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Abstract: This paper presents a robust trajectory design method for approaching and rendezvous
with a space target considering multi-source uncertainties. A nonlinear covariance analysis method
based on the state transition tensor is presented to formulate the propagation of uncertainties
including environment parameter uncertainty, actuator error, sensor noise, navigation error and
initial state dispersion of the closed-loop GN&C system. Then, the robust trajectory design problem is
defined based on the quantified effect of the uncertainties, and an improved self-adaptive differential
evolution algorithm is presented to solve the robust trajectory design problem with uncertainties.
Finally, four groups of numerical simulations are carried out to show that the designed robust
trajectories can satisfy the final state dispersion constraint under multi-source uncertainties.

Keywords: rendezvous and proximity operation; robust trajectory; multi-source uncertainties;
covariance analysis; differential evolution

1. Introduction

Rendezvous and proximity operation (RPO) with a space target is an essential pre-
condition for the subsequent capture and on-orbit service [1]. The performance of RPO
(rendezvous time, energy consumption, etc.) relies heavily on the RPO trajectory, and as
a result, trajectory design has been an appealing area for decades. Trajectory design can
provide impulse maneuvers needed by chaser spacecraft to approach target spacecraft and
achieve goals such as flying by, capture or docking with the target. Lu et al. presented a new
methodology for a spacecraft to autonomously rendezvous with a target spacecraft in an
arbitrary orbit [2]. The N-impulse rendezvous problem was formalized by Zhou et al. and
an improved particle swarm optimization method was proposed to solve the problem [3].
The minimum-fuel trajectory design problem was constructed by Zhao et al. and solved
by the indirect optimization method [4]. A novel hierarchical optimization algorithm was
proposed in Ref. [5] to speed up the optimization process of spacecraft trajectory design.
An artificial emotion memory optimization method has been proposed in Ref. [6] for the
trajectory design problem to avoid the local minimum solution. The trajectory design
problem was addressed for Hayabusa2 rendezvousing with Ryugu [7] by minimizing the
total fuel consumption. Considering the collision problem, Liu et al. proposed a trajectory
design method based on the convex optimization algorithm [8]. Taking energy as the
performance index, Sandberg et al. presented an autonomous trajectory design algorithm
based on Pontryagin’s method [9]. Yang and Li proposed a fuel-optimal trajectory design
method based on a novel irregular gravitational Lambert solver [10]. It is noteworthy that
most of the RPO trajectory design methods do not take the uncertainties into consideration,
but the designed trajectory will be applied in the scenario and spacecraft with uncertainties.
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The performance of the trajectory may be significantly degraded when considering the
multi-source uncertainties.

There are multi-source uncertainties including errors in navigation, guidance and con-
trol during the RPO mission, and the uncertainties affect the actual trajectories significantly.
Extra energies are needed when tracking the designed trajectories based on the ideal orbit
dynamic models. Though the trajectory can be accurately tracked by the advanced tracking
control methods [11–15], the whole performance of the GN&C system is not optimal. To
solve this issue, researchers have carried out many works on the propagation of uncer-
tainties. A comprehensive overview of the linear and nonlinear uncertainty propagation
methods and related applications was provided in Ref. [16], including the Monte Carlo
simulation, local linearization, polynomial chaos expansion, state transition tensors (STT),
differential algebra, etc. Jones et al. employed the polynomial chaos expansion to give a
solution to an uncertain differential equation considering orbit state uncertainty propaga-
tion [17]. Valli et al. used differential algebra for the nonlinear propagation of uncertainty,
which can realize high-precision estimation with low computational complexity [18]. Un-
certain maneuvers of the spacecraft were estimated by Zhai et al. in Ref. [19]. Yang et al.
presented a modified uncertainty propagation method on the basis of the STT method [20].
Within the uncertainty propagation methods, the STT-based method is free with random
samplings of the multi-source uncertainties, and thus provides an efficient scheme for
uncertainty propagation in complex nonlinear dynamic systems.

Based on the uncertainty propagation methods, the uncertainty effect has been con-
sidered in the trajectory optimization. Li et al. investigated a multi-objective rendezvous
optimization problem under uncertainty and defined a novel objective function containing
the final state error [21]. Luo et al. proposed a robust rendezvous trajectory design method
based on a novel non-dominated sorting genetic algorithm [22]. Louembet et al. developed
a robust guidance algorithm considering the navigation, guidance and control uncertain-
ties [23]. For the entry trajectory design problem, a novel robust trajectory design method
was proposed in Ref. [24] by the quantification of both the dynamics of parametric uncer-
tainty and initial state uncertainty. The Mars entry trajectory of Tianwen-1 was designed
based on the estimation of uncertain aerodynamic states [25]. The uncertainties of the RPO
process have been analyzed and quantized in the open-loop system, and the effect of the
uncertainties was evaluated. However, the uncertainties of the closed-loop rendezvous
system are rarely analyzed.

Motivated by the foregoing discussions, this work proposes a novel robust rendezvous
trajectory design method for the closed-loop RPO system based on the STT method and
improved differential evolution algorithm. The contributions of this work are summarized
as follows:

• Uncertainties, including environment parameter uncertainty, actuator error, sensor
noise, navigation error and initial state dispersion, of the RPO GN&C closed-loop
system are modeled and the propagation, update and correction equations of the
uncertainties are formalized based on the STT method.

• The effect of the uncertainties is rapidly analyzed and predicted quantitatively, and a
robust trajectory design problem is constructed considering the uncertainties’ effect.

• An improved differential evolution algorithm is proposed to solve the robust trajectory
design problem for the space rendezvous mission.

The remainder of this paper is organized as follows. Section 2 provides the rendezvous
problem models including the dynamics model, environment model, actuator model,
sensor model and navigation algorithm model. In Section 3, the effect of the multi-source
uncertainties is quantified based on the STT method and the robust performance of the
closed-loop GN&C system is evaluated. In Section 4, the robust trajectory design problem
is formulated and finally solved by an improved differential evolution algorithm. The
simulation results of the robust trajectory design method compared to the traditional
optimal trajectory design method and nonlinear Monte Carlo method are presented in
Section 5. Conclusions are drawn in Section 6.
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2. Rendezvous Dynamic Modeling under Multi-Source Uncertainties

In this section, the rendezvous dynamic models between the service spacecraft (de-
noted as server for brevity) and the space target are constructed. The constructed models
include the orbit dynamic model, environment model, sensor model, actuator model and
the navigation algorithm model.

2.1. Orbit Dynamic Model

In the reference inertial frame, the position and velocity vectors of the server are
denoted as ri

c ∈ R3 and vi
c ∈ R3, and the position and velocity vectors of the considered

space target are denoted as ri
t ∈ R3 and vi

t ∈ R3, wherein the superscript i indicates the
inertial frame, and the subscripts c and t indicate the parameters are associated with the
server and the space target, respectively. Then, the orbit dynamic models of the server and
target are given as {

ṙi
c = vi

c
v̇i

c = − µ

‖ri
c‖3 ri

c + ac
(
ri

c, vi
c, penv

)
+ ui(p∆v)

(1)

{
ṙi

t = vi
t

v̇i
t = − µ

‖ri
t‖

3 ri
t + at

(
ri

t, vi
t, penv

) (2)

where µ is the gravitational coefficient, u denotes the thrust acceleration, and a ∈ R3 is the
acceleration due to Earth’s oblateness. penv and p∆v are the uncertainty parameters relevant
to the environment model and actuator model, respectively, and will be defined later.

2.2. Environment Model

In the rendezvous process, the uncertainty of the Earth’s oblateness is considered in the

environment model and defined as penv =
[
ηT

J2
, bT

J2

]T
∈ R6, where ηJ2 ∈ R3 and bJ2 ∈ R3

are the scale-factor uncertainty and bias uncertainty, respectively. Then, the acceleration a
caused by the Earth’s oblateness is modeled as

a =
[
I3×3 + diag

(
ηJ2

)]
â + bJ2 (3)

where â ∈ R3 is the theoretical value of the acceleration caused by the Earth’s oblateness.

2.3. Actuator Model

In the rendezvous process, all maneuvers are assumed to be impulsive, and the actu-
ator uncertainty parameters are defined as p∆v =

[
ηT

∆v, εT
∆v, bT

∆v
]T ∈ R9, where η∆v ∈ R3,

ε∆v ∈ R3 and b∆v ∈ R3 are the scale-factor uncertainty, misalignment uncertainty and
bias uncertainty, respectively. For the j-th impulsive maneuver ∆vj, the actuator model is
constructed as

∆vj = δT(ε∆v)
{
[I3×3 + diag(η∆v)]∆v̂j + b∆v + w∆v

}
(4)

where ∆v̂j ∈ R3 is the calculated control instruction given by the guidance algorithm;
w∆v ∈ R3 is a zero mean Gaussian white noise with a constant variance and satisfies

E
[
w∆v(tj1)w

T
∆v(tj2)

]
= Qwj δ

(
tj1 − tj2

)
(5)

where tj1 and tj2 are the maneuver time of j1-th and j2-th maneuvers; Qwj δ
(
tj1 − tj2

)
is the

standard Kronecker delta function.
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2.4. Sensor Model

During the rendezvous process, the state vectors xc =
[
ri

c
T , vi

c
T
]T

and xt =
[
ri

t
T , vi

t
T
]T

cannot be accurately obtained. Sensors such as the ranging radar and GPS sensors are
requisite and the uncertainties of the sensors should be considered and modeled. The sensor
uncertainty parameters are defined as psen =

[
ηT

sen, εT
sen, bT

sen
]T ∈ R18, where ηsen ∈ R6,

εsen ∈ R6 and bsen ∈ R6 are the scale-factor uncertainty, misalignment uncertainty and bias
uncertainty, respectively. For a state vector x(t) at time tk, the measurement model of the
sensors is constructed as

x̃k = δT(εsen)[I6×6 + diag(ηsen)]x(tk) + bsen + wsen (6)

where x̃k ∈ R6 is the discrete measurement value of x(t) at time tk, and wsen ∈ R6 is the
zero-mean measurement noise, which satisfies

E
[
wsen(tk)w

T
sen(t

′
k)
]
= Qsenδ

(
tk − t′k

)
(7)

2.5. True Dynamic Model

With the constructed models in Sections 2.1–2.4, the uncertainty parameters penv, p∆v

and psen are integrated as p =
[
pT

env, pT
∆v, pT

sen
]T

=
[

p1, p2, · · · , pnp

]T
∈ Rnp . Without loss

of generality, uncertainty parameter pl (l = 1, · · · , np) is modeled as the first-order Markov
process given as

ṗl = −
pl
τl

+ ωpl , l = 1, · · · , np (8)

where τl is the known time constant and ωpl satisfies

E[ωpl (t)ωpl (t
′)] = σ2

pl
δ(t− t′) (9)

To simplify the presentation, the general expression for the true dynamic model can
be reorganized as

ẋ = f (x, u, t) (10)

where x :=
[
xT

c , xT
t , pT]T ∈ Rnp+12 is the state vector of the true dynamic model.

2.6. Navigation Algorithm Model

After acquiring the measurement values of the system states by the sensors, a navi-
gation algorithm is always needed. Without loss of generality, the most frequently used
Kalman algorithm is employed to obtain the navigation states. The navigation state x̂ ∈ Rn̂

(n̂ = np + 12) of the true state x is defined as

x̂ =
[

x̂T
c , x̂T

t , p̂T
]T

(11)

which consists of six chaser states, six target states, and np parameter states p̂ and given as

p̂ =
[

p̂T
env, p̂T

lidar, p̂T
∆v

]T
(12)

The propagation equations of the navigation state are presented as{ ˙̂ri
c = v̂i

c
˙̂vi

c = − µ

‖r̂i
c‖3 r̂i

c + ac
(
r̂i

c, v̂i
c, p̂env

)
+ ui(p̂∆v)

(13)

{ ˙̂ri
t = v̂i

t
˙̂vi

t = − µ

‖r̂i
t‖

3 r̂i
t + at

(
r̂i

t, v̂i
t, p̂env

) (14)
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˙̂pl = −
p̂l
τl

, l = 1, 2, 3, . . . , np (15)

To simplify the presentation, propagation equations of the navigation state x̂ in
Equations (13)–(15) are integrated as

˙̂x = f̂ (x̂, u, t) (16)

Based on Equation (16), the propagation equation of the navigation state covariance
can be given as

˙̂P = F̂x̂P̂ + P̂T F̂T
x̂ + Ŝω (17)

where P̂ is the navigation state of the covariance matrix, F̂x̂ is the state-transition matrix of
system (16), and Ŝω is the uncertainty parameter vector.

After acquiring new sensor states, the navigation state and covariance matrix are
updated based on

x̂+k = x̂−k + K̂k[z̃k − ˆ̃zk] (18)

P̂+
k = (In̂×n̂ − K̂k Ĥk)P̂

−
k (In̂×n̂ − K̂k Ĥk)

T + K̂kR̂νK̂T
k (19)

wherein the symbols + and − represent the navigation state and covariance matrix after
and before this update, ˆ̃zk is the measurement value of the sensors, Ĥk is the measurement
sensitivity matrix, and K̂k is the Kalman filter gain and is presented as

K̂k = P̂−k ĤT
k (ĤkP̂−k ĤT

k + R̂ν)
−1 (20)

where R̂v is the measurement noise covariance.
When the j-th maneuver occurs, the navigation state and covariance matrix will be

corrected. The navigation state x̂j is corrected according to

x̂+c
j = x̂−c

j + d̂(x̂−c
j , ∆v̂j) (21)

where the symbols +c and −c represent the state after and before the correction, and
d̂(x̂−c

j , ∆v̂j) is given as

d̂(x̂−c
j , ∆v̂j) = δT̂(ε∆v)[I3×3 + diag(η̂∆v)]∆v̂j + b̂∆v (22)

The covariance matrix is corrected according to

P̂+c
j = [I + D̂x̂]P̂−c

j [I + D̂x̂]
T + Ŝωj (23)

where D̂x̂ is the Jacobian matrix of d̂(x̂−c
j , ∆v̂j) with respect to x̂.

3. Uncertainty Effect Prediction and Robustness Evaluation of GN&C System

On the basis of the rendezvous orbit dynamic models formalized in Section 2, the pre-
diction of the uncertainties’ effect is quantified based on the STT method. Then, the robust
performance of the GN&C system against the uncertainties is evaluated quantitatively.

3.1. Uncertainty Effect Prediction Based on STT Method

The models for propagating the true state x as well as the navigation state x̂ can be
reorganized based on Equations (10) and (16) as

x(t) = Φ(t; x+c
j , tj) (24)

x̂(t) = Φ̂(t; x̂+c
j , tj) (25)
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where Φ and Φ̂ are functions satisfying the conditions

dΦ

dt
= f (t, Φ(t; x+c

j , tj)) (26)

dΦ̂

dt
= f (t, Φ̂(t; x̂+c

j , tj)) (27)

In order to analyze the true state x and navigation state x̂ simultaneously, an aug-
mented state vector X is defined as X =

[
xT , x̂T]T , and then the effect of the uncertainties

is defined as

δX =

[
δx
δx̂

]
=

[
x− x̄
x̂− ¯̂x

]
(28)

where x̄ = E(x), ¯̂x = E(x̂). Apparently, δX contains the dispersions of the true state and
navigation state, which are caused by the uncertainties. Therefore, the property of δX can
be used to analyze the effect of uncertainties.

This work employs the STT method [20] to obtain an analytical and nonlinear approxi-
mation to the solution of δX. The states’ deviation along the reference states x̄ and ¯̂x are
presented based on Einstein’s summation notation as

δxj(t) =
m

∑
p=1

1
p!

Φj,k1···kp(t)δxk1(t
+c
j ) . . . δxkp(t

+c
j ) (29)

δx̂j(t) =
m

∑
p=1

1
p!

Φ̂j,k1···kp(t)δx̂k1(t
+c
j ) . . . δx̂kp(t

+c
j ) (30)

where the subscript k is the component of each tensor, m is the order of the expansion, and
the Φ is the STT of the order p, which can be calculated by

Φ̇j,k1···kp = h
(

Aj,k1 , · · · , Aj,k1···kp ; Φj,k1 , · · · , Φj,k1···kp

)
(31)

where

Aj,k1···kp =
∂p f j

∂xk1 · · · xkp

∣∣∣∣∣
−

(32)

and − indicates that Ai,k1···kp is evaluated over the reference trajectory.
Then, the propagation, update and correction equations of δX can be written in

compact form as

δXj(t) =
m

∑
p=1

1
p!

Φa
j,k1···kp

(t)δXk1(t
+c
j ) . . . δXkp(t

+c
j ) (33)

δX+
k = AkδX−k +Bkυk (34)

δX+c
j = D jδX−c

j +N jwj (35)

where

Φa
j,k1···kp

(t) =

[
Φj,k1···kp(t) 06×6

06×6 Φ̂j,k1···kp(t)

]
(36)

Ak =

[
I6×6 06×6

Kk Hk, I6×6 − Kk Hk

]
, Bk =

[
06×6
Kk

]
(37)

D j =

[
I6×6, BM
06×6, I6×6 + BM

]
, N j =

[
B

06×3

]
(38)

with B = [03×3, I3×3]
T .
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Define the covariance CA of δX as CA = E[δXδXT ]. As E
(
δXT) = 0; then, the

propagation, update and correction equations of CA are obtained as

CAij(t) =
m

∑
p=1

m

∑
q=1

1
p!q!

Φa
i,k1···kp

(t)Φa
j,s1···sq

(t)

· E[δXk1(t
+c
j ) . . . δXkp(t

+c
j )δXs1(t

+c
j ) . . . δXsq(t

+c
j )]

−mi(t)mj(t)

(39)

CA(t+k ) = AkCA(t−k )A
T
k +BkRυBT

k (40)

CA(t+c
j ) = D jCA(t−c

j )DT
j +N jQwjN

T
j (41)

where the mean mi(t) can be given as

mi(t) =
m

∑
p=1

1
p!

Φa
i,k1···kp

(t)E[δXk1(t
+c
j ) . . . δXkp(t

+c
j )] (42)

3.2. Robustness Evaluation

The robustness of the GN&C system against multi-source uncertainties can be evalu-
ated by analyzing the covariance matrix of the final true state dispersion. The covariance
matrix is obtained by the augmented state covariance matrix as

Dtrue = E
[
δx(t)δxT(t)

]
= [I6×6 06×6]CA[I6×6 06×6]

T (43)

The covariance of the final true state dispersion is caused by the multi-source uncer-
tainties such as the actuator errors and navigation errors. The covariance matrix of the
navigation state dispersion δx̂(t) can also be obtained as

Dnav = E[δx̂(t)δx̂T(t)] = [06×6 I6×6]CA[06×6 I6×6]
T (44)

As the desired control values are calculated by the navigation states, which contain
dispersions, extra control is needed to correct the errors and this can be evaluated by the
control covariance matrix Dcomj as

Dcomj = E
[
δujδuT

j

]
= ĜjDnavĜT

j (45)

4. Robust Rendezvous Trajectory Design

In order to take the uncertainties’ effect into consideration in the RPO problem, a
robust rendezvous trajectory design method is presented in this section. The objective
of the robust rendezvous trajectory design is to propose the optimal maneuver plan that
not only considers the total maneuver consumption (quantified by the sum of all the
expected maneuvers

∥∥∆v(tj)
∥∥

2), but also the trajectory robustness against the multi-source
uncertainties (quantified by the 3-σ∆v dispersion and final 3-σ position dispersion).

4.1. Problem Formulation

The robust trajectory design problem is stated as follows:

min
n

∑
j=1

(
∥∥∆v(tj)

∥∥
2 + 3σ∆v(tj)

) (46)

s. t. ẋ = f (x, ∆v, t) (47)

x(t0) = x0 (48)
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x
(

t f

)
= xd (49)

σr

(
t f

)
≤ σ

req
r (50)

where

σ∆v(tj)
=

√
trace

(
Dcomj

)
(51)

σr

(
t f

)
=

√
trace

(
MrD

t f
true Mr

)
(52)

and Dtrue and Dcomj are given in Equations (43) and (45), σv(tj)
is the dispersion of the j-th

maneuver, σr

(
t f

)
is the position dispersion at the final time, Mr is the mapping matrices

from the true state to the position states, and σ
req
r is the requirement of final state dispersion.

Remark 1. In the traditional RPO studies, the rendezvous trajectory is usually optimized without
considering the effect of uncertainties. In this work, the effect of multi-source uncertainties is
considered by σ∆v(tj)

and σ∆v(tj)
, which are both calculated based on the STT method. If the

trajectory optimization problem in Equations (46)–(50) is solved, then the designed trajectory
not only has good performance in fuel consumption, but also has strong robustness against the
multi-source uncertainties.

4.2. Improved Self-Adaptive Differential Evolution Algorithm

To solve the stochastic optimization problem, an improved self-adaptive differential
evolution algorithm for robust trajectory design is presented.

In the differential evolution algorithm, the evolution scaling factor F has an important
impact on the optimization searching process. F is always set as a random value between 0
and 1 in the traditional differential evolution algorithm, which leads to the same search
range and low efficiency. The robust trajectory design is a complex optimization problem;
a self-adaptive search range can improve the search efficiency. To make the algorithm more
efficient, a self-adaptive evolution scaling factor is designed and given as

Fi,j = Fi,j(Qbest
(g−1))× Fi,j(g)× rand(0, 1) (53)

where i, j and g represent the sequence numbers of variables, individuals and generations;
Fi,j(Qbest

(g−1)) is relevant to the best fitness function of the last generation. To ensure that the

factors Fi,j(Qbest
(g−1)) change from C (C is related with Qbest

(g−1)) to 0.1 with the fitness function

of the last generation decrease, Fi,j(Qbest
(g−1)) is designed as

Fi,j(Qbest
(g−1)) = lg(Qbest

(g−1) + 100.1)→ Fi,j(g) ∈ (0.1, C) (54)

where Fi,j(g) is an adaptive function related to the generations. To guarantee that the factors
Fi,j(g) vary from 1 to 0.1 with the number of generations increasing, Fi,j(g) is designed in
this work as

Fi,j(g) = (cos(
g
K
× π) +

11
9
)× 9

20
→ Fi,j(g) ∈ (0.1, 1) (55)

The proposed self-adaptive evolution scaling factor in Equation (55) can ensure that
the search range is the whole solution set at the beginning and converges to a smaller set
around the best solution, which can obviously improve the search efficiency.

Moreover, the search process of the traditional differential evolution algorithm is
sometimes trapped in a local optimal solution. To solve this problem, a random mutant
Ui,n(g) is introduced to enhance its ability to jump out of the local optimal solution. When
the search process is trapped in a local optimal solution, the mutant will try to find an
individual with better performance, and then restart a new evolution process around this
mutant. The random mutant is given as
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Ui,n(g) = BL
i + randj(0, 1)× (BU

i − BL
i ), g = 1, . . . , K (56)

where BL
i and BU

i are lower and upper bounds of the i-th variables.
The proposed improved self-adaptive differential evolution algorithm for robust

trajectory design is summarized in Algorithm 1.

Algorithm 1: Improved self-adaptive differential evolution algorithm for robust
trajectory design

Input : The measured initial relative state x0 = [r0, v0]
T and final expected state

xd = [rd, vd]
T .

Output : The optimal maneuver number and optimal ∆v(tj).

1 Calculate the deterministic trajectory without uncertainties and ∆v(tj) using
Equations (47)–(49) by convex optimization algorithm.

2 Calculate the Kalman gains K̂k using Equations (17), (19), (20) and (23).

3 Compute σr

(
t f

)
and σ∆vj using Equations (51) and (52).

4 while final 3-σ position dispersion constraint in Equation (50) is not satisfied do
5 Set the parameters of self-adaptive evolution algorithm.
6 Generate the initial population of the individuals with different maneuver

number, tj and x(tj).
7 while the stopping criteria is not satisfied do
8 For each member of the population:

(a) Calculate nominal trajectory and ∆vj using Equations (47)–(49);
(b) Calculate the Kalman gains K̂k using Equations (17), (19), (20) and (23);

(c) Compute σr

(
t f

)
and σ∆vj using Equations (51) and (52);

(d) Evaluate the fitness function in Equation (46).

Generate the trial vector by mutation process.
Produce the alternative vector by crossover process.
Determine whether to select the alternative vector as a member of the new
generation.

9 end
10 end

Remark 2. It can be obtained from Step 4 in Algorithm 1 that the self-adaptive differential evolution
algorithm is not actually applied when the final 3-σ position dispersion constraint in Equation (50)
is satisfied under the uncertainties. This means that even applying ∆v(tj) of the deterministic
trajectory calculated without uncertainties, the final states of the system with uncertainties satisfy
the final 3-σ position dispersion constraint. There is no need to start the optimization algorithm as
the current maneuver plan is sufficient to meet the needs of the RPO mission.

5. Simulation Results

Numerical simulations are carried out to verify the effectiveness of the novel robust
rendezvous trajectory design method based on the STT method and improved differential
evolution method.

5.1. Simulation Conditions

The proposed robust rendezvous trajectory design method is verified by a concrete or-
bit transfer problem. The measured initial relative states are given as
x0 = [0 m,−10, 000 m, 200 m, 0 m/s, 0 m/s, 0 m/s]T , and the expected final relative states
are set as x f = [0 m,−200 m, 0 m, 0 m/s, 0 m/s, 0 m/s]T . Different desired transfer times
are set as t f = 2000 s, 6000 s, 12,000 s and free-time to produce different simulation exam-
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ples. The deterministic optimal solutions to this scenario without uncertainties for t f =
2000 s, 6000 s and 12,000 s, respectively, are optimized and listed in Table 1.

Table 1. Deterministic maneuver data.

t f (s) Total ∆v (m/s) Number of
Maneuvers

Maneuver
Times (s) ∆v (m/s) Maneuver Positions

[ x y z ] (km)

2000 9.480 2
[

0
2000

] [
4.737
4.743

] [0 −10 0.2]
[0 0 0]

6000 1.267 4


0

1127
4735
6000




0.414
0.221
0.160
0.472


[0 −10 0.2]

[−0.545 −9.950 0.012]
[−0.744 −0.410 0.075]

[0 0 0]

12,000 0.665 4


0

1359
10,183
12,000




0.133
0.202
0.071
0.259


[0 −10 0.2]

[−0.227 −9.918 −0.020]
[−0.639 −0.815 0.073]

[0 0 0]

Different uncertainties are considered in this section. In order to clearly present
the uncertainties’ effect on different levels, three typical GN&C systems are defined in
Table 2 and denoted as a high-cost system, nominal-cost system and low-cost system,
respectively. Here, “high/nominal/low cost” means that the system is equipped with
expensive/nominal/cheap sensors and actuators, so the uncertainty levels are different.
Different levels of uncertainties (3-σ) are also given in Table 2, including the initial state dis-
persions, measurement errors, actuator execution errors and final dispersion requirements.
The initial position dispersion ranges from 10 m to 1 km, and the initial velocity dispersion
ranges from 0.01 m/s to 1 m/s. The measurement errors range from 0.1 m to 10 m. The
actuator execution errors range from 1 mm/s to 100 mm/s. The final position dispersion
requirement ranges from 3 m to 30 m.

Table 2. Different levels of uncertainties (3-σ) for high-, nominal- and low-cost systems.

Uncertainty
Value (3-σ)

Unit
High Cost Nominal Cost Low Cost

Initial State Dispersion
Position 10 100 1000 m
Velocity 0.01 0.1 1 m/s

Measurement Error
Noise 0.1 1 10 m

Misalignment 0.1 1 10 mrad
Scale factor 100 500 1000 ppm

Bias 0.01 0.03 0.05 m
Actuator Execution Error

Noise 0.001 0.01 0.1 m/s
Misalignment 0.1 1 5 mrad

Scale factor 100 500 1000 ppm
Bias 0.1 1 5 mm/s

Final Dispersion Requirement
Position 3 15 30 m

5.2. Robust Trajectory Design Results

In the proposed self-adaptive evolution algorithm, the maximum number of iterations
is set as 100× number of variables, population size is 1000, and the stopping criterion is
that the change in the fitness function is smaller than 10−6.

Figure 1 shows the optimal fitness function with respect to the number of maneuvers
when t f = 2000 s. Though only two maneuvers are needed in the optimal deterministic
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trajectory, it can be seen from the figure that three maneuvers are needed in the robust
optimal trajectory for the high-cost system and four maneuvers are needed in the robust
optimal trajectories for the nominal-cost and low-cost systems.

Table 3 presents the simulation results when t f = 2000 s. For the total ∆v representing
the fuel consumption, it is obtained that more ∆v is required to satisfy the constraint
of final position dispersion when there are stronger uncertainties. This is because extra
actuator execution errors are injected into the system due to extra maneuvers. For the
optimal maneuver times, it is seen that the high-cost system requires only one mid-course
correction at 576 s, the nominal-cost system requires two mid-course corrections—one
early at 423 s and one late at 1504 s—and the low-cost system requires two very late mid-
course corrections at 1406 s and 1880 s. The late maneuvers for the low-cost system are not
surprising since injecting large maneuver execution errors earlier in the trajectory creates a
larger final position dispersion.
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Optimal number of maneuvers for norminal system

Optimal number of maneuvers for low cost system

Figure 1. Optimal fitness function with respect to the number of maneuvers when t f = 2000 s.

Table 3. Optimal trajectory results when t f = 2000 s.

Case 1, t f = 2000 s
System Deterministic High Cost Nominal Low Cost

Fitness (m/s) NA 9.537 10.009 14.181
∆v (m/s) 9.480 9.481 9.488 10.053

3-σ∆v (m/s) NA 0.057 0.520 4.128
3-σr (m) NA 2.999 14.968 20.246

Opt. no. of
maneuvers 2 3 4 4

Maneuver times (s)
[

0
2000

]  0
576

2000




0
423

1504
2000




80
1406
1888
2000



Figures 2 and 3 show the in-plane and out-of-plane optimal trajectories (notation cvx
indicates the optimal trajectory solved by convex optimization without uncertainties) and
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the associated maneuver locations (denoted as M1, M2, etc.) when t f = 2000 s. It can be
seen from the two figures that the designed robust optimal trajectories are basically the
same as the deterministic optimal trajectory, which means that the main objective of the
robust trajectory optimization algorithm is to correct the trajectory against the uncertainties
rather than replan a new trajectory.
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Figure 2. Optimal trajectories (in-plane) when t f = 2000 s.

–10,000            –8000         –6000              –4000          –2000     0

Along–track (m)

–50

0

50

100

150

200

250

300

M
1

M
2

M
1

M
2

M
3

M
1

M
2

M
3

M
4

M
1

M
2

M
3

M
4

CVX

High cost

Norminal

Low cost

C
ro

ss
–t

ra
ck

 (m
)

Figure 3. Optimal trajectories (out-of-plane) when t f = 2000 s.
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Figure 4 presents the Monte Carlo analysis for the low-cost system when t f = 2000 s.
A total of 1000 independent Monte Carlo simulations were carried out with the stochastic
uncertainties and are shown in the figure with blue and solid lines. The uncertainty effect
on the 3-σ position dispersion is also analyzed by the proposed STT-based method and
the result is shown in the figure with red and dashed line. Meanwhile, the yellow and
dotted line in the figure denotes the mission constraint of the final position dispersion. It is
verified that the proposed STT-based uncertainty effect evaluation method can provide the
accurate upper bound of the Monte Carlo results. Moreover, all Monte Carlo trajectories
satisfy the final position dispersion constraint, which indicates that the proposed robust
trajectory design method is effective when considering strong uncertainties.

Figure 4. Monte Carlo analysis for low-cost system when t f = 2000 s.

Figure 5 shows the optimal fitness function with respect to the number of maneuvers
when t f = 6000 s. Four maneuvers are needed in the robust optimal trajectories for both the
high- and nominal-cost systems, while five maneuvers are needed in the robust optimal
trajectories for the low-cost system.

Table 4 presents the simulation results when t f = 6000 s. For the optimal maneuver
times, it is seen that the high-cost system requires two mid-course corrections at 1127 s
and 4735 s, the nominal cost system requires two mid-course corrections—one at 3868 s
and one late at 5162 s—and the low-cost system requires three mid-course corrections at
1377 s, 4741 s and 5829 s. It is noteworthy that the designed maneuvers are completely the
same in the deterministic trajectory and the high-cost system trajectory. This is because
even applying ∆v(tj) of the deterministic trajectory into the high-cost system, the final 3-σ
position dispersion constraint is still satisfied and, as a result, the self-adaptive differential
evolution algorithm is not run to avoid unnecessary calculations. A detailed explanation
can be found in Algorithm 1 and Remark 2.

Figures 6 and 7 show the in-plane and out-of-plane optimal trajectories when t f = 6000 s,
as well as the maneuver locations. It can be seen from the figures that the designed robust
optimal trajectory of the high-cost system is basically the same as the deterministic optimal
trajectory due to the same maneuvers, while the designed robust optimal trajectories of the
nominal and low-cost systems are different from the deterministic optimal trajectory. A
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conclusion is drawn that the proposed method is capable of replanning a new trajectory
when the uncertainty effect is great to the rendezvous system.

2 3 4 5 6

The number of maneuvers

0

100

200

300

400

500

600

Fi
tn

es
s 

fu
nc

tio
n 

(m
/s

)
High cost system

Norminal system

Low cost system

Optimal number of maneuvers for high cost system

Optimal number of maneuvers for norminal system

Optimal number of maneuvers for low cost system

Figure 5. Optimal fitness function with respect to the number of maneuvers when t f = 6000 s.

Table 4. Optimal trajectory results when t f = 6000 s.

Case 2, t f = 6000 s
Deterministic High Cost Nominal Low Cost

Fitness (m/s) NA 1.332 1.820 5.892
∆v (m/s) 1.267 1.267 1.416 1.354

3-σ∆v (m/s) NA 0.065 0.404 4.538
3-σr (m) NA 2.902 14.999 29.939

Opt. no. of
maneuvers 4 4 4 5

Maneuver times (s)


0

1127
4735
6000




0
1127
4735
6000




180
3868
5162
6000




62
1377
4741
5829
6000



Figure 8 presents the Monte Carlo analysis for the high-cost system when t f = 6000 s.
It is verified that the proposed STT-based uncertainty effect evaluation method can provide
the accurate upper bound of the Monte Carlo results. Moreover, all Monte Carlo trajectories
satisfy the final position dispersion constraint.

Figure 9 shows the optimal fitness function with respect to the number of maneuvers
when t f = 12,000 s. Four maneuvers are needed in the robust optimal trajectories for both
the high- and nominal-cost systems, while five maneuvers are needed in the robust optimal
trajectories for the low-cost system.

Table 5 presents the simulation results when t f = 12,000 s. For the optimal maneuver
times, it is interesting to note that the time of the first maneuver is not 0 in all stochastic
cases. This is because there are initial position and velocity dispersions at t = 0 s. For a long
transfer time, rather than using a poor measured state with large dispersion to compute the
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maneuver, it would be better to wait until the navigation algorithm has run for some time
and the measured states are more accurate.
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Figure 6. Optimal trajectories (in-plane) when t f = 6000 s.
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Figure 8. Monte Carlo analysis for high-cost system when t f = 6000 s.

0

200

400

600

800

1000

1200

High cost system

Norminal system

Low cost system

Optimal number of maneuvers for high cost system

Optimal number of maneuvers for norminal system

Optimal number of maneuvers for low cost system

2 3 4 5 6

The number of maneuvers

Fi
tn

es
s 

fu
nc

tio
n 

(m
/s

)

Figure 9. Optimal fitness function with respect to the number of maneuvers when t f = 12,000 s.
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Table 5. Optimal trajectory results when t f = 12,000 s.

Case 3, t f = 12,000 s
Deterministic High Cost Nominal Low Cost

Fitness (m/s) NA 0.796 1.258 5.437
∆v (m/s) 0.665 0.727 0.785 0.918

3-σ∆v (m/s) NA 0.069 0.473 4.519
3-σr (m) NA 2.994 14.986 29.959

Opt. no. of
maneuvers 4 4 4 5

Maneuver times (s)


0

1359
10,183
12,000




858
7343

10,572
12,000




171
7021

11,162
12,000




161
4222

10,527
11,828
12,000


Figures 10 and 11 show the in-plane and out-of-plane optimal trajectories when t f = 12,000 s,

as well as the optimal maneuver locations. In this case, the optimal maneuvers change the
desired optimal trajectory.

Figure 12 presents the Monte Carlo analysis for the high-cost system when t f = 12,000 s.
It is verified that the proposed STT-based uncertainty effect evaluation method can provide
the accurate upper bound of the Monte Carlo results. Moreover, all Monte Carlo trajectories
satisfy the final position dispersion constraint.

Table 6 presents the simulation results when the final time is free. Four maneuvers
are needed in the robust optimal trajectories for both the high- and nominal-cost systems,
while five maneuvers are needed in the robust optimal trajectories for the low-cost system.
As expected, the optimal fitness functions in all systems are smaller than the fixed final
time case t f = 12,000 s. Theoretically, when the system is free with uncertainties, ∆v should
approach zero when the final time is free, and the final time should approach infinity. When
uncertainties are considered, however, an excessively long final time will lead to a large
final state dispersion. It can be observed that the optimized final time is shorter when the
uncertainties are stronger, which provides clear evidence of the uncertainty effect on the
rendezvous system.
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Figure 10. Optimal trajectories(in-plane) when t f = 12,000 s.
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Figure 11. Optimal trajectories (out-of-plane) when t f = 12,000 s.

Figure 12. Monte Carlo analysis for high-cost system when t f = 12,000 s.

Figures 13 and 14 show the in-plane and out-of-plane trajectories when t f = free, as
well as the optimal maneuver locations.
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Table 6. Stochastic optimal performance results, t f = free.

Case 4, t f = free
System High Cost Nominal Low Cost

Final time (s) 17,043 16,964 10,086
Fitness (m/s) 0.651 1.073 5.424

∆v (m/s) 0.602 0.609 1.018
3-σ∆v (m/s) 0.049 0.464 4.407

3-σr (m) 2.994 14.967 29.987
Opt. no. of maneuvers 4 4 5

Maneuver times (s)


590

11,009
15,615
17,043




179
12,629
16,132
16,964




110
4214
8752
9914

10,086


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Figure 13. Optimal trajectories (in-plane) when t f = free.
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Figure 14. Optimal trajectories (out-of-plane) when t f = free.
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6. Conclusions

A novel robust trajectory design method has been proposed in this work for the
rendezvous and proximity operations mission in Earth orbit. Optimal maneuver plans
have been provided that not only satisfy the final state dispersion constraints but minimize
the effect of multi-source uncertainties. The main contributions and advantages are twofold:
on the one hand, multi-source uncertainties are modeled of the closed-loop rendezvous
system and the effect of the uncertainties is quantized and evaluated based on the state
transition tensor method. On the other hand, the effect of the uncertainties is considered
in the robust rendezvous trajectory design problem, which is effectively solved by an
improved differential evolution algorithm. Numerical simulations clearly show that the
multi-source uncertainties, including environment parameter uncertainty, actuator error,
sensor noise, navigation error and initial state dispersion, may have significant effects on
the designed trajectory. By employing the proposed method, the effect of uncertainties is
effectively considered and the optimized robust rendezvous trajectory satisfies the mission
requirements and has strong robustness against uncertainties. In future work, complex
constraints including a no-fly zone constraint, collision avoidance constraint and docking
axis constraint will be considered in the proposed robust trajectory design framework.
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