfer.

3.3.3. Cooling Effect under Axially Nonuniform Heat Flux

The maximum wall temperature is a direct indicator of the engine thermal structure
cooling effect, which shows a close link with the heat transfer deterioration and should
be analyzed emphatically. Case No.1, Case No.6, and two new cases Case No.10 (Φ = 4,
Lq = 100 d) and Case No.11 (Φ = 4, Lq = 350 d) are introduced and compared. In Case No.1,
the heat flux peak locates at the subcritical temperature zone (x/d = 100) with the degree
of nonuniformity Φ = 2. Both types of HTD alleviate and Tw_max is only 840 K. When it
comes to Case No.6, the heat flux peak is near to the pseudo-critical point, inducing a
severely aggravated deterioration behavior. Tw_max increases by 27.5%, which comes to
1071 K (Figure 19). More seriously, in case (Φ = 4, Lq = 350 d), both types of HTD worsen
significantly and Tw_max increases to 1344 K. Particularly, from the aspect of the cooling
effect, when comparing Case No.6 (Φ = 2, Lq = 350 d, Tw_max=1071 K) with Case No.10
(Φ = 4, Lq = 100 d, Tw_max = 944 K), Tw_max falls by 127 K as Φ increases, which further
indicates the positive influence of the heat flux peak location design. Therefore, the axially
nonuniform heat flux with a peak near to the trans-critical zone is high-risk, especially
with a higher degree of nonuniformity. The cooling effect is better with the heat flux peak
locating at the lower-fuel-temperature zone where Tw < Tpc.
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The pressure drop is also a commonly seen parameter in heat transfer analysis (Table 3).
The variation in heat flux distribution (Case No.1–Case No.9) does not present a remarkable
effect on the pressure drop. The maximum fluctuation in pressure drop is 6.8% with Φ = 2.
Because the degree of nonuniformity Φ is the same, the overall level of the fuel velocities is
similar. In Case No.10 (Φ = 4, Lq = 100 d), the heat flux peak value is higher than cases with
Φ = 2. Fuel is rapidly heated from the inlet of the heated section. The overall level of the
fuel velocity is higher and the pressure drop is higher than cases with Φ = 2. As in Case
No.11 (Φ = 4, Lq = 350 d), the fuel does not experience the significant heat flux peak until
near to the outlet of the heated section. The pressure drop is lower than Case No.10 (Φ = 4,
Lq = 100 d). Thus, it is known that the heat flux distributions do not have a significant effect
on the pressure drop. A higher degree of heat flux distribution nonuniformity increases the
pressure drop.

Table 3. Pressure drops of the heated section in different cases.

Case No No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10 No.11

Pressure drop (kPa) 67.47 67.61 68.00 68.30 68.40 68.05 67.04 65.52 63.71 75.92 71.11

4. Conclusions

To support the regenerative cooling design of the SCRamjet, the trans-critical flow and
heat transfer process of n-decane in the mini-horizontal circular tube is numerically investi-
gated in this work. The SST k-ω turbulence model is adopted. The new understandings
of two typical HTD behaviors under axially nonuniform heat flux are presented from the
perspectives of thermal properties and flow heat transfer resistance. The main conclusions
are listed below:

(1) The first HTD, which tends to occur where Tw approaches Tpc, is mainly due to the
flow acceleration in the near-wall region and local thickening of the viscous sublayer.
When Tw > Tpc, the density variation rate of the near-wall thin layer fluid decreases
rapidly, which weakens the axial acceleration capability and thickens the viscous
sublayer. The fluid residence time in the boundary layer increases and the heat
transfer from the heated wall to the core region is weakened.
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(2) The expansion of the low λ and cp region is the elementary inducement to the second
HTD. The range of low-λ and -cp regions and turbulence intensity jointly determine
the degree of the second HTD.

(3) Axially nonuniform heat flux with a peak at the high-temperature zone worsens
the HTD obviously. Especially the second HTD, the minimum HTC deteriorates
by 40.80% and the Tw_max increases from 857 K to 1071 K by 27.5%. Both types of
HTD alleviate when the heat flux peak locates at the lower-fuel-temperature zone
Tw < Tpc. From the aspect of the cooling effect, when comparing Case No.6 (Φ = 2,
Lq = 350 d) with Case No.10 (Φ = 4, Lq = 100 d), although Φ increases, Tw_max falls
with the improvement in head flux peak location. The cooling effect can be improved
through careful matching of the thermal boundary and fuel temperature distribution.
The heat flux distributions do not have a significant effect on the pressure drop, the
maximum increase of which is 12.52% compared to Case No.1.
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Nomenclature

Bo* buoyancy parameter
Cp constant-pressure heat capacity, J/(kg·K)
d diameter of a cooling tube, mm
et total energy, J/kg
G mass flow flux, kg/(s·m2)
g gravitational acceleration, 9.8 m/s2

Kv thermal acceleration number
h heat transfer coefficient, W/(m2·K)
k turbulent kinetic energy, m2/s2

L length, mm
P(p) pressure, Pa
Pr Prandtl number
q heat flux, W/m2

r radial coordinate, mm
R radius of a cooling tube, mm
Re Reynolds number
T temperature, K
Tb bulk temperature, K
→
u velocity vector, m/s
V velocity, m/s
x axial coordinate, mm
y radial coordinate, mm
y+ dimensionless wall distance
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Greek symbol
λ thermal conductivity, W/(m·K)
ρ density, kg/m3

µ viscosity, Pa·s
τ viscous stress tensor, N/m2

ω specific dissipation rate, 1/s
Φ degree of heat flux nonuniformity
Subscripts
b bulk
c critical
f fuel
in inlet parameter
pc pseudo-critical
w wall
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