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Abstract: As to an aerospace vehicle, the flight span is large and the flight environment is complex.
More than that, the existing navigation algorithms cannot meet the needs to provide accurate
navigation parameters for aerospace vehicles, which results in the decline of navigation accuracy.
This paper proposes a multi-layer, fault-tolerant robust filtering algorithm of aerospace vehicle in
the launch inertial coordinate system to address this problem. Firstly, the launch inertial coordinate
system is used as the reference coordinate system for navigation calculation, and the state equation
and measurement equation of the navigation system are established in this coordinate system to
improve the modeling accuracy of the navigation system. On this basis, a multi-layer, fault-tolerant
robust filtering algorithm is designed to estimate and compensate the unknown input in the state
equation in real time and adjust the noise variance matrix in the measurement equation adaptively.
Simulation results show that the errors about the integrated navigation system output parameters
are reduced, through this algorithm, which improves the attitude, velocity and position estimation
accuracy of the integrated navigation system. In addition, the algorithm enhances the fault tolerance
and robustness of the filtering algorithm.

Keywords: aerospace vehicle; launch inertial coordinate system; fault-tolerant; robust filtering

1. Introduction

In recent years, the trend of air-space integration has been presented in the strate-
gic layout of all military powers around the world. As a new type of aircraft with dual
functions of aircraft and spacecraft, the aerospace vehicle (ASV) is gradually occupying
an important strategic position in the future battlefield due to its characteristics of cross-
airspace, multi-mission, multi-working mode and large-scale high-speed maneuvers [1].
The reusable lifted space vehicles represented by X-37B, IXV, X-33, etc., have attracted more
and more attention, promoted the development of low-cost space technology and become
a research hotspot in recent years [2,3]. However, their complex motion characteristics
throughout the flight process are undoubtedly greatly challengeable to the existing naviga-
tion, guidance and control technologies. As an important part of navigation, guidance and
control technology, navigation performance directly affects the accuracy of guidance and
control loop. Therefore, the advanced navigation technology has become one of the key
technologies to be broken through urgently, which is a prerequisite for the safe execution of
missions of aerospace vehicles.

The inertial navigation system is completely autonomous and free from electromag-
netic signal interference, so it can output complete navigation information. However,
due to their own device zero bias and noise, the navigation error of pure inertial nav-
igation systems will increase over time gradually. The satellite navigation system is a
high-accuracy geometric positioning and navigation system, with no error accumulating
over time [4], but it is difficult to work properly when subject to intentional or unintentional
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interference [5]. As a high-precision navigation means, celestial navigation systems have
a wide range of applications and are completely autonomous, by using natural celestial
bodies as navigation beacons. However, due to its complicated solving process and low
data-update frequency [6,7], it is difficult to meet the aerospace vehicle on the demand for
real-time navigation [8]. Therefore, the use of INS/GPS/CNS integrated navigation is a
hot design to realize the complementary advantages between each navigation means and
improve the accuracy of the navigation system. Some researchers have achieved fruitful
results in this field, such as a resilient fusion navigation algorithm based on the failure
influence level evaluation [9], the sigma-point based Kalman filters fusion methods [10],
the SINS/GPS/SAR integrated navigation system that was developed to represent and
analyze white noise errors [11], etc. However, most of the existing integrated navigation
algorithms use the geographic coordinate system as a unified reference coordinate system
to calculate navigation parameters subsequently. In this process, changes in the gravity
field and radius of curvature are usually ignored or simplified. Aerospace vehicles may fly
away from the earth’s surface, and if these factors are ignored directly, the accuracy of the
navigation system will be reduced. Currently, aerospace vehicles are mainly launched on
rockets; the launch inertial coordinate system is mainly used as the reference coordinate
system for rockets’ navigation calculation. When the aerospace vehicle enters onto the orbit,
its motion characteristics are close to that of the satellite, and the inertial coordinate system
is usually used as the coordinate system for navigation solution. Therefore, using the
launch inertial coordinate system as the aerospace vehicle navigation reference coordinate
system can unify the description of the navigation information during the launch phase
and the on-orbit phase, which can reduce the conversion of navigation parameters, and to
avoid the loss of accuracy in the conversion process.

As we all know, the flight envelope of aerospace vehicles is wide, the flight environ-
ment is complex and the flight patterns are variable. All these uncertain factors in the
flight environment will have unpredictable effects on the navigation system and make
it difficult to establish an accurate error model for the navigation system. At the same
time, the statistical characteristics of the noise sequence are also difficult to obtain [12]. In
this case, the traditional Kalman filter cannot achieve the best working state, and even di-
verges [13]. As a result, nonlinear state estimation methods based on numerical integration
approximation have been proposed [14–16], and representative methods include central
difference Kalman filtering [17], etc. By simulating the noise statistical characteristic distri-
bution of the navigation system to the greatest extent, the divergence of the filtering results
can be suppressed. Obviously, this also makes the calculation process of the algorithm
cumbersome and inefficient, and unable to fundamentally solve the problem of navigation
accuracy degradation caused by inaccurate filtering model.

Therefore, researchers began to research the robust filtering algorithm. From the
definition of robustness, the embodiment of robust strategy in filtering mainly focuses on
three aspects: Firstly, from the perspective of filtering model, robustness is mainly reflected
in dealing with the interference in the observation equation; secondly, from the point of
view of observation, robust filtering generally does not solve the interference problem
in the state quantity, and adaptive processing is generally used when the state quantity
is disturbed; thirdly, from the perspective of noise-processing methods, the robust filter
mostly adopts processing methods such as weighting for observation noise to reflect the
anti-interference ability of filtering.

In order to improve the navigation accuracy of aerospace vehicles in the complex
flight environment, there is not only a need to build an accurate system model, but it is
also necessary to consider the accuracy of the measurement information of the navigation
system. The changeable flight environment puts forward high requirements for the working
performance of navigation sensors and requires the navigation system to have robustness.
In recent years, relevant research has also been further developed [18–20]. Some researchers
proposed a robust multiple model adaptive estimation (RMMAE) algorithm and analyzed
its performance [21]. The available random probability information is taken into account in
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the developed state estimation algorithm that was proposed by Zheng [22]. Subsequently,
by employing the stochastic analysis and matrix techniques, the exponential boundedness
of the state estimation error is discussed from the theoretical aspects. Li has proposed a
centralized robust Kalman filter that is designed by using variational Bayesian methods and
a modified interacting multiple model method based on information theory (IT-IMM) [23].
A distributed robust Kalman filter based on the centralized filter and a hybrid consensus
method called hybrid consensus on measurement and information (HCMCI) was designed.
Pan has proposed a variational Bayesian (VB)-based robust adaptive Kalman filtering
(VB-RAKF) [24]. This filter introduces a classification robust equivalent weight function to
resist observation gross error and the inverse Wishart prior to model inaccurate process
noise covariance matrix (PNCM).

The above method mainly estimates the variance of the measurement noise of the
navigation system and then adjusts the gain matrix of the filter within a certain range to
improve the robustness of navigation system. These studies can improve the filter estima-
tion accuracy to a certain extent when the navigation sensor is fault, but the existing robust
filtering algorithms present difficulties in solving the problem of accuracy degradation
caused by inaccurate filtering model. Therefore, a multi-layer fault-tolerant robust filtering
for integrated navigation in launch inertial coordinate system is proposed in this paper.
The main innovations of this paper are as follows:

(a) The aerospace vehicle flies far away from the earth’s surface, so using the launch
inertial coordinate system for navigation solution can reduce the accuracy loss of
measurement information caused by matrix conversion. At the same time, it can also
reduce the error in the modeling stage of the system and provide higher precision
state quantity and quantity measurement for the subsequent filtering algorithm.

(b) In view of the high dynamic flight of aerospace vehicles, it will lead to the inaccuracy of
the system state equation model and the decline of estimation accuracy. By taking the
inconsistency information as the unknown input of the state equation, and identifying,
compensating and correcting it, the accuracy of filter estimation is improved.

(c) After improving the accuracy of system parameters, aiming at the situation that the
navigation sensor may fail due to the bad flight environment during the flight of
the aerospace vehicle, the mismatch degree of residual is used to detect the fault of
measurement information, and the weighted exponential fading memory average
method is further used to realize the adaptive adjustment of measurement noise
variance, to improve the accuracy of integrated navigation system.

The algorithm proposed in this paper uses the launch inertial coordinate system
for navigation calculation, which improves the accuracy of system-state quantity and
measurement quantity. On this basis, a two-layer, fault-tolerant robust filtering structure
is designed. This is different from the existing robust filtering algorithm, which is only
designed from the perspective of measurement equation. In this paper, the robust filtering
algorithm is designed from two aspects of the system-state equation and measurement
equation, which improves the robustness of the aerospace vehicle navigation system in a
large dynamic flight environment.

2. Algorithm Arrangement of Integrated Navigation System in Launch Inertial
Coordinate System

Under the existing technology, the navigation system applied to aerospace vehicles
is mainly an inertial navigation system, which is completely autonomous and can output
complete navigation parameters. In addition, the aerospace vehicle has a broad flight
envelope, and its flight phases mainly include: launch phase, on-orbit phase, re-entry
phase and landing phase. It is necessary to select navigation sensors according to the flight
characteristics of different flight stages, such as the satellite navigation system, celestial
navigation system, etc.
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2.1. Scheme Design of Integrated Navigation System in Launch Inertial Coordinate System

The characteristics of the different navigation sensors differ significantly in both spatial
and temporal dimensions. For example, inertial navigation systems can output navigation
parameters continuously, while satellite positioning systems, celestial navigation systems,
etc., can only output navigation information discretely, and their sampling intervals and
output information types are different from each other, depending on the flight phase
and environment. Therefore, it is necessary to adopt advanced and effective information-
processing methods to combine heterogeneous navigation information to meet the needs of
autonomous and reliable navigation organically.

For this reason, the launch inertial coordinate system is used as the reference coordinate
system for inertial navigation system calculation and subsequent filtering in this paper.
The coordinate systems in this paper are defined as follows: i is the inertial coordinate
system; e is the earth fixed coordinate system; l is the launch inertial coordinate system;
b is the body coordinate system; g is the geographic coordinate system, which is the
east-north-up direction.

The overall scheme of the SINS/GPS/CNS integrated navigation system in launch
inertial coordinate system designed in this paper is shown in Figure 1:

Figure 1. INS/CNS/GPS integrated navigation algorithm structure diagram in launch inertial
coordinate system.

As shown in Figure 1, the inertial navigation solution module obtains the attitude
angle from the output of the gyroscope and calculates the attitude quaternion to obtain the
attitude transfer matrix from the body coordinate system to the launch inertial coordinate
system. According to the attitude transfer matrix and the outputs of the accelerometer, the
velocity and position calculation are performed. The position and velocity output of GPS
in the earth fixed coordinate system is converted to launch the inertial coordinate system
through the conversion matrix. The attitude output of CNS in the inertial coordinate system
is converted to launch the inertial coordinate system through the conversion matrix.

According to the existing public data, aerospace vehicles are generally carried on
rockets for launch, and rockets generally use the launch inertial coordinate system as the
reference coordinate system for navigation calculation. After flying out of the atmosphere,
the motion characteristics of aerospace vehicles are like those of on-orbit satellites, while
on-orbit satellites generally use the inertial coordinate system as the reference coordinate
system for navigation calculation. Therefore, this paper uses the launch inertial coordinate
system as the reference coordinate system of the aerospace vehicle navigation system,
which can unify the description of navigation parameters in different flight stages and
reduce the conversion of navigation parameters in the calculation process to avoid the loss
of accuracy.
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Inertial Navigation Solution Module in Launch Inertial Coordinate System

In the strapdown inertial navigation system, the inertial device is fixed on the carrier,
the angular rate output of the gyroscope is ωb

ib, ωb
lb is the projection of the angular rate

of the body coordinate system relative to the launch inertial coordinate system under the
body coordinate system. Then ωb

lb can be written as:

ωb
lb = ωb

li + ωb
ib (1)

ωb
li is the projection of angular rate of inertial coordinate system relative to launch inertial

coordinate system under the body coordinate system; ωb
ib is the projection of the angular

rate of the body coordinate system relative to the inertial coordinate system under the body
coordinate system, where ωb

li = 0, so:

ωb
lb = ωb

ib (2)

For the attitude calculation module, a quaternion method can work in full attitude
and a small amount of calculation is used to calculate the attitude. If the original three-
dimensional output information of the gyroscope is expanded into a quaternion with the
scalar part of 0 and the vector part of ωqi, it has the differential relationship with the
quaternion q corresponding to the attitude matrix as follows:

.
q(t) = 0.5q(t)⊗ωqi (3)

In Equation (3), ⊗ represents the multiplication of quaternions.

.
q =

1
2
·


q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

·


0
ωbx
ωby
ωbz

 (4)

The quaternion q can be obtained by discretizing Equation (3) and calculating it by the
Picard successive approximation method. After normalizing q, the conversion relationship
Cb

l between quaternions and attitude matrix can be calculated:

Cb
l =

 q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 + q0q3) 2(q1q3 − q0q2)
2(q1q2 − q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3

 (5)

From Equation (5), the expression for each attitude angle is:
γ = −arctan t13

t33
θ = arctant23

ψ = arctan t21
t22

(6)

In Equation (6), t is equal to Cb
l .

In the strapdown inertial navigation system, the inertial device is directly fixed to the
carrier, the accelerometer output is fb

ib, represents the vector formed by the acceleration of
the body coordinate system relative to the inertial coordinate system in the axial component
of the body coordinate system. Then the accelerometer value fl

ib under launch inertial
coordinate system can be obtained as:

fl
ib = Cl

bfb
ib (7)

In Equation (7), Cl
b is the attitude conversion matrix of the launch inertial system

relative to the body coordinate system;
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From Equation (7), the specific force equation under the launch inertial system can be
written as:

fl
ib =

.
v− Cl

iG (8)

In Equation (8), v is the velocity value in launch inertial coordinate system; G is the
universal gravitation force of the Earth; Cl

i is the attitude transition matrix of the launch
inertial system relative to the inertial system.

In the launch inertial coordinate system, the position under the launch inertial coordi-
nate system can be calculated by integrating the navigation velocity:

.
p = v (9)

In Equation (9), v is the velocity vector.
The navigation model in launch inertial coordinate system can be written as:

.
q = 0.5q⊗ωb

lb.
v = Cl

b·f
b + Cl

i ·Gi
.
p = v

(10)

Among them, q is the quaternion; Cl
b is the transfer matrix from the body coordinate

system to the launch inertial coordinate system; fb is the specific force of the accelerometer in
the body coordinate system; Cl

i is the transfer matrix from the inertial coordinate system to
the launch inertial coordinate system; Gi is the gravitational force in the inertial coordinate
system; p is the position vector.

According to Equation (10), the error equations of navigation information includ-
ing attitude quaternion, velocity and position of the aerospace vehicle in launch inertial
coordinate system can be derived. The differential equations are as follows:

δ
.
q13 = −

[
ω̂b

ib×
]
· δq13 + 0.5 · δW

δ
.
v = −2Cl

b ·
[
f̂b×

]
· δq13 + Cl

b · ∇a + Cl
b · δG

δ
.
p = δv

(11)

In Equation (11), δq13 is the vector part of δq; δv is the velocity error vector; δp is the
position error vector; δW is the gyro noise; ∇a is the accelerometer error; δG is the gravity

error;
[
ω̂b

ib×
]

represent the symmetric matrix of ω̂b
ib;
[̂
f
b×
]

represent the symmetric matrix

of fb
ib.

2.2. Matrix Transformation of Launch Inertial Coordinate System

Unlike aero-planes, the larger flight envelope of the aerospace vehicle means that
the simplified model of the Earth used by traditional inertial navigation algorithms in the
geographic coordinate system is no longer suitable for its navigation system. Therefore,
this paper discusses navigation algorithms under launch inertial system with an accurate
model of the Earth.

Among them, the origin of the launch inertial coordinate system is taken at the launch
point of the aerospace vehicle, and its coordinate axis direction is defined by the aerospace
vehicle at the launch time. The y-axis is the vertical line passing the launch point, and
upward is positive. The x-axis is perpendicular to the y-axis at the launch time. The z-axis,
the x-axis and the y-axis constitute a right-handed rectangular coordinate system. The
conversion relationship between the launch inertial coordinate system and the J2000 inertial
coordinate system is shown in the Figure 2:
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Figure 2. The conversion relationship between the launch inertial coordinate system and the J2000
inertial coordinate system.

In order to calculate the transfer matrix Cl
i from the launch inertial coordinate system

to the inertial coordinate system, the first step is to calculate Cl
n (the transfer matrix from

the geographic system (launch origin) to launch inertial coordinate system), Cn
e (the transfer

matrix from the Earth Fixed coordinate system to geographic coordinate system (launch
origin)), Ce

i (the transfer matrix from the inertial coordinate system to Earth Fixed coordinate
system), where:

Cn
l =

 1 0 0
0 cos(−90) sin(−90)
0 −sin(−90) cos(−90)

·
 cos(−(90− A)) 0 −sin(−(90− A))

0 1 0
sin(−(90− A)) 0 cos(−(90− A))

 (12)

In Equation (12), A is the launch deflection angle.

Ce
n =

 cos(−(90 + λ)) sin(−(90 + λ)) 0
−sin(−(90 + λ)) cos(−(90 + λ)) 0

0 0 1

·
 1 0 0

0 cos(−(90− ϕ)) sin(−(90− ϕ))
0 −sin(−(90− ϕ)) cos(−(90− ϕ))

 (13)

The conversion from the Protocol geographic coordinate system to the WGS84 coordi-
nate system needs to consider the influence of polar motion, then:

Ce
1 =

 1 0 xp
0 1 0
xp 0 1

·
 1 0 0

0 1 −yp
0 yp 1

 (14)

In Equation (14),
(

xp, yp

)
is the coordinates of the pole.

When converting from an instantaneous ground-fixed coordinate system to an instan-
taneous true equatorial geocentric celestial coordinate system, the time angle of the vernal
equinox needs to be considered, then:

C1
2 =

 cosθ sinθ 0
−sinθ cosθ 0

0 0 1

 (15)
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θ =
−
θ + ∆φcosε̃ (16)

θ is Greenwich Mean Sidereal Time.
Conversion from the instantaneous horizontal celestial coordinate system to the in-

stantaneous true celestial coordinate system:

C2
3 =

 1 0 0
0 cosε̃ −sinε̃
0 sinε̃ cosε̃

 cosφ −sinφ 0
sinφ cosφ 0

0 0 1

 1 0 0
0 cosε sinε
0 −sinε cosε

 (17)

In Equation (17),

mean obliquity:

ε = 84381′′ .448− 46′′ .815·Tu− 0′′ .00059·Tu2 + 0.001813·Tu3 (18)

nutation in obliquity:

∆ε = 9′′ .2025cosΩ + 0′′ .5736·cos(2L) (19)

true ecliptic obliquity:
ε̃ = ε + ∆ε (20)

nutation of longitude:

∆φ = −17′′ .1996sinΩ− 1′′ .3187·sin(2L) (21)

right ascension of moon ascending node:

Ω = 125.04− 0.052954·JD (22)

mean longitude of the sun:

L = 280.47− 0.98565·JD (23)

The conversion from the J2000 coordinate system to the instantaneous horizontal
celestial coordinate system needs to consider the effect of precession, then:

C3
i =

 cosZA −sinZA 0
sinZA cosZA 0

0 0 1

 cosθA 0 −sinθA
0 1 0

sinθA 0 cosθA

 cosςA −sinςA 0
sinςA cosςA 0

0 0 1

 (24)

In Equation (24): Tu is Julian Day, and ςA, ZA, θA are three Euler angles in the
equatorial plane.

Then the matrix Ce
i established based on the accurate earth model from the inertial

coordinate system to the ground-fixed coordinate system is:

Ce
i = Ce

1·C1
2·C2

3·C3
i (25)

Since the orbital height of ASV is about 300 km, it can be roughly regarded as a
low-earth orbit satellite, which means that the factor that has the greatest influence on the
gravitational field is the ellipticity of the earth. Therefore, the gravity field model is as
follows.

G =


− µx

r3

[
1− J2

(
Re
r

)2(
7.5 z2

r2 − 1.5
)]

− µy
r3

[
1− J2

(
Re
r

)2(
7.5 z2

r2 − 1.5
)]

− µz
r3

[
1− J2

(
Re
r

)2(
7.5 z2

r2 − 4.5
)]

 (26)
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In the above equation, x, y, z are the carrier position of aerospace vehicles in the geo-
centric inertial coordinate system; J2 = 1.08263× 10−3, which is the second-order harmonic
coefficient; µ = 3.986× 1014 m3s−2, which is the gravitational constant; Re = 6,378,137 m,
which is the equatorial radius; r is the distance from the carrier to the center of the Earth.
The accurate gravity model derived from Equation (16) is brought into Equation (11) to
improve the modeling accuracy of system state quantity.

2.3. Establishing the State Equation and Measurement Equation for Integrated Navigation System

After establishing the strapdown inertial navigation system model in the launch
inertial coordinate system, this paper directly establishes the state model and observation
model of the SINS/GPS/CNS integrated navigation system in the launch inertial system.

The system state equation is:

.
X(t) = A(t)X(t) + B(t)W(t) (27)

In Equation (27), A(t) is the system matrix;

A(t) =


03×3 03×3 03×3 Cl

b 03×3

Fa 03×3 Fb 03×3 Cl
b

03×3 I3×3 03×3 03×3 03×3
03×3 03×3 03×3 03×3 03×3
03×3 03×3 03×3 03×3 03×3

 (28)

In Equation (28), Fa is an antisymmetric matrix composed of apparent acceleration; Fb
is determined by the partial derivative of gravitational acceleration to position. B(t) is the
system noise matrix;

B(t) =


Cl

b 03×3

03×3 Cl
b

03×3 03×3
03×3 03×3
03×3 03×3

 (29)

X(t) is the state vector; W(t) is the system noise vector; Combined Equation (10) and
Equation (27), State quantity X is:

X =
[

δq1 δq2 δq3 δpx δpy δpz δvx δvy δvz ωrx ωry ωrz frx fry frz

]
(30)

In the above equation, δq1, δq2, δq3 are three-dimensional vector error part of attitude
quaternion; δpx, δpy, δpz are position error; δvx, δvy, δvz are velocity error; ωrx, ωry, ωrz
are gyro random walk error; frx, fry, frz are accelerometer random walk error

The system noise vector W is:

W =
[

ωεx ωεy ωεz ωnx ωny ωnz fnx fny fnz

]
(31)

In the integrated navigation system observation equation, the position measurement
information output from the GPS and the attitude measurement information output from
the CNS are regarded as the observation vector. Then the observation vector of SINS/CNS
subsystem can be written as:

ZC(t) = Ha(t)X(t) + rη (32)

In Equation (32), rη is the noise matrix measured by the star sensor.

Ha(t)3×15 = [I3×303×12]3×15 (33)
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Similarly: the observation vector of the SINS/GPS subsystem can be written as:

ZG(t) = Hp(t)X(t) + rε (34)

In Equation (34), rε is the noise matrix measured by the GPS.

Hp(t)3×15 = [03×3 I3×3 03×9]3×15 (35)

From Equations (33) and (35), the SINS/GPS/CNS integrated navigation system
observation vector can be written as:

H(t)3×15 = [I3×3 I3×3 03×9]3×15 (36)

3. Multi-Layer Fault-Tolerant Robust Filtering Algorithm

After the model of the strapdown inertial navigation system and integrated navigation
system in the launch inertial coordinate system have been established, the integrated
navigation filtering algorithm needs to be further researched. The aerospace vehicle
must perform cross-airspace, highly dynamic and wide-range missions, so its navigation
system will be affected by many uncertainties, which makes it impossible to accurately
model the navigation system errors, and the statistical characteristics of the navigation
system noise are also difficult to be obtained. In this paper, the above situation can
be regarded as the existence of unknown inputs in the state equation of the navigation
system, which leads to the performance limitation of the traditional linear Kalman filter.
In addition, the aerospace vehicle navigation system is equipped with many sensors and
the complex flight environment may cause some measurement sensors to fail, such as
satellite signals are interfered with, the star sensor cannot be effectively calculated due
to stargazing conditions, etc., which leads to a decrease in the accuracy of the navigation
system. Therefore, it is necessary to identify, estimate and compensate the unknown inputs
of the navigation system state equation, as well as to perform real-time fault diagnosis,
isolation and reconstruction of the measurement information to improve the accuracy and
robustness of the navigation system at multiple levels.

3.1. Design of Robust Fault Tolerant Filtering Architecture

In order to improve the fault tolerance and robustness of the navigation system filter,
it is necessary to compensate and correct errors caused by various unknown factors such
as an inaccurate system model and measurement-sensor failures since the Kalman filter
algorithm can only obtain optimal estimates of state quantities when both the structural
parameters and the statistical properties of the noise of the dynamic system are accurate.
When the relevant parameters are inaccurate, the Kalman filter accuracy decreases or even
diverges. The model error of the system usually affects the output of the system. For this
reason, A.P. Sage and G.W. Husa proposed the adaptive filtering algorithm, and its method
currently is mainly used to estimate the variance of the measurement noise. Meanwhile, it
cannot eliminate the influence of the unknown inputs in the state equation, which leads to
a large filtering error.

Therefore, this section proposes a multi-layer robust fault-tolerant filter design method,
as shown in Figure 3.

Firstly, we use the state equation unknown-inputs self-correction module to estimate
and compensate the unknown input in the state equation automatically. Meanwhile,
the measurement noise-variance matrix adaptive module is used to detect the failure
of the measurement information, and to adapt the measurement noise-variance matrix.
Combining the above two modules to construct a multi-layer, fault-tolerant robust filter
structure can improve the robustness and accuracy of the aerospace vehicle navigation
system in a large dynamic environment.
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Figure 3. Multi-layer robust and fault-tolerant filter design structure.

Self-Recognition Algorithm for Unknown Input of State Equation

When the integrated navigation system model is inconsistent with the filter model or
the statistical characteristics of the system noise are unknown due to the large dynamic
flight of aerospace vehicle, this is reflected in the existence of unknown inputs to the system
state equation. Therefore, it needs to be identified, compensated and corrected to improve
the navigation system accuracy.

From Equations (27) and (32), the system equation can be written as:

Xk+1 = fk(Xk) + Uk + Wk (37)

Zk = hk(Xk) + Vk (38)

In Equations (37) and (38), The definitions of fk, hk, Wk and Vk are the same as in the
previous chapter, and Uk is the unknown input in the state equation.

Since the filter update time interval is small enough, the unknown input of the adjacent
interval often changes little [25], so that the unknown input Uk can be estimated and when
the sampling period k ≥ 3, the unknown input Uk can be approximately expressed as:

Uk ≈ Uk−1 (39)

The initial estimate of the state unknown input Uk is:

Û(0)
k = X̂k − fk−1(Xk−1) (40)

In Equation (40), it is necessary to distinguish Û(0)
k due to unknown inputs or accidental

errors. Therefore:

Ûk, j =

 0, if
∣∣∣Û(0)

k,j

∣∣∣ < cσk,j

Û(0)
k,j , if

∣∣∣Û(0)
k,j

∣∣∣ ≥ cσk,j
j = 1, 2, · · · , l (41)

In Equation (41), the Ûk, j and Û(0)
k,j are respectively the jth component of Ûk and Û(0)

k ,
σk,j is written as:

σk,j =
√

Qk(j, j) j = 1, 2, · · · , l (42)

At this point, the Kalman one-step prediction formula can be written as:

X̂(k|k−1) = Fk−1X̂k−1 + Ûk−1 (43)
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The one-step prediction covariance matrix can be written as:

P(k|k−1) = Fk−1Pk−1FT
k−1 + Qk−1 + Θk−1 + ΘT

k−1 + Θ∗k−1 (44)

In Equation (44), Θk−1 is written as:

Θk−1 = Fk−1

[
Pk−1 − Sk−1FT

k−2 − (I −Kk−1Hk−1)Qk−2

]
Tk−1 (45)

Θ∗k−1 = Tk−1

[
Pk−1 + Fk−2Pk−2FT

k−2 + Qk−2 − Sk−1FT
k−2 − (I −Kk−1Hk−1)Qk−2 −

Fk−2ST
k−1 −QT

k−2(I −Kk−1Hk−1)
T

]
Tk−1 (46)

In above equation, the I is the unit matrix, Tk−1 is the diagonal matrix where the
elements in the lth row and the lth column are 1 when Ûk−1, j 6= 0, and the other non-
diagonal elements are all 0. When Ûk−1, j = 0, the element in the lth row and the lth
column is 0, and the other non-diagonal elements are all 0 diagonal matrices. Sk−1 is:

Sk−1 = (I −Kk−1Hk−1)

{
Fk−2Pk−2 + Tk−2

[
Pk−2 − Fk−3ST

k−2 −
Qk−3(I −Kk−2Hk−2)

T

]}
(47)

S1 = P1 (48)

State estimation:
X̂k = X̂(k|k−1) + Kk

(
Zk −HkX̂(k|k−1)

)
(49)

The covariance matrix for the state estimation is:

Pk = (I −KkHk)P(k|k−1) (50)

The filtering gain is:

Kk = P(k|k−1)H
T
k

(
HkP(k|k−1)H

T
k + Rk

)−1
(51)

3.2. Adaptive Algorithm for Measuring Noise Variance Matrix

During the actual flight of the aerospace vehicle, as it needs to go through the launch
phases, in-orbit phases, and re-entry phases, it faces an extremely complex flight environ-
ment and the navigation sensors are prone to malfunction, such as the satellite navigation
system being interfered with and unable to provide position and velocity information
normally, or the star sensor cannot calculate the attitude of the aerospace vehicle properly.
As a result, it is necessary to perform fault diagnosis, isolation and reconstruction of the
measurement information obtained by the navigation sensors.

3.2.1. Residual Mismatch Degree Detection

From the analysis of the content in the previous section, the prediction error of the
system measurement can be written as:

Z̃(k|k−1) = HkX̃(k|k−1) + Vk (52)

Taking the variances of both sides of Equation (52) simultaneously and shifting the
terms gives the expression for the measurement noise variance matrix that can be ob-
tained as:

Rk = E
[
Z̃(k|k−1)Z̃

T
(k|k−1)

]
−HkP(k|k−1)H

T
k (53)

In above equation, the E
[
Z̃(k|k−1)Z̃

T
(k|k−1)

]
is the lumped average of the random

sequence. In practical applications, the traditional adaptive filtering adopts the equal
weighted recursive estimation method [26], which will gradually lose the adaptive effect
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after long-time filtering. Therefore, this paper adopts the exponential fading memory
weighted average method to ensure the robustness of the navigation system under long-
time working conditions. The time average is used instead, and then the exponential fading
memory weighted average of Rk can be written as:

R̃k = (1− $k)R̃k−1 + $k

(
Z̃(k|k−1)Z̃

T
(k|k−1) −HkP(k|k−1)H

T
k

)
(54)

In above equation, $k can be written as:

$k =
$k−1

$k−1 + τ
(55)

In Equation (55), $0 = 1, τ is the fading factor.

When the system is modelled accurately, the E
[
Z̃(k|k−1)Z̃

T
(k|k−1)

]
can be written as:

E
[
Z̃(k|k−1)Z̃

T
(k|k−1)

]
= Hk

(
Φ(k|k−1)Pk−1ΦT

(k|k−1) +

Γ(k|k−1)Qk−1ΓT
(k|k−1)

)
HT

k + Rk (56)

In Equation (56), Φ is the Jacobian matrix of f.
Combining Equations (55) and (56) can be written as:

B̂k = (1− $k)B̃k−1 + $kZ̃(k|k−1)Z̃
T
(k|k−1) (57)

If the quantity measurement Zk has large fluctuations, let

E
[
Z̃(k|k−1)Z̃

T
(k|k−1)

]
= Λ̂k (58)

then:
tr
(

Λ̂k

)
� tr

(
B̂k

)
(59)

From Equation (59), it can be judged whether the quantity measurement Zk is faulty.

3.2.2. Adaptively Adjust Measurement Noise Variance

After detecting the failure of the measurement information, the P(k|k−1) in the Kalman
filter equation have been adjusted adaptively.

Adjust the mean square error matrix Pk−1 by Equations (38) and (56), then:

B̂k −HkΓ(k|k−1)Qk−1ΓT
(k|k−1)H

T
k −Rk = HkΦ(k|k−1)(λkPk−1)Φ

T
(k|k−1)H

T
k (60)

In Equation (60), λk is the proportionality coefficient, which can be written as:

λk =
tr(Nk)

tr(Mk)
(61)

In Equation (61), tr is the matrix tracing operation, Nk can be written as:

Nk = B̂k −HkΓ(k|k−1)Qk−1ΓT
(k|k−1)H

T
k −Rk (62)

Mk can be written as:

Mk = HkΦ(k|k−1)(λkPk−1)Φ
T
(k|k−1)H

T
k (63)

Since λk should not be less than 1, it is necessary to judge λk:

λk =

{
1 λk < 1

tr(Nk)
tr(Mk)

λk ≥ 1
(64)
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At this point, P(k|k−1) in the Kalman filter equation becomes:

P(k|k−1) = Φ(k|k−1)(λkPk−1)Φ
T
(k|k−1) + Γk−1Qk−1ΓT

k−1 (65)

Combining Equations (49)–(51) and (65), the multi-layer robust fault-tolerant filtering
equation can be obtained.

The flow chart of the algorithm is shown in Figure 4:

Figure 4. Flow chart of algorithm.

4. Simulation and Verification

In this section, Monte Carlo simulation methods are used to simulate the KF algorithm,
the UKF algorithm and the RF algorithm in this paper, and the root mean square error of
RF algorithm, KF algorithm and UKF algorithm are respectively calculated. The simulation
software is Matlab R2020b. Rotational angular velocity of the Earth is 7.292115× 10−5 rad/s,
Earth oblateness is 1/298.257.

4.1. Simulation Condition Setting

The initial latitude and longitude for the aerospace vehicle launch point are: 118◦, 32◦,
100 m, the initial heading angle is 90◦, the launch azimuth angle is 30◦, the launch time is
13 April 2021 0 h 0 min 0 s, the flight time is 300 s; the solution period of strapdown inertial
navigation system is 0.02 s, and the filter period is 1 s; the simulation parameters of the
navigation sensor are set as shown in Table 1:
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Table 1. Sensor simulation parameter setting.

Noisy Object Noise Type Noise Parameters Update Rate

Gyroscope
Random wander Driven white noise mean

square error 0.2◦/h 0.02 s

White Noise 0.2◦/h

Accelerometer Situation 1 Driven white noise mean
square error 1 × 10−4 g 0.02 s

GPS White Noise 5 m 1 s

CNS White Noise 5′′ 1 s

Filter parameters are set as follows:
System noise variance:

Q = diag
([

0.2◦/h 0.2◦/h 0.2◦/h 0.2◦/h 0.2◦/h 0.2◦/h 1× 10−4 g 1× 10−4 g 1× 10−4 g
]2)

Measurement noise variance:

R1 = diag
([

15′′ 15′′ 15′′ 15 m 15 m 15 m
]2)

R2 = diag
([

25′′ 25′′ 25′′ 25 m 25 m 25 m
]2) In the Table 2, the gyroscope

random wander parameters in the actual system model are not consistent with the random
wander parameters in the filter. This simulated situation can be considered an error in the
filtering model for a duration of 30 s to 90 s. Meanwhile, the GPS and CNS fault information
is injected during the simulation time of 100 s to 120 s to verify the effectiveness of the
algorithm in different cases.

Table 2. Fault parameters table.

Object Failure
Parameters

Failure Start
Time

Failure End
Time

Gyroscope Random wander 4◦/h 30 s 90 s

Accelerometer Random wander 1 × 10−2 g 30 s 90 s

Condition A
GPS 15 m 100 s 120 s

CNS 15” 100 s 120 s

Condition B
GPS 25 m 100 s 120 s

CNS 25” 100 s 120 s

4.2. Simulation Analysis

Based on the above simulation conditions, the simulated aerospace vehicle launch
trajectory is shown in Figure 5.

In order to verify the performance of the robust filtering algorithm of the integrated
navigation system under the launch inertial coordinate system proposed in this paper, the
above simulation condition is set as base; a simulation comparison of the algorithm in this
paper with the KF algorithm and the UKF algorithm is carried out. The results are shown
as follows.
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Figure 5. Simulation diagram of aerospace vehicle trajectory.

Figures 6–8 are the comparison diagram of the attitude, positioning and velocity error
of the SINS/GPS/CNS integrated navigation system in the launch inertial coordinate
system. The attitude of the aerospace vehicle is obtained by the inertial navigation system
and celestial navigation system. The position and velocity of the aerospace vehicle are
obtained by the inertial navigation system and satellite navigation system. Due to the
inconsistency between the system model and the filter model in the 30–90 s, around 30 s,
the three algorithms have certain fluctuations. Among them, the KF algorithm cannot
make a self-adaptive adjustment according to the changes of the actual system model when
the system model has been preset. The error-curve fluctuation of the UKF algorithm is
less than that of the KF algorithm, because it restores the real-system model as much as
possible by finding a Gaussian distribution close to the real distribution. However, with the
inconsistency between the system model and the filter model, it is difficult to find a suitable
Gaussian distribution to describe the system model, so the algorithm error increases. The
RF algorithm proposed in this paper can identify and adaptively adjust the unknown input
that causes the inaccuracy of the system model, so it can restore the accurate system model
to the greatest extent.

At the same time, in the simulation conditions, the navigation sensor fails in 100 s–120 s.
The error curve of the KF algorithm diverges rapidly after 100 s, indicating that it cannot
work normally when the navigation sensor fails. The UKF algorithm determines the
optimal gain matrix according to the covariance matrix of the filter and the covariance of
the measured value, and then calculates the sampling points, which are determined by the
state equation and the measurement equation. Therefore, it can adapt to the sudden change
of the measurement information to a certain extent, but from the experimental results, it
will still diverge in the case of continuous failure of the measurement information. The RF
algorithm proposed in this paper can adaptively adjust the covariance matrix of the system
measurement noise by detecting the fault measurement information, and finally ensure the
accuracy of the navigation system when the navigation sensor fails.

It can also be seen from Tables 3 and 4 that when the system model is inconsistent with
the filter model and the navigation system measurement information is invalid, the root
mean square error data of the attitude, position and velocity error of the Kalman algorithm
are larger than those of the UKF algorithm. In the RF algorithm used in this paper, the root
mean square error of the attitude, position and velocity are significantly lower than those
of Kalman algorithm and UKF algorithm, mainly because the algorithm in this paper can
independently identify, estimate and compensate the unknown inputs to the equation of
state. At the same time, it can realize the adaptive estimation noise variance matrix of the
measurement, which makes the system better in fault tolerance and stronger in robustness.
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Figure 6. (a) Roll-angle error contrast curves; (b) Pitch-angle error contrast curves; (c) Yaw-angle
error contrast curves. Angle-error contrast curves under the launch inertial coordinate system.

Figure 7. Cont.
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Figure 7. (a) X-axis position error contrast curves; (b) Y-axis position error contrast curves;
(c) Z-axis position error contrast curves. Position error contrast curves under the launch inertial
coordinate system.

Figure 8. (a) X-axis velocity error contrast curves; (b) Y-axis velocity error contrast curves;
(c) Z-axis velocity error contrast curves. Velocity error contrast curves under the launch inertial
coordinate system.
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Table 3. Root mean square error data estimated by three algorithms (Condition A).

KF UKF RF

Roll (”) 9.8847 8.7435 5.9599
Pitch (”) 10.5008 8.1840 6.3841
Yaw (”) 10.0725 9.0390 5.7409

X axis (m) 17.0252 8.5108 4.4062
Y axis (m) 12.6399 7.2346 2.4677
Z axis (m) 9.1462 7.7229 2.5166

X axis (m/s) 1.5030 0.7806 0.4771
Y axis (m/s) 1.1377 0.7069 0.2559
Z axis (m/s) 0.8402 0.7887 0.3756

Table 4. Root mean square error data estimated by three algorithms (Condition B).

KF UKF RF

Roll (”) 9.8904 9.1761 6.8103
Pitch (”) 19.0265 9.6734 6.3942
Yaw (”) 10.3397 9.8092 7.1629

X axis (m) 21.9449 12.0101 5.1014
Y axis (m) 20.4995 10.2390 4.2343
Z axis (m) 22.1283 11.3863 3.6555

X axis (m/s) 1.6037 1.0580 0.7214
Y axis (m/s) 1.4885 0.9294 0.4935
Z axis (m/s) 1.5118 1.0129 0.4895

5. Conclusions

In this paper, we analyze and study the robustness filtering algorithm for the navi-
gation system of the aerospace vehicle. As an aircraft that can fly across the dual fields
of aviation and aerospace, the aerospace vehicle is gradually being valued by various
countries. As an important part of its control loop, a high-precision and robust navigation
system is indispensable. However, the main problem faced by navigation systems of the
aerospace vehicle is difficulty in meeting the large dynamic and multi-task working mode
of the aerospace vehicle. The existing navigation algorithms can only adapt to the situation
in which the navigation system model and the filter model are consistent. When the models
are inconsistent, the navigation accuracy drops faster. At the same time, complex working
environments such as large dynamic flight may cause the star sensor to be unable to ob-
serve the stars, etc., effectively. The navigation system must be robust and fault-tolerant.
Therefore, fault detection, isolation and reconstruction of measurement information are
also required.

Aiming at the above problems, a multi-layer, fault-tolerant robust filtering algorithm
for the aerospace vehicle navigation system in the launch inertial coordinate system is
designed in this paper. Firstly, we find that the geographic coordinate system is obviously
not suitable for the reference coordinate system of aerospace vehicle navigation calculation.
Because the aerospace vehicle is different from the general aircraft flying near the ground—
it needs to fly back and forth between space and ground—the flight has the characteristics of
large dynamics. However, the existing algorithms using the geographic coordinate system
as the reference coordinate system for navigation calculation usually use the simplified
earth model, and the accuracy cannot meet the requirements of the aerospace vehicle
navigation system. Therefore, we have established the navigation system model under
the launch inertial coordinate system suitable for aerospace vehicles. On the one hand,
we improved the accuracy of the navigation system by establishing an accurate earth
model. On the other hand, we combined the characteristics of the navigation sensors
configured by aerospace vehicles to reduce matrix conversion and improve the accuracy of
the navigation system.
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At the same time, most of the existing robust filtering algorithms consider the adaptive
algorithm from the measurement equation of the system, but the inaccurate model in the sys-
tem state equation will also reduce the robustness of the system. Therefore, we researched
two parts: system state equation unknown input self-identification, self-compensation
and measurement noise variance adaptation to design a multi-layer, fault-tolerant robust
filter algorithm to improve the robustness of navigation system. Firstly, the inconsistency
between the navigation system model and the filter model is regarded as an unknown input
in the state equation and is calculated to be identified, compensated and corrected to meet
the cross-airspace flight requirements of the aerospace vehicle and improve the accuracy
of the navigation system. In addition, this paper solves the problem of maintaining the
navigation accuracy of the navigation system in the case of a measurement-sensor failure by
performing fault detection on the measurement information and adjusting adaptively the
measurement noise variance matrix, which improves the fault tolerance and robustness of
the navigation system. The experimental results verify the effectiveness of the algorithm in
this paper. The algorithm proposed in this paper can adapt to the actual flight environment,
improve the fault tolerance as well as the robustness of the aerospace vehicle navigation
system, and provide a certain foundation for further research on the aerospace vehicle.

Combined with the actual navigation requirements of aerospace vehicles, this paper
establishes the basic model of the integrated navigation system in launch inertial coordinate
system, which solves the problem that the original simplified earth model in the geographic
coordinate system is not suitable for the aerospace vehicle navigation system. In future
research, we will combine the different flight characteristics of aerospace vehicles and
carry out in-depth algorithm exploration around the engineering application of aerospace
vehicles, so as to further improve the accuracy and reliability of its navigation system.
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