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Abstract: In this paper, for an Low-Earth Orbit (LEO) satellite network with inter-satellite links, a
routing optimization method is developed in the case of stochastic link failure. First, a discrete-
time strategy is used for the satellite network to acquire several static topological graphs during a
cycle. Based on the static topological graphs regarding stochastic link failure, a constraint model is
established that constructs the task revenue, switching times and routing cost as indicators. Then, an
improved Genetic Algorithm based on A* is proposed to optimize the topology under the constraint
model. In particular, to reduce the cost of computation, a new generation strategy for the initial
solution is presented which combines the roulette wheel operator and the A* algorithm. Finally,
the effectiveness of the proposed method is illustrated by a group of numerical simulations for the
network with stochastic link failure.

Keywords: routing optimization; stochastic link failure; LEO satellite networks

1. Introduction

With the development of communication technology, satellite internet has become
an important part of the next generation of global communication systems [1,2], which
provides internet service of low latency and high bandwidth (broadband) [3]. The United
States, the European Union, Russia and China have developed their own satellite internet
constellation (SIC) programs, such as Starlink and Telesat, which are being established [4,5].

The orbit of a satellite can be divided into High-Earth Orbit (HEO), Medium-Earth
Orbit (MEO) and Low-Earth Orbit (LEO) in terms of altitude. Because of the benefits of
low latency and the development of inter-satellite link (ISL) technology, the LEO satellite
network has attracted much attention [6,7]. However, the topology of the network is
much more complicated than that of HEO or MEO satellite networks due to the fact that
the satellites in LEO move very fast [8]. Therefore, with a view to the characteristics of
high-speed movement, the selection of an appropriate communication routing becomes the
key of LEO satellite network data transmission.

At present, satellite routing algorithms can be divided into the Centralized Routing
Algorithm (CRA) and Distributed Routing Algorithm (DRA) [9,10]. In CRA, the control
center plans routing and sends results to the others in the network based on the collected
status information of each satellite [11]. Furthermore, the topology within each time
period is assumed static by dividing the time into several intervals, and then the shortest-
route algorithms, such as Dijkstra’s algorithm, are used for route planning in each time
interval [12]. DRA is a connectionless routing algorithm that does not consider global nodes,
reducing the requirement of memory space effectively. Nevertheless, the DRA requires
high online processing capacity at each node and may not yield optimal solutions [13].

In addition, according to different goals, such as network connectivity, terminal uti-
lization, average end-to-end distance, etc., different optimization methods will produce
different network topologies [14,15]. In [16–18], for a satellite network using inter-satellite
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laser link (ISLL), a random link allocation scheme was proposed, which randomly gener-
ates a connected network topology and has the goal of maximizing the number of links,
showing that the logical connections to be formed depend on the line-of-sight visibility of
satellites.

In terms of ISLL, due to the platform vibration, internal system noise and pointing
error, there is a possibility of failure in satellite links [19]. In [20,21]; with the assumption
of constant probability of failure and transmitted power, the modified Rayleigh method
was used to calculate the pointing error and the optimal root-mean-square width of the
Gaussian beam. In [22], based on the space optical communication link equation, the
signal-to-noise ratio equations were given for the inter-satellite coherent optical receiving
system with different aberrations.

In this paper, for an LEO satellite network, we establish the model with stochastic
link failure, based on the task revenue, switching times and routing costs. To tackle this
challenging problem, an improved Genetic Algorithm (GA) is proposed which changes
the means of initial solution generation. The main contributions of this work are stated as
follows:

(1) Different from previous studies [23,24], we consider the case of ISLL failure by treating
communication tasks as stochastic events and calculate the probability of failure in
the network.

(2) To optimize the topology of the network, the improved Genetic Algorithm based on
A* (GA-AS) is proposed, including a new initial population generation strategy that
produces initial solutions to provide an optimization direction, resulting in effectively
reducing the computation cost.

The remainder of this paper is organized as follows. The LEO satellite network model,
including optimization constraints and objective functions, is established with stochastic
link failure in Section 2. In Section 3, the GA-AS is proposed and the improved A* strategy
is explained in detail. Simulation results under different task scales and population size are
presented in Section 4. Finally, conclusions are provided in Scetion 5.

2. Mathematical Model
2.1. LEO Satellite Network Formation

According to the area and function, the system can be divided into three parts: space,
ground and user segment. In this paper, we assume that the space segment contains only
satellites. The ground segment includes functional entities such as gateway stations and
network management centers, and the user segment consists of various types of terminal
equipment and application facilities.

The simplified model of the LEO satellite network is shown in Figure 1, which includes
five satellites. Usually, the user segment selects the upper satellite (SA I) and communicates
with it through microwave, and then transmits data to the satellite (SA V) above the ground
station via the relay satellite through ISLL, and finally the SA V communicates with the
ground segment via microwave. Since the system adopts ISLL, the quality and range of
transmission are greatly improved compared to microwave. On the one hand, link failure
may occur during the communication due to the transmission errors and system noise. On
the other hand, the complexity of the topology will increase significantly with the number
of satellites due to the adoption of ISL.
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Figure 1. Simplified schematic diagram of Low-Earth Orbit (LEO) satellite network.

2.2. Graph Theory

Satellites’ operation is cyclical, so the Discrete-Time Dynamic Virtual Topology Routing
(DT-DVTR) method can be used to divide the time. In each time interval, as illustrated in
Figure 2, the satellite network topology can be approximately regarded as static.

Figure 2. Key diagram of Discrete-Time Dynamic Virtual Topology Routing (DT-DVTR) algorithm.

Supposing a satellite network is divided into NT static topologies, which is composed
of n satellites in period T, the c th topology can be represented by a static directed graph
G(c) = (V , E(c)). Nonempty finite set V(c)= {v1, · · · , vn} and E(c) ⊆ V × V represent
the node and edge set, respectively. Matrix Ac=[ac

ij] ∈ Rn×n, ac
ij ∈ {0, 1} represents

the adjacency matrix if (vi, vj) ∈ E , aij = 1 ((vj, vi) ∈ E , aji = 1); otherwise, aij = 0
(i, j = 1, . . . , n). The adjacent set of node vi is defined as Ni = {j|(vi, vj) ∈ E}. The in-
degree matrix of G(c) is denoted by L= diag{l1, · · · , ln}, where li = ∑j∈Ni

aji, i = 1, · · · , n
is the number of edges with vi as the end node, which is called the in-degree of vi. Corre-
spondingly,O= diag{o1, · · · , on} is defined as the out-degree matrix, where oi = ∑j∈Ni

aij,
i = 1, · · · , n represents the number of edges with vi as the starting node, which is called the
out-degree of vi. The cost matrix is denoted by Dc = [dc

i,j] ∈ Rn×n, dc
i,j ∈ [0,+∞), where

dc
i,j represents the cost of (vi, vj).
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2.3. LEO Satellite Network Model
2.3.1. Communication Routing Model

Suppose VP c= {vpc
1, · · · , vpc

NSc
} is the set of communication tasks in G(c), and each

task contains a start node vc,start
k and a end node vc,end

k , which denoted as vpc
k={v

c,start
k , vc,end

k },
vc,start

k , vc,end
k ∈ V . We make the following assumptions:

• Assumption 1: For vpc
k, there are NMc

k feasible paths pathc,k
r , r = 1, · · · , NMc

k
(NMc

k ≥ 1 means that there is at least one feasible path in vpc
k). All feasible paths form

the set P c
k = {pathc,k

1 , · · · , pathc,k
NMc

k
}.

• Assumption 2: An arbitrary feasible path pathc,k
r consists of non-repeating edges.

δ
pathc,k

r
(i,j) =1, i, j = 1, · · · , n, r = 1, · · · , NMc

k is used to represent (vi, vj) ∈ pathc,k
r , and

vice versa.

The routing selection of vpc
k is equivalent to selecting a path with the least cost from

the NMc
k. Let poc

k be the optimal path in P c
k , and all optimal paths poc

k, k = 1, · · · , NSc
form the optimal path set POc= {poc

1, · · · , poc
NSc
}. The optimal connection matrix of G(c)

is represented by Hc=[hc
ij] ∈ Rn×n hc

ij ∈ {0, 1} with the property that if (vc
i , vc

j ) ∈ PO
c,

hc
ij = 1; otherwise, hc

ij = 0(i, j = 1, · · · , n).

2.3.2. Link Switch Model

The satellite undergoes a series of works such as alignment before establishing the ISLL.
It costs more and takes more time to establish new communications than to maintain the
previous connection. We suppose that in any two adjacent G(c− 1) and G(c), c = 2, · · · , NT ,
POc−1 and POc are the optimal path sets, respectively,Hc−1 andHc are the corresponding
optimal connection matrix, respectively. NSc=[nsc

ij] ∈ Rn×n, nsc
ij ∈ {0, 1} is the switch

matrix of G(c), and nsc
ij is defined as:

nsc
ij =

{
1, hc

ij = 1, hc−1
ij = 0

0, others
c = 2, . . . , NT (1)

In particular, we define NS0 = 0.

2.4. Stochastic Link Failure Model
2.4.1. Inter-Satellite Laser Link Signal (ISLL) Model

It is assumed that the ISLL system adopts Intensity Modulation Direct Detection and
Gaussian beam with the direction from satellite i to j. According to [22], the received
luminous power PR of satellite j can be expressed as:

PR = PTGTGRηTηRLT

(
λ

4πdij

)2

(2)

where PT is the emitted luminous power; GT is the emitted antenna gain; GR is the received
antenna gain; ηT and ηR are the transmitting and receiving antenna efficiency, respectively;
LT = exp(−GTθij

2) is the pointing error loss factor, where θij is the pointing error deviation
angle; λ is the laser wavelength ; dij is the transmission distance.

The detector of satellite j converts the received luminous power PR into current signal
Ij, which is expressed as:

Ij = RPR (3)

where R is the responsivity. Combining Equations (2) and (3), we obtain:
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Ij = RPTGTGRηTηR

(
λ

4πdij

)2

exp(−GTθij
2) (4)

2.4.2. Pointing Error

The beam radial pointing error angle of satellite i is denoted by θij = (θx, θy)T , where
θx ∼ N(µx, σ2

x) and θy ∼ N(µy, σ2
y ) represent the pointing error angle of azimuth and pitch,

respectively. Thus, θij =
√

θ2
x + θ2

y obeys the Beckman distribution [25] and approximates
it to the modified Rayleigh distribution with parameter σ mod [20]. The approximate
expressions of the probability density function (PDF) and cumulative distribution function
(CDF) of θij are obtained as:

fθ(θij) ≈
θij

σ2
mod

exp

(
−

θij
2

2σ2
mod

)
, θij ≥ 0 (5)

Fθ(θij) ≈ 1− exp

(
−

θij
2

2σ2
mod

)
(6)

where

σ mod =

(
3µ2

xσ4
x + 3µ2

yσ4
y + σ6

x + σ6
y

2

)1/6

(7)

2.4.3. Stochastic Link Failure

Generally, when the channel capacity C is insufficient to meet the requirement of
transmission rate R0, we refer to this situation as communication failure. The stochastic
failure matrix is denoted by Bc=[bc

ij] ∈ Rn×n, where bc
ij ∈ [0, 1] represents the probability

of communication failure from satellite i to j, expressed as

bc
ij = P[C(S) ≤ R0] (8)

where S denotes the signal-to-noise ratio (SNR). Since C(•) increases monotonically with S,
the failure probability can be shown as

bc
ij = P(S ≤ a) (9)

In the formula, a is the preset threshold, and C−1(•) is the inverse function of C(•).
At the receiving system, the signal has additive white Gaussian noise with mean

of 0 and variance of σ2
N after the photoelectric detector. Therefore, the instantaneous

signal-to-noise ratio S of the electrical signal received can be represented as:

S =
I2

2σ2
N

(10)

Combining Equations (4), (6) and (10), the CDF of S can be indicated as

Fs(s) = P(S ≤ s) = P

[
θ ≥

√
1

2GT
ln

B
s

]
= 1− Fθ

[√
1

2GT
ln

B
s

]
=

s
B

exp(
1

4GTσ2
mod

) (11)

where

B =
1

2σ2
N

(
λ

4πdij

)4

(RPTGTGRηTηR)
2 (12)

For a given threshold a, the failure probability is calculated by
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bc
ij = P(S ≤ a) =

a
B

exp(
1

4GTσ2
mod

) (13)

2.5. Operational Constraints

Based on the above discussion, we establish a multi-constraint satisfaction model of
the LEO satellite network. Some assumptions are made as follows:

1. The on-board power consumption of satellites is only affected by the number of ISL;
2. Attenuation of microwave is ignored due to other reasons such as outside interference;
3. Once satellite communication starts, it cannot be interrupted;
4. During the entire period NT , the quantity of satellites remains the same.

According to the characteristics and operational regulations of the satellite formation,
some constraints can be listed as follows:

• (1) Communication constraints between satellite and gateway station.

If the ith satellite is visible to the pth gateway station, the angle αpi between the
vector of the satellite’s centroid pointing to the gateway station and connecting the satellite
to the center of the Earth cannot exceed the satellite’s maximum offset capability αs max,
expressed as:

αpi ≤ αs max (14)

• (2) Communication constraints between satellite and user terminals.

If the i th satellite is visible to the q th user, the angle αqi between the vector of the
satellite’s centroid pointing to the terminal and connecting the satellite to the center of the
Earth cannot exceed the satellite’s maximum offset capability αo max. It is expressed as:

αqi ≤ αo max (15)

• (3) Satellite’s microwave communication capability constraints.

When the satellite communicates with ground gateways and terminals, data uploads
and downloads occur. The data upload speed pi

up and download speed pi
down of satellite i

cannot exceed the maximum values pup max and pdown max, expressed as:

pi
up ≤ pup max (16)

pi
down ≤ pdown max (17)

• (4) Satellite laser communication capability constraints.

The number of inter-satellite links established by satellites at the same time is limited;
that is, the out-degree oi and in-degree li of the satellite i cannot exceed their maximum
values oi

max and li
max. This is expressed as:

oi ≤ oi
max (18)

li ≤ li
max (19)

• (5) ISLL communication range restriction.

The communication distance dij between satellite i and j cannot exceed the maximum
dmax, expressed as:

dij ≤ dmax (20)
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2.6. Objective Function

The function f1 represents the revenue of tasks, expressed as:

f1 =
NSc

∑
k=1

ψc
k priorityc

k (21)

where priorityc
k represents the priority of task vpc

k, and ψc
k ∈ [0, 1] represents the probability

of vpc
k being executed. The calculation formula of ψc

k is as follows:

ψc
k = ∏i,j (1− δ

poc
k

(i,j)b
c
ij) (22)

Function f2 represents the number of all new links in the graph G(c), expressed as:

f2 =
n

∑
i=1

n

∑
j=1

nsc
ij (23)

where nsc
ij is an element in NSc.

Function f3 represents the total cost of the graph G(c), expressed as:

f3 =
NSc

∑
k=1

∑i,j δ
poc

k
(i,j)d

c
i,j (24)

Taking into account the different magnitudes and importance of f1, f2 and f3, the
non-dimensional parameter q = [q1, q2, q3]

> and weight w = [w1, w2, w3]
> are introduced

into the objective function f . The optimization objective is defined as:

max f = (w1 · p1 · f1 − w2 · p2 · f2 − w3 · p3 · f3) (25)

where w1, w2, w3 ∈ [0, 1] represents the weight coefficient, set according to the actual situation.

3. Optimization Method

The complexity of the network topology increases dramatically with the number of
satellites. On the one hand, it is hard to solve the multi-constraint problem by various
shortest-route algorithms; on the other hand, the initial solution of intelligent optimization
algorithms is generally generated by a stochastic approach, so there is a large uncertainty
in the optimization direction. Based on the above considerations, we propose the improved
GA algorithm based on A* (GA-AS), which introduces the roulette wheel selection into the
A* algorithm to generate a series of solutions, and then the solutions are used as the initial
population of the Genetic Algorithm (GA).

3.1. Improved Genetic Algorithm Based on A* (GA-AS)

GA is a self-organizing and self-adaptive artificial intelligence technology that simu-
lates the evolutionary process and mechanism of natural organisms to solve problems. The
basic framework of GA-AS is similar to GA’s but the initial solution generator has been
significantly modified. Here, we give the framework of GA-AS, and the flow of it is shown
in Algorithm 1.

• Initialization: The initial population needs to be generated before the iterative calcula-
tion is performed. Assuming that the population size is N, we adopt the improved A*
strategy and run the algorithm N times to generate the initial population in this work.

• Coding: The coding is the process of establishing the mapping relationship between
phenotype and genotype. We use natural number coding to transform the problem
into an optimal combination problem.
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• Selection: In this process, the principle of competition in nature is simulated by calcu-
lating the fitness value, which is the criterion for assessing individuals’ performance,
and then the outstanding individual is selected.

• Heredity: This part includes crossover and mutation. Inspired by biology, the offspring
is produced by gene crossover and mutation of parents. Usually, the offspring shares
almost features of the parents, and it is possible for the offspring to have properties
that the parent does not have due to the mutation operator.

In GA-AS, when the genotypes change, the population needs to be filtered to screen
out the individuals who violate the constraints. In this work, for addressing the situation,
we use the penalty strategy by reducing the objective function value f to obtain fitness
value F , as shown in Equation (26), and therefore F may be negative.

F = f − n ·M (26)

where n is the number of constraint violations, and M is a constant.

Algorithm 1 Improved Genetic Algorithm Based on A* (GA-AS)
Input: communication tasks
Output: routing optimization results

1 initialization: generate initial population by the improved A* strategy;
2 while iteration number less than the set value or average population fitness value greater than the

threshold value do
3 calculate the objective function value f ;
4 count the number of constraint violations n for per individual;
5 calculate fitness value F according to Equation (26);
6 heredity (crossover and mutation);
7 recalculate F ;
8 generate new population;
9 selection;

10 end

3.2. Improved A* (A-Star) Strategy

We introduce the roulette wheel selection into the A* algorithm to obtain the improved
A* strategy. For different paths, the strategy making the high-cost paths has non-zero
probability of selection, as shown in Figure 3. In G(c) = (V , E(c)), partpathc,k

r ⊆ pathc,k
r , r =

1, · · · , NMc
k represents the partial of pathc,k

r , and vc,k
s denotes the end node that partpathc,k

r
passes through. The Us = {vs1 , · · · , vsm}, vsi ∈ V , i = 1, · · · , m is called the reachable node
set of vc,k

s when it satisfies the following conditions:

1. ∀vsi ∈ Us, satisfy (vsi , vc,k
s ) /∈ partpathc,k

r and si ∈ Ns.
2. ∀vi /∈ Us, satisfy (vi, vc,k

s ) ∈ partpathc,k
r or i /∈ Ns.

The calculation formulas for the selection probability P(vsi ) and cumulative probability
Q(vsi ) of any node vsi ∈ Us are as follows:

P(vsi ) =

1
h(vsi )

∑vsi∈Us
1

h(vsi )

, i = 1, · · · , m (27)

Q(vsi ) =
i

∑
j=1

P(vsi ) i = 1, · · · , m (28)

h(vsi )=h1(vsi ) + h2(vsi ) (29)
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Among them, h(vsi ) represents the estimated cost of pathc,k
r , h1(vsi ) represents the

actual cost of partpathc,k
r , and h2(vsi ) represents the estimated cost between vsi and vc,k

q .
The calculation formula is:

h1(vsi )=∑i,j (δ
partpathc,k

r
(i,j) dc

i,j) (30)

h2(vsi )=dc
si ,q (31)

In particular, define Q(vs0)=0. When vsa ∈ Us satisfies the following formula, choose
vsa as the next path node:

Q(vsa−1) < zs < Q(vsa) (32)

where the random variable zs ∼ U(0, 1).
Before implementation of the improved A* strategy, an Open List and a Closed List

ought to be established, which are used to record the nodes that need to be and have been
investigated, respectively. The flow of the improved A* strategy is shown in Algorithm 2.

Algorithm 2 The improve A* strategy.
Input: start and end node
Output: routing connection

1 initialization: put the first node into the Open List;
2 while the Open List is nonempty and vc,end

k is not in the Open List do
3 generate zs and calculate the cumulative probability Q(vsi );
4 select vsa from the Open List as the current node a according to Equation (32);
5 add a to the Close List and remove it from the Close List;
6 calculate the Us of node a and generate a set of child nodes;
7 for each child node b do
8 if b in the Close List then
9 discard it;

10 else
11 if b in the Open List then
12 if the h value calculated by node a is smaller then
13 update h value and set parent node of b as a;
14 end
15 else
16 add b into the Open List and calculate its h value;
17 set the parent node of b as a;
18 end
19 end
20 end
21 end

1s
v 2s

v

3s
v

sv

pv

qv

Start, end and current node

Selected path

Reachable area

maxz

Figure 3. Improved A* strategy schematic diagram.
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4. Simulation Experiment and Analysis
4.1. Stochastic Link Failure Experiment

This section analyzes the effects of transmission distance and transmitting power
on the failure probability in ISLL systems. For each case, transmit gain GT , receive gain
GR, transmit efficiency ηT , receive efficiency ηR, laser wavelength λ, responsivity R, noise
variance σ2

N and threshold a are set to GT = 106.3 dB, GR = 118.9 dB, ηT = 0.5, ηR = 0.4,
λ = 1064 nm, R = 0.6003 A/W, σ2

N = 4.3× 10−12 A2, a = 1× 10−6. Azimuth pointing
error θx and pitch pointing error θy are set to θx ∼ N(µx, σ2

x), θy ∼ N(µy, σ2
y ), respectively,

where µx = µy = 0 and σx = σy = 0.75.
Table 1 lists the relationships between transmit power, transmission distance and

failure probability under the above-mentioned condition. As can be seen from Table 1,
in the condition of the same transmit power, the probability of failure is proportional to
transmission distance, and it is very small and can be ignored, while the transmission
distance is less than 1000 km. In addition, the transmission power is inversely proportional
to the probability failure under the condition of the same transmission distance.

Table 1. Failure probability with different transmission distances and power.

Transmit Power (mW) Transmission Distance (km) Probability of Failure

10

500 2.85× 10−6

1000 4.56× 10−5

5000 0.03
10,000 0.45

30

500 7.13× 10−7

1000 1.14× 10−5

5000 0.01
10,000 0.11

4.2. Optimization Results

This section compares the experimental results of GA and GA-AS. The experiment
randomly generates several tasks and environments, including satellites, user termi-
nals and ground stations. The parameter settings are as follows, where mutation prob-
ability ηm = 0.05, genetic probability ηg=0.5, crossover probability ηc = 0.5, weight
w = [0.8, 0.1, 0.1]>, transmission power PT = 10 mW. Other parameter settings are consis-
tent with Section 4.1.

Table 2 lists the optimization results of GA-AS with different task sizes under the
condition of population size NP = 700. The final value refers to the final result obtained by
the GA-AS. It can be seen from Table 2 that when the number of tasks NSc is set to 41, the
average fitness value of the initial population is roughly 81% of the final value. As the task
size grows, the distribution range and mean value decrease. When NSc = 98, the fitness
value of the initial population is distributed in 61%∼88% of the final value, and the mean
value is around 78% of it, indicating that the new initial-solution generation strategy can
produce a good initial population.

Table 2. Initial population distribution with different scales.

Mean Value Max Value Min Value Final Value Variance

NSc = 41
NA = 50 1.93× 103 2.12× 103 1.72× 103 2.38× 103 3.58× 103

NSc = 98
NA = 100 4.24× 103 4.74× 103 3.94× 103 5.78× 103 1.24× 104

NSc = 300
NA = 150 1.30× 104 1.48× 104 1.04× 104 1.68× 104 2.28× 106
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Figure 4 and Table 3 list the optimization results of GA-AS and GA with different
population sizes when NSc = 74 and NA = 40. Since penalties were used in the experiment,
the fitness values may be negative. It can be seen from Figure 4 and Table 3 that the
optimization capability of GA-AS is significantly better than GA when NP = 500 and
improves as the population size increases. When the NP reaches 2000, it has little effect on
the optimization of GA-AS to increase the NP due to the quite good performance. However,
GA has almost no optimization ability when NP is less than 2000 and it reached 50,000,
which can be considered undesirable. Moreover, the performance of GA-AS is always
better than GA under the same population size.

Figure 5 shows the probability of task execution for GA and GA-AS for different
population sizes with NSc = 74, and the value is correlated with the stochastic link failure.
For GA-AS, at the population size of 500, most task execution probabilities are greater than
0.8 and increase with NP. In contrast, at a population size of 500 in GA, most of the tasks
could not be executed and the optimization performance was improved with increasing
population size, but there was still a considerable gap between the GA and GA-AS results.

Table 3. Optimization results with different population sizes.

Algorithm Population Size Final Value Running Time (min)

GAa

500 −3.2971× 103 3
2000 57.5916 12

10,000 2.2956× 103 16
20,000 2.6959× 103 37
50,000 3.5768× 103 73

GA-AS

500 4.0939× 103 5
2000 4.4124× 103 10

10,000 4.4947× 103 27
20,000 4.5559× 103 49
50,000 4.5599× 103 95

a Genetic Algorithm.
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(b) GA.

Figure 4. Trends of average fitness values of GA-AS and GA with different population sizes.
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Figure 5. Task execution probability of GA-AS and GA with different population sizes.
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4.3. Analysis of Complexity

As can be seen from Algorithm 1, the GA requires several iterations of computation
under the condition that the population size is NP, so the time complexity of it is approx-
imated as O(n3) and the space complexity is approximated as O(n2). Compared with
GA, GA-AS differs mainly in its initial population generation method, which is shown in
Algorithm 2, so its time and space complexity can be approximated as O(n3) and O(n2),
respectively. Since the complexity of the improved A* strategy is smaller than that of the
GA, the time and space complexity of GA-AS remains the same as the GA.

The running times of GA and GA-AS with the same computer configuration are shown
in Table 3. As can be seen from Table 3, the running time of GA-AS is almost always larger
than that of GA for the same population size, and this extra time can be considered as the
running time of the improved A* strategy.

5. Discussion

In this work, the LEO satellite network using ISLL with stochastic link failure is
modeled, in which the constraints and objective functions are given. Then, we propose
an improved GA called GA-AS to optimize the model with the indicators of task revenue,
switching times and routing cost in the case of the stochastic link failure. For reducing the
cost of computation, a new initial solution generator is presented by combining the A* with
the roulette wheel selection strategy. Finally, experimental results show that the GA-AS
can significantly reduce the cost of computation and improve the optimization efficiency
compared to GA.
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