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Abstract: Autonomous rendezvous and docking (RVD) fuel optimization with field-of-view and
obstacle avoidance constraints is a nonlinear and nonconvex optimization problem, making it com-
putationally intensive for onboard computation on CubeSats. This paper proposes an RVD fuel
optimization and guidance technique suitable for onboard computation on CubeSats, considering
the shape, size and computational limitations of CubeSats. The computation time is reduced by
dividing the guidance problem into separate orbit and attitude guidance problems, formulating
the orbit guidance problem as a convex optimization problem by considering the CubeSat shape,
and then solving the orbit guidance problem with a convex optimization solver and the attitude
guidance problem analytically by exploiting the attitude geometry. The performance of the pro-
posed guidance method is demonstrated through simulations, and the results are compared with
those of conventional methods that perform orbit guidance optimization with attitude quaternion
feedback control. The proposed method shows better performance, in terms of fuel efficiency, than
conventional methods.

Keywords: fuel optimization; attitude guidance; orbit guidance

1. Introduction

Rendezvous and docking (RVD) is an important maneuver for space operations per-
formed to accomplish tasks such as space rescue, on-orbit servicing, supply and assembly
missions. Spacecraft RVD has long been a focus in the aerospace industry. Fuel opti-
mization [1–4], time minimization [1,5], safety [6–8] and real-time implementation [2,9]
are among the most well-studied topics in the literature. Fuel optimization and real-time
implementability are particularly important for CubeSats.

Several methods have been proposed in the literature to solve the fuel-optimized
guidance problem for RVD. These methods can be divided into two groups based on
the approaches that they use to handle dynamic models. The first and more commonly
used approach involves solving the orbit and attitude guidance problems for the coupled
dynamic model as a single fuel optimization problem, while the other approach is to first
optimize the orbit guidance and then apply attitude control subsequently.

For the coupled dynamic model approach, [1] used the direct collocation method
to solve the minimum-energy and minimum-time rendezvous problem. In [3], a direct
transcription method was used to obtain a tractable static program for the coupled trans-
lational and angular dynamics, and then a model predictive controller (MPC) was used
to handle disturbances. Because of the large number of parameters, the coupled dynamic
model approach is computationally intensive and hence less suited for onboard real-time
implementation on a resource-constrained CubeSat computer.

The decoupled dynamic model approach has also been taken by some authors [10–14];
ref. [10] used linear quadratic control (LQC) for orbit trajectory optimization and a quaternion-
based attitude controller for attitude maneuvering, while in [11], a single-thruster sub-
optimal trajectory was employed for the orbit trajectory, while geometric and nonlinear
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programming methods were used for attitude control. Although the decoupled dynamic
model approach is computationally less intensive than the coupled dynamic model ap-
proach, for a multi-thruster configuration, depending on the attitude, the fuel expenditure
can be higher in practice than what is calculated during trajectory optimization as a re-
sult of using more than one thruster. The articles that consider the decoupled dynamic
model approach either optimize fuel based on the orbit trajectory without considering the
attitude guidance at all [12], or they do not take into consideration the field of view and
other constraints for the attitude [10,13,14]. In the latter case, during attitude maneuver,
the spacecraft is aligned in such a manner that a single thruster is used to apply the required
delta-v, which is the applied impulse per unit of the spacecraft mass [10].

In this research, a fast and fuel-efficient orbit and attitude guidance method is proposed
for CubeSats with six thrusters. The proposed method decouples the guidance problem into
an orbit energy optimization subproblem and an attitude fuel optimization subproblem.
The CubeSat shape is used to formulate the collision avoidance constraints for the orbit
optimization subproblem. A novel geometric approach is introduced to minimize the fuel
loss in practice when multiple thrusters are applied. The geometry of the attitude vectors
in space is used to analytically find the optimal attitude for reducing the computation time,
which is hence best suited for real-time implementation. The performance of the proposed
method is analyzed and demonstrated through simulations. Although the proposed
guidance method is designed for CubeSats, it can be applied to other satellites by adapting
the collision avoidance criterion to fit the relevant geometry.

The main contributions of this research are:

1. Formulation of an orbit optimization problem that considers the shape of CubeSats;
2. Analytical solution of the attitude guidance optimization problem;
3. Collision avoidance method based on geometry of CubeSats.

This paper is organized as follows. Section 2 describes the coordinate frames of the
RVD system and the chaser and target equations of motion. In Section 3, a continuous-
time coupled orbit and attitude fuel optimization problem is formulated, and its discrete
equivalent is found. Then, the proposed decoupled optimization problem is presented in
Section 4. In Section 5, simulation case studies are presented, and the results are discussed.
Finally, conclusions are presented in Section 6.

2. RVD Model

In this research, a chaser spacecraft equipped with three pairs of pulsed thrusters each
aligned along the positive and negative directions of the principal axes of the spacecraft
and three reaction wheels placed orthogonally is considered. It is assumed that the chaser
flies on a near-circular low Earth orbit (LEO) and is to be docked to a target spacecraft with
a known docking port position and attitude tumbling freely. A guidance profile for the
chaser is to be generated in a Hill’s frame that is located at the center of the target, as shown
in Figure 1.

Throughout this article, an overbar ¯(·) will be used to indicate a vector with more than
three components, a vector sign ~(·) will indicate a three-component vector, a hat ˆ(·) will
indicate a unit vector, and a bold symbol will indicate a matrix.

The Hill’s frame shown in Figure 1 has its x̂h component along the position vector~rt
of the target, ẑh lies along the orbit normal vector, and ŷh follows the right-hand rule.
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Figure 1. RVD geometry and coordinate frames.

2.1. Orbital Equations of Motion

The linear translation equations of motion of the chaser spacecraft have been given
by [15], as shown in Equation (1), which is relative to the target spacecraft in a circular orbit
described in the Hill’s frame.

ẍ = 2Ωẏ + 3Ω2x +
Fx

m

ÿ = −2Ωẋ +
Fy

m

z̈ = −Ω2z +
Fz

m

(1)

where x, y and z are the position coordinates of the chaser relative to the target in the Hill’s
frame. Fx, Fy and Fz are the thrust forces of the chaser in the Hill’s frame. m is the mass of

the chaser, Ω =
√

µ/r3
t , µ is the standard gravitational constant, and rt is the distance of

the target from the center of the Earth in its circular orbit.
Equation (1) can be written in state-space form as follows:

˙̄x = Ax̄ + B~a (2)

where

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3Ω2 0 0 0 2Ω 0
0 0 0 −2Ω 0 0
0 0 −Ω2 0 0 0

B =



0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1



x̄ =



x
y
z
ẋ
ẏ
ż

 =

[
~r
~̇r

]
~a =

1
m

Fx
Fy
Fz
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The continuous-time solution of Equation (2) is

x̄(t) = Φ(t− t0)x̄(t0) +
∫ t

t0

Φ(t− τ)B~a(τ) dτ (3)

where Φ is the state transition matrix (STM) given by [16], as shown in Equation (4).

Φ(t) =



4− 3 cos (Ωt) 0 0 sin (t)/Ω (2/Ω)(1− cos (Ωt)) 0
6(sin (Ωt)−Ωt) 1 0 −(2/Ω)(1− cos (Ωt)) (4 sin (Ωt)− 3Ωt)/Ω 0

0 0 cos (Ωt) 0 0 sin (Ωt)/Ω
3Ω sin (Ωt) 0 0 cos (Ωt) 2 sin (Ωt) 0

−6Ω(1− cos (Ωt)) 0 0 −Ω sin (Ωt) 4 cos (Ωt)− 3 0
0 0 −Ω sin (Ωt) 0 0 cos (Ωt)

 (4)

In Equation (2), the control input ~a is continuous. Since the thrusters are pulsed,
the integral term can be reduced to a summation term as follows:

∫ t

t0

Φ(t− τ)B~a(τ) dτ =
N−1

∑
k=0

ΦkB~uk (5)

In the above equation, N is the number of thruster burns, and ~uk is the delta-v required
in Hill’s frame at the time of the k-th thruster burn. The delta-v is the amount of impluse
per unit mass of the spacecraft.

Applying thruster burns at equal time intervals will cause Φk to be equal for all
intervals; then, Equation (3) becomes

x̄(t) = Φ(t− t0)x̄(t0) +
N−1

∑
k=0

ΦB~uk (6)

Using Equation (6) for a single interval, the relation between any state x̄k+1 and the
previous state x̄k is found to be

x̄k+1 = Φ(∆t)x̄k + Φ(∆t)B~uk (7)

where ∆t is the time interval between thruster burns.

2.2. Attitude Equations of Motion

The attitude kinematic equations of the chaser and target in the Hill’s frame are given
by [17]

˙̄q =
1
2


0 ωz −ωy ωx
−ωz 0 ωx ωy
ωy −ωx 0 ωz
−ωx −ωy −ωz 0

q̄ (8)

where q̄ is the quaternion vector in the Hill’s frame, and ωx, ωy and ωz are the components
of the angular velocities of the spacecraft relative to Hill’s frame in an inertial frame.

The attitude dynamics equations of the chaser spacecraft with reaction wheels are [15]

~τrw = I ~̇ω + ~ω× (I~ω + ~Hrw) (9)

where I is the chaser’s inertia matrix, ~Hrw is a vector of the reaction wheel angular momenta
for the three wheels, ~ω is the angular velocity of he spacecraft in the inertial frame, and ~τrw
is the torque that the reaction wheels exert on the spacecraft body.
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3. Fuel Optimization Problem

The fuel optimization problem considering the coupled orbit and attitude dynamics
can be formulated as the minimization of the sum of all of the delta-v of each thruster
subject to the orbital and attitude equations of motion, field-of-view constraints, safe
distance constraints, bounds on the maximum delta-v and the initial and final states of
the chaser.

3.1. Objective Function

The objective is to minimize the total delta-v required to perform the RVD motion.
A minimum fuel cost function with the attitude quaternion q̄ and the states x̄ as the design
variables is chosen:

min
q̄,x̄

N

∑
k=0
||B~uk||1 (10)

where || · ||1 is the first norm and B~uk is the the delta-v required in the body frame.

3.2. Constraints

Equation (7) is an orbit constraint, and Equations (8) and (9) are the attitude kinematic
and dynamic constraints, respectively.

To keep the chaser from colliding with the target, the six sides of the target are used as
linear constraint planes. Depending on the current position of the chaser, one of the sides is
selected as the constraint. Since the normal vectors of the six sides (n̂i, i = 1, . . . , 6) are the
principal axes of the target (see Figure 2), projecting the position vector of the chaser onto
the target and selecting the plane with the vector of the largest magnitude will guarantee
collision avoidance.

~rk · n̂i ≥ di (11)

where the n̂i are the unit normal vectors of the sides of the target and di are the distances
from the center of the target to plane i plus the distances from the center of the chaser to
one of its corners.

Figure 2. The six sides of the target are the limits preventing the chaser from colliding with the target.

The attitude, body rates and docking port position of the target are assumed to be
determined by a camera on the chaser, and the target should be within the chaser’s field of
view. That is, the camera vector should always point to the target’s center of mass within a
tolerance angle of alpha-FoV:

−B p̂ · BT H
c r̂k ≥ cos (αFoV) (12)



Aerospace 2022, 9, 276 6 of 18

where p̂ is the camera vector fixed in the body frame, r̂k is the unit vector of the chaser
position at the k-th thruster burn point, BT H

c is the transformation matrix from the Hill’s
frame to the body frame of the chaser, and αFoV is the half-angle field of view, as shown in
Figure 1.

The thrusters’ delta-v is limited by

|B~uk| ≤ umax (13)

Additionally, Equations (14) and (15) are the constraints due to the limited torque and
angular momentum storage of the chaser’s reaction wheels, respectively.

Torque constraint for each reaction wheel:

|~τrw| ≤ τmax (14)

Angular momentum constraint for each reaction wheel:

|~Hrw| < Hmax (15)

In the next section, the chaser’s initial and final conditions will be derived.

3.3. Chaser’s Initial and Final Conditions

The chaser’s initial position and attitude are assumed to be known. However, the final
position and attitude are determined from the target’s attitude, initial conditions and RVD
duration as follows.

First, Equations (8) and (9) are numerically integrated over the duration of the RVD
using the initial attitude, body rates of the target and zero input torque to obtain the target’s
final attitude q̄t, f .

Then, the target’s docking port final position in Hill’s frame, lH
t, f , is obtained using

Equation (16).
~lH

t, f =
HTB

T
~lt (16)

where HTB
T is the transformation matrix of the target from the target’s body frame to Hill’s

frame, which is the direction cosine matrix representation of the target’s final attitude. l̂t is
the target’s docking port position in the body frame.

Then, the chaser’s final position is determined using Equation (17), as shown in
Figure 3.

Figure 3. Final docking configuration where the chaser’s docking port matches the target’s docking
port and the chaser’s final position and attitude are determined from the target’s final attitude.
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~rN =~lt + |~lc|l̂t (17)

Finally, the chaser’s final attitude q̄N is found using the quaternion product of the
required rotation quaternion between the initial and final attitude q̄r and the initial attitude
quaternion q̄0.

q̄N = q̄r ⊗ q̄0 (18)

The quaternion q̄r can be obtained from the initial and final position vectors of the
chaser using Equations (19)–(21).

q̄r =

[
ê sin θ

2
cos θ

2

]
(19)

ê = r̂0 × r̂N (20)

θ = cos−1 (r̂0 · r̂N) (21)

The initial and final constraints on the chaser states are given by

~r0 =~r(t0) ~rN =~r(t f ) ~̇r0 = ~̇r(t0) ~̇rN = ~̇r(t f ) (22)

Now, the fuel optimization problem considering orbit and attitude concurrently is
obtained as follows:

min
q̄,x̄

N

∑
k=0
||B~uk||1 (23)

s.t. x̄k+1 = Φ(∆t)x̄k + Φ(∆t)B~uk

˙̄q =
1
2
[~ω×]q̄

~τrw = I ~̇ω + ~ω× (I~ω + ~Hrw)

~rk · n̂i ≥ di

−B p̂ · BT H
c r̂k ≥ cos (αFoV)

|B~uk| ≤ umax

|~τrw| ≤ τmax

|~Hrw| < Hmax

~r0 =~r(t0)~rN =~r(t f )~̇r0 = ~̇r(t0)~̇rN = ~̇r(t f )

This coupled orbit and attitude optimization problem is nonlinear and nonconvex.
Consequently, a global solution is not guaranteed, and the solution process may converge
to a local minimum and require a long computation time.

By decoupling the orbit guidance problem from the attitude guidance problem and
solving the attitude guidance problem analytically, the computation time can be greatly
reduced because this approach leads to fewer optimization variables and constraints.

4. Decoupled Optimization Problem

For decoupling, it can be noted that the collision avoidance constraint given in
Equation (11) depends solely on the position. This enables us to decouple the orbit from
the attitude guidance and solve the orbit optimization without considering the attitude.
In the decoupled optimization problem, first, the orbit optimization will be solved, and
then an optimal attitude will be found. Since the attitude is not yet known during the
orbit optimization, a fuel minimizing objective function cannot be used; instead, energy
minimization will be used as the basis for the objective function, as in Equation (10). Unlike
Equation (10), this objective function minimizes the delta-v in the Hill’s frame instead of in
the body frame, independent of the attitude.
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min
x̄

N

∑
k=0
||~uk||2 (24)

The constraints for the orbit optimization guidance problem are the orbit dynamics,
Equation (7); the collision avoidance constraints, Equation (11); the thruster delta-v limits,
Equation (13); and the initial and final constraints on the chaser position and velocity,
Equation (22).

min
x̄

N

∑
k=0
||~uk||2 (25)

s.t. x̄k+1 = Φ(∆t)x̄k + Φ(∆t)B~uk

~rk · n̂i ≥ di

||B~uk|| ≤ umax

~r0 =~r(t0)~rN =~r(t f )~v0 = ~v(t0)~vN = ~v(t f )

After the optimal delta-v, position and velocity of the chaser at equal time intervals
have been obtained through orbit optimization, an optimal attitude can be found that
minimizes the required fuel. In this case, a minimum-fuel objective function can be used,
as in Equation (10), which is subjected to the attitude dynamics and field-of-view constraints
at each thruster burn position.

min
q̄
||B~uk||1 (26)

s.t. ˙̄q =
1
2
[~ω×]q̄

~τrw = I ~̇ω + ~ω× (I~ω + ~Hrw)

− p̂ · BTH r̂k ≥ cos (αFoV)

|~τrw| ≤ τmax

|~Hrw| < Hmax

Equations (25) and (26) are nonconvex. In the next section, Equation (25) will be con-
vexified, and an alternative analytical solution method will be proposed for Equation (26).

4.1. Orbit Optimization

The orbit optimization problem in Equation (25) has nonlinear and nonconvex con-
straints. To solve this problem with a convex optimization solver, the constraints need to
be convexified.

Regarding the delta-v bounds, since the attitude is not known at this moment, the re-
quired delta-v in the body frame cannot be found. Instead, the bounds on the total delta-v
are established such that the total delta-v can be fired by a single thruster, which is equal to
the maximum delta-v of one thruster.

~u′k~uk ≤ u2
max (27)

Now, the constraints are convex, and the optimization problem has a convex formula-
tion that can be solved by any convex optimization solver, such as Mosek [18], SeDuMi [19]
or SDPT3 [20], all of which are supported by the cvx [21] modeling system.

4.2. Attitude Optimization

From the previous calculations, the orbit and the thrusts are already known; now, we
attempt to find the attitude of the chaser at each thruster burn position, such that the fuel
consumption becomes minimal.
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Equation (26) gives an attitude that minimizes the required thruster burn for all
thrusters. However, Equation (26) is a nonlinear optimization problem that requires consid-
erable time to solve, and a global solution may not be found. Instead, an equivalent problem
can be formulated and solved analytically to find the chaser’s attitude that minimizes the
fuel without dealing with the attitude dynamics. Then, a conventional PD control method
can be used to drive the chaser’s attitude to the new attitude.

The objective function in Equation (26) can be reduced to unit vector first norm optimization:

min
q̄
||B~uk||1 = min

q̄
||B~uk||||Bûk||1 (28)

since ||~uk|| = ||B~uk|| = constant, the objective function reduces to:

min
q̄
||Bûk||1 (29)

Consider that, once the orbit maneuver has been performed, the chaser has reached
thruster burn position k, and the camera vector p̂ points directly to the target’s center of
mass. In this case, the target is inside the field-of-view delta-v cone; hence, the field-of-view
constraint is satisfied. Now, the chaser can rotate αFoV about any axis normal to the camera
vector p̂ without violating the field-of-view constraint, and the required delta-v can be
applied within the delta-v cone, as shown in Figure 4.

Figure 4. Attitude optimization configuration: field-of-view cone centered at p̂ and delta-v cone
centered at Bûk, at an attitude where p̂ points directly to the target.

The attitude problem is now divided into two attitude maneuvers. First, an attitude is
found such that the chaser points directly to the target, and then an eigen-axis rotation of
αFoV or less about an axis orthogonal to the camera vector is generated.

To ensure smooth motion, the first maneuver is interpolated from the initial attitude to
the docking attitude for each thruster burn position and updated in each iteration. For the
second maneuver, the geometry of the chaser will be exploited to find an analytical solution.

Depending on the direction of the required delta-v vector, the delta-v cone may
correspond to any of the following cases, each of which can be solved separately:

1. Case 1: A thruster lies inside the delta-v cone.
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2. Case 2: The delta-v cone does not include a thruster and does not touch any plane
formed by any two orthogonal thrusters.

3. Case 3: The delta-v cone intersects with a plane formed by two orthogonal thrusters.

4.2.1. Case 1

A vector’s magnitude is always less than or equal to its first norm. This indicates that
if a delta-v can be applied with a single thruster, then this will take less fuel than a thruster
burn involving two or more thrusters.

In this case, as seen in Figure 5, one of the thrusters is within the delta-v cone; therefore,
it is possible to move about an axis by up to αFoV without violating the field-of-view
constraint such that the required delta-v burn can be applied with a single thruster.

Figure 5. Case 1: a thruster inside the delta-v cone.

The required attitude change can be found from the rotation axis and rotation angle
calculated from the nearest thruster vector and the required delta-v in the body frame:

Rotation axis:
~e = τ̂i × ûk (30)

Rotation angle:
θ = cos−1 (τ̂i · ûk) (31)

where τ̂i is the nearest thruster vector.
To check if the required delta-v can be applied by one thruster, we can check if one of

the following equations is true:
|Bûk,x| ≥ cos αFoV (32)

|Bûk,y| ≥ cos αFoV (33)

|Bûk,z| ≥ cos αFoV (34)

4.2.2. Case 2

In this case, the delta-v cone around delta-v does not include any thruster within it,
and it does not intersect with any plane. Therefore, the delta-v cone is suspended in a
quadrant bounded by three thrusters, as shown in Figure 6.
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Figure 6. Case 2: the delta-v cone does not intersect with any plane and does not include any thruster.

First, we will show that the optimal position of delta-v in the delta-v cone is on its
edge, and then we will find the optimal unit position vector on the edge of the delta-v cone.
The set of all allowed thruster burn directions is given by

γ̂(α, t) = (v̂⊥ cos t + v̂× v̂⊥ sin t) sin α + v̂ cos α (35)

where v̂ is a unit vector along the initial delta-v vector, v̂⊥ is any unit vector orthogonal to
v̂, α is a parameter that varies from 0 to αFoV , and t is a parameter that varies from 0 to 2π.
v̂⊥ can be expressed in terms of v̂ as follows:

v̂⊥ =
1√

v̂2
x + v̂2

y

−v̂x v̂z
−v̂yv̂z
v̂2

x + v̂2
y

 (36)

The first norm of γ̂ is

||γ̂||1 =
1√

v̂2
x + v̂2

y

(
v̂2

x + v̂2
y − (v̂x + v̂y)v̂z

)
cos t +

v̂x − v̂y√
v̂2

x + v̂2
y

sin t + (v̂x + v̂y + v̂z) cos α (37)

If v̂ = ĉ such that ĉ = 1√
3
[1, 1, 1]′ has equal components, then Equation (37) will be

independent of the parameter t, which means that circles centered at ĉ have equal first
norms at all their points.

Additionally, note that as α decreases, the first norm increases, which indicates that
the minimum of ||γ||1 is at the edge of a circle.

Now, for a nontouching delta-v cone with a center vector at any point, we can obtain
its minimum value (γ̂∗) by solving for its intersection with a circle centered at the vector ĉ
(see Figure 7).
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Figure 7. Geometry for case 2: all components of the vector ĉ are equal, and ∆v reaches its minimum
at the intersection of the circle and the farthest circle around ĉ, that is at γ̂∗.

From the geometry in Figure 7, the equations for the rotation vector and rotation axis
are found as follows.

Rotation axis:
~e = Bûk × ĉ (38)

Rotation angle:
θ = αFoV (39)

4.2.3. Case 3

When the delta-v cone intersects with a plane formed by two thrusters, as shown in
Figure 8, a thruster burn can be applied anywhere on the plane between the intersection
points of the delta-v cone and the plane. However, the minimum lies on the edges of
the intersections.

Figure 8. Case 3: the delta-v cone intersects with τ1-τ2, and the optimal firing directions are along
either of the γ̂∗ vectors.
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To find the intersections, Equation (35) can be solved by setting the component along
the axis normal to the plane, solving for the parameter t, and finally substituting t to obtain
the components of the thrust vector. The minimum lies on either of the two intersections of
the edge of the delta-v cone with the x–y plane, which are found as follows:

γ̂∗ =
1

v2
x + v2

y

±
 vy
−vx

0

√sin2 αFoV − v2
z +

vx
vy
0

 cos αFoV

 (40)

Similarly, intersections with the y–z and z–x planes can be found, as shown in
Equation (41) and Equation (42), respectively,

γ̂∗ =
1

v2
y + v2

z

±
 0

vz
−vy

√sin2 αFoV − v2
x +

 0
vy
vz

 cos αFoV

 (41)

γ̂∗ =
1

v2
x + v2

z

±
−vz

0
vx

√sin2 αFoV − v2
y +

zx
0
vz

 cos αFoV

 (42)

In Equations (40)–(42), the terms under the square roots are used to determine whether
there is an intersection with any plane. If Equation (43) is satisfied, then there is an
intersection.

|vi| < sin αFoV (43)

Rotation axis:

~e = Bûk × γ̂∗ (44)

Rotation angle:

θ = αFoV (45)

The minimum may also lie on the edge of a circle outside the intersection with the
plane. Therefore, when the delta-v cone intersects with a plane, both case 2 and case 3 will
be evaluated, and the minimum will be used.

In some cases, the delta-v cone may intersect with two planes; in such a case, the mini-
mum among the intersections will be used.

Note that the attitude optimization does not consider the attitude dynamics and only
gives the optimum orientation. Therefore, a proper control algorithm should be used to stir
the spacecraft’s attitude to the one found using this algorithm. In this research, a proper
PD control is assumed to be used.

The overall guidance optimization algorithm is summarized in the following section.

4.3. Guidance Optimization Algorithm

The overall guidance optimization algorithm can be summarized by the flowcharts
shown in Figure 9.

The guidance algorithm is executed in the following order:

1. Using the target’s initial attitude and body rates, its final attitude is obtained by
integrating its dynamics and kinematics equations of motion.

2. The chaser’s final position is determined from the target’s final attitude by matching
the docking ports.

3. Using the initial and final conditions, an energy-minimizing orbit trajectory is gener-
ated without considering safe distance constraints.

4. The position at each thruster burn interval is used to linearize the safe distance
constraints.
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5. Using the initial and final conditions, an energy-minimizing orbit trajectory is gener-
ated while considering the safe distance constraints.

6. For the first thruster burn point, a fuel-optimal attitude is solved analytically by
considering the field-of-view constraint.

7. Attitude and orbit maneuvers are performed at the first thruster burn interval. Then,
the current state is used as the initial state, the current position trajectory is used
to linearize the next trajectory, and step (2) is performed until the N-th interval has
been completed.

Figure 9. Guidance algorithm flowchart.

The fuel-optimal attitude analytical solution case selection is summarized as fol-
lows. First, if any of Equations (32)–(34) is satisfied, then case 1 is selected; otherwise, if
Equation (43) is satisfied, then the minimum of case 2 and case 3 is selected; otherwise, case
2 is selected to obtain the optimum attitude of the chaser.

5. Simulation Results

To demonstrate the performance of the proposed method, the chaser was initialized at
14 different positions in space, as shown in Figure 10, with the parameters given in Table 1.
The starting distance at all positions was 10 m, and the starting attitude was such that the
camera vector p̂ was pointing directly to the target.

All simulations were carried out in MATLAB 2021a on a computer with a Core i7
processor and 8 GB of RAM.
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Figure 10. 3D view of trajectories started at 14 different positions in space.

Table 1. Chaser and target parameters.

Parameter Unit Value

chaser and target dimensions m [5, 10, 15]’
chaser docking port [1, 0, 0]’
target docking port [1, 0, 0]’

camera vector [1, 0, 0]’
initial body rate of target rad/s [1.5, 1.5, 1.5]’
initial body rate of chaser rad/s [0, 0, 0]’
initial velocity of chaser m/s [0, 0, 0]’
initial attitude of chaser [1, 0, 0, 0]’
initial attitude of target [0.5, 0.5, 0.5, 0.5]’
half-angle field of view degrees 20

maximum delta-v m/s 0.37
duration seconds 200

number of thruster burns 20
mass of target kg 6

moment of inertia of target kg·m2
0.065 0 0

0 0.05 0
0 0 0.025


mass of chaser kg 6

moment of inertia of chaser kg·m2
0.065 0 0

0 0.05 0
0 0 0.025


altitude km 400

reaction wheel maximum torque mNm 2.3
reaction wheel momentum storage mNms 30.0

In Figure 10, the starting positions are marked with their respective numbers. The dashed
lines are the paths followed without safe distance constraints, while the solid lines are the
final trajectories with all constraints considered. In some scenarios, the initial trajectory
crosses the safe distance, but once the safe distance constraints are included, a safe distance
is maintained. In all test cases, docking to the target is successfully achieved, and no
collision with the target occurs, as shown in Figure 11; only four scenarios are shown
for convenience.
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Figure 11. Safe distance limit: the dashed line is the safety limit, and a negative value indicates
collision of four scenarios.

Figure 12 presents a fuel usage comparison between the proposed method and the
same method but without attitude optimization, using only quaternion feedback to align
the chaser camera to the target. The fuel usage decreases from a delta-v of 0.200 m/s to a
delta-v of 0.175 m/s, which is a 12.5% saving.

Figure 12. Fuel usage comparison.

For the same scenario, Figure 13 shows the computation times for orbit optimization
and attitude optimization. Orbit optimization takes from approximately 700 ms at the start
of the trajectory to 280 ms near docking, while attitude optimization consumes less than
10 ms of processor time.
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Figure 13. Computation time comparison.

6. Conclusions

This paper studies the fuel consumption and computation time for the autonomous
RVD of a spacecraft with a target. The nonlinear and nonconvex constrained optimization
problem is formulated by considering the nonlinear dynamics of the chaser model in the
Hill’s frame and various coupling constraints between orbit and attitude guidance. Then,
we propose a novel method of decoupling the optimization problem into two subproblems
of orbit optimization and attitude optimization. Next, we convert the orbit optimization
subproblem into a convex optimization problem and solve it using a conventional convex
optimization solver. Finally, the attitude optimization subproblem is efficiently solved
analytically by exploiting the attitude geometry. By virtue of this analytical solution, on-
board computation and implementation is made possible through the proposed approach.
Fourteen scenarios are considered to validate the effectiveness and computational efficiency
of our proposed approach. In all scenarios, the computation time is greatly reduced and the
fuel is saved up to 12.5%, due to the use of an analytical method for attitude optimization.
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