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Abstract: Performing clustering analysis on a large amount of historical trajectory data can obtain
information such as frequent flight patterns of aircraft and air traffic flow distribution, which can
provide a reference for the revision of standard flight procedures and the optimization of the division
of airspace sectors. At present, most trajectory clustering uses a single clustering algorithm. When
other processing remains unchanged, it is difficult to improve the clustering effect by using a single
clustering method. Therefore, this paper proposes a trajectory clustering ensemble method based on
a similarity matrix. Firstly, a stacked autoencoder is used to learn a small number of features that
are sufficiently representative of the trajectory and used as the input to the subsequent clustering
algorithm. Secondly, each basis cluster is used to cluster the data set, and then a consistent similarity
matrix is obtained by using the clustering results of each basis cluster. On this basis, using the
deformation of the matrix as the distance matrix between trajectories, the agglomerative hierarchical
clustering algorithm is used to ensemble the results of each basis cluster. Taking the Nanjing Lukou
Airport terminal area as an example, the experimental results show that integrating multiple basis
clusters eliminates the inherent randomness of a single clustering algorithm, and the trajectory
clustering results are more robust.

Keywords: trajectory clustering; clustering ensemble; stacked autoencoder; feature learning

1. Introduction

In response to the challenges of airspace congestion, flight delays, and other challenges
brought about by increasing traffic volumes to improve the level of safety, efficiency, and
sustainability of the air traffic system, Europe launched the Single European Air ATM
Study (SESAR), the United States launched the Next Generation Air Transport System
(NextGen), the International Civil Aviation Organization (ICAO) built the Aviation System
Block Upgrade (ASBU) framework, etc. One of the common key technologies to all these
automated systems is the ability to analyze and process large numbers of trajectory records
scientifically and efficiently. The reason is that historical trajectory data contains a lot of
potentially useful information. At present, the most commonly used and efficient method
to mine potential information from a large amount of trajectory data is to perform clustering
analysis on trajectories. Through clustering analysis, the frequent flight patterns of aircraft,
air traffic flow situation, airspace usage, etc. can be known, which can reflect the flight
tendency of aircraft and the control habits of controllers to a certain extent. It can provide
a reference for the optimization of the division of airspace sectors and for the controller to
make control decisions. In addition, many scholars regard trajectory clustering as one of
the key steps in trajectory prediction. By classifying similar trajectories into one category
in advance, and then establishing a prediction model for each category of trajectories
separately, the prediction results can be more accurate and robust [1,2].
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Trajectory clustering methods can be roughly divided into four categories, including
clustering based on the partition, density, grid, and probability models. All of these
clustering methods can be used to cluster the trajectories and can achieve certain results.
Among the partition-based clustering methods, the K-means clustering algorithm has
higher computational efficiency than other algorithms and does not need to spend a lot of
time debugging parameters. The only parameter that needs to be input is the number of
clusters, which has the advantage of being easy to implement. Therefore, it is adopted by
most scholars [3–8]. Barrat et al. [7] used K-means to acquire the center trajectories, and then
constructed a Gaussian mixture model based on the center trajectories to achieve accurate
inference and generate more realistic trajectories. Ayhan et al. [6] considered that treating
a trajectory as a whole may lead to overfitting, and cannot find representative trajectories, so
they proposed a clustering framework of aircraft trajectories based on the tasks of division,
clustering, and merging. Use a set of multi-dimensional trajectory points associated with
a particular flight, divide them according to flight phase, cluster them individually with the
K-means algorithm, and combine them. In addition, in contrast, the K-medoids algorithm,
in addition to being relatively slow, selects centers from the actual data points within
the cluster. Therefore, it is not sensitive to outliers [9,10]. Kenefic et al. [10] adopted the
K-medoids algorithm based on the minimum description length and the Frechet distance,
which can be generalized to the clustering problem of datasets with arbitrary shapes.

The most popular method in density-based clustering is Density-Based Spatial Clustering
of Applications with Noise (DBSCAN). Most density-based trajectory clustering is imple-
mented by the DBSCAN algorithm or improved implementation of the algorithm [11–14].
Olive et al. [12] first used the DBSCAN algorithm to identify the initial set of clusters
and outliers, and then adopted the progressive clustering method. For the classes that
cannot be well separated, the clusters were refined by applying the DBSCAN algorithm
to each flow again. Verdonk et al. [13] proposed an algorithm RDBSCAN based on the
recursive application of DBSCAN, which recursively creates a hierarchy that enables a more
customized classification of outliers. Hierarchical clustering creates a hierarchical decom-
position of a given set of objects. Depending on how the hierarchical decomposition is
formed, hierarchical methods can be classified as agglomerative or divisive methods [15–17].
Zhang et al. [16] introduced an agglomerative hierarchical clustering method that builds
a hierarchical structure based on a set of centers, aiming to improve computational effi-
ciency when dealing with massive data. Trajectory clustering based on probabilistic models
attempts to find the best data model to fit the given data, and assumes a model for each
cluster, looking for the best fit of the data to the given model. Gaussian mixture models
are often used to fit the data in probabilistic model-based trajectory clustering [18,19].
Zeng et al. [18] considered that the Gaussian mixture model could give the class probability
to which each trajectory belongs, so they used the Gaussian mixture clustering method to
identify and mine the prevailing flight patterns of aircraft in the terminal area.

Since each clustering method has its advantages and limitations, we can ensemble
a variety of clustering methods to give full play to their respective advantages, that is,
clustering ensemble, which has become a better direction of research in current trajectory
clustering [20–24]. In addition, since deep learning exhibits great autonomy, it is also
a valuable research direction in the future to use deep learning to automatically learn the fi-
nal clustering results from massive data [18]. Olive et al. [25] introduced two deep trajectory
clustering methods implemented with autoencoders, which cluster high-dimensional data
according to their representation in a low-dimensional space. In addition, Pasi Franti et al. [26]
proposed a prototype swap clustering method, clustering by swapping a series of proto-
types (cluster center trajectories) and using K-means to fine-tune the positions of these
prototype trajectories. In essence, this method only has one more prototype trajectory
swap step than K-means, but it can achieve high-quality clustering through a random
search strategy.
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At present, most trajectory clustering uses a single clustering algorithm. When other
processing remains unchanged, a single clustering method encounters a bottleneck in
improving the clustering effect. In addition, when the dimension and length of the data are
large, it is difficult for most clustering algorithms to maintain high computational efficiency
on massive data sets. In addition, most of the current trajectory clustering is based on the
attributes such as longitude, latitude, and altitude of the trajectory. How to make full use
of the existing attributes is also a problem that should be paid attention to in the clustering.

In this paper, a clustering ensemble method of aircraft trajectory based on a similarity
matrix is proposed. To efficiently utilize the existing attributes, a derived attribute that can
describe some inherent law of the data is constructed. To improve computational efficiency,
the Stacked autoencoder is used to learn efficient feature representations of the trajectories,
which are used as inputs to subsequent clustering algorithms. Multiple different basis
clusters are used to generate diverse clustering results, and the clustering ensemble method
based on a similarity matrix is used to ensemble each clustering result to obtain more
robust results. Summarizing the main contributions of this paper are as follows: (a) The
derived attributes that can effectively characterize the trajectory shape information are
constructed from the existing features empirically. (b) As far as we know, this paper is the
first time to use a clustering ensemble to solve the problem of trajectory clustering, which
provides a new way for related researchers to solve the problem of trajectory clustering.
The clustering ensemble method based on a similarity matrix is used to ensemble the results
of each base cluster, which eliminates the inherent randomness of the single clustering
algorithm itself.

The rest of the paper is organized as follows. Section 2 describes the theory and
implementation process of the trajectory clustering ensemble method based on the similarity
matrix proposed in this paper. Section 2.1 introduces the derived property of the angle
of construction, Section 2.2 introduces the process of learning trajectory features from
the original data using the stacked autoencoder, and Section 2.3 describes the clustering
ensemble method based on the similarity matrix, which is the focus of this section and the
whole article. Section 3 presents the experimental results and discusses the superiority and
effectiveness of our method. Finally, Section 4 summarizes the work carried out in this
paper and looks forward to future research directions.

2. Methodology

To solve the bottleneck problem faced by a single clustering algorithm in improving
the clustering accuracy of aircraft trajectories, a clustering ensemble method of aircraft
trajectory based on a similarity matrix is proposed in this paper. The implementation
process of this method is shown in Figure 1. (1) Preprocess the data, including data cleaning,
unifying trajectory lengths, transforming coordinates, feature normalization, separation of
arrivals and departures, and dividing the dataset by runways and corridors. (2) Construct
the derived property of angle empirically. (3) Use the stacked autoencoder to learn features
that can efficiently represent trajectories. (4) Use the processed data obtained above as the
input of each K-means basis cluster to acquire multiple clustering results. (5) Adopt the
similarity-based clustering ensemble method to obtain the corresponding similarity matrix
according to the results of each basis cluster [23]. Use all similarity matrixes to obtain the
consistent similarity matrix. Next, (6) Take the deformation of the consistent matrix as
the distance matrix between trajectories, and use agglomerative hierarchical clustering
to ensemble the results of each basis cluster on the distance matrix, obtaining the final
ensembled clustering results.
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Figure 1. The framework of the proposed method.

2.1. Data Preprocessing

Firstly, the quality analysis and cleaning of the trajectory data are carried out. Explore
data for missing, duplicate, and mistyped waypoint data with quality analysis. If there
is the duplicate and wrong type of waypoint data, delete it directly. Often, data will be
partially missing. The reason for this situation is mostly due to the occasional abnormality
of the equipment, which leads to the fact that the trajectory point data is not recorded for
a certain period of time. Count the time interval between all adjacent trajectory points for
each trajectory. According to the specific conditions of the data, for a certain trajectory, if
the time interval between two consecutive points exceeds a certain threshold, the trajectory
will be deleted. Second, unify the trajectory length. Count the number of trajectory
points (trajectory length) for each trajectory. For the trajectory that is too short, delete it
directly. Since the trajectory with too short a length cannot reflect the entire landing or
take-off process of the aircraft in the terminal area, it is not beneficial to the subsequent
clustering. On this basis, in order to use Euclidean distance to measure the similarity
between trajectories, all trajectories are sampled to the same length by sampling. This is
because Euclidean distance requires component correspondence. Of course, researchers
can also choose the here methods to measure the similarity between trajectories without
forcing the trajectories to have the same length [27,28].

In order to more intuitively reflect the trajectory position centered on the airport, the
latitude and longitude coordinates in the data are converted into ENU (East-North-Up)
Cartesian coordinate system with the center of the airport as the origin. Then, the values
of all features are mapped to between 0 and 1 using the maximum and minimum nor-
malization method, so as to prevent the problem that the value of a feature is generally
large/small and the influence of the feature is too large/small. Due to the completely
different operating modes of the incoming and outgoing flights, take-off and landing sep-
aration are performed on the trajectory. On this basis, in order to prevent the problem
of uncontrollable results in the clustering process, the data set is divided into runways
and corridors. When dividing the dataset by runway, trajectory points that fall on the
runway are not considered. For the landing trajectory, calculate the distance between its
last track point and each runway endpoint, and the runway represented by the nearest
runway endpoint is the runway to which the track belongs. For a takeoff track, calculate
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the distance from its first track point to each runway endpoint. Next, divide the data set
according to the corridors. For the landing trajectory, calculate the distance between its
first trajectory point and each corridor, and the nearest corridor is the corridor to which it
belongs. For the takeoff trajectory, calculate the distance between its last trajectory point
and each corridor entrance.

It should be noted that the above data preprocessing steps do not take a long time.
Since it mainly includes a simple data cleaning and data set division. Data set division
also only needs to calculate the Euclidean distance between points, and the computational
complexity is relatively low.

2.2. Derived Attribute Construction

Since the shape feature of the trajectory cannot be reflected by its three-dimensional
spatial position and heading features, to express the shape information of the trajectory, we
construct an angle feature, denoted as α. For a trajectory containing N points, the angle
value αi of each trajectory point pi is represented by the counterclockwise angle between
the two line segments formed by points pi−1, pi and pi+1, where pi−1 and pi+1 are the
two points immediately before and after the point pi. (Except for its first point p1 and
last point pN .). The calculation method of αi is shown in formula (1). Each symbol in the
formula (1) can be represented in Figure 2. αi = arccos a2+b2−c2

2ab , αi ≤ π

αi = 2π − arccos a2+b2−c2

2ab , αi > π
(1)

In formula (1), a represents the length of the horizontal line connecting the trajectory
point pi and the immediately preceding trajectory point pi−1, b represents the length of the
horizontal line connecting the trajectory point pi and the immediately following trajectory
point pi+1, c represents the length of the horizontal line connecting the two trajectory points
pi−1 and pi+1 before and after the trajectory point.
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It should be noted that there is no point before the first point p1 of the trajectory and
there is no point after the last point pN . So for the angle values of p1 and pN , the angle
values of the next point p2 of p1 and the previous point pN−1 of pN are used as the angle
values of p1 and pN , respectively.
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2.3. Trajectory Feature Learning Based on the Stacked Autoencoder

Clustering analysis needs to use a large amount of historical trajectory data to make the
results more regular and convincing, which leads to a larger length of data. In addition, the
essence of the trajectory is a time series. If the entire trajectory is used as the clustering object,
it is generally necessary to expand it into a row vector according to the time sequence during
processing. Assuming that a trajectory has 90 points, and each trajectory point has only
three spatial position features, then its dimensions also have as many as 270 dimensions.
If a trajectory has more features and points, it will also have a larger dimension. This
will seriously affect computational efficiency. At the same time, if there are too many
trajectory points, redundant information may exist, or there may be a certain pattern, so it
is unnecessary to use too many dimensions to represent a trajectory. Therefore, to improve
the computational efficiency, we perform feature extraction and dimensionality reduction
on the trajectory data.

An autoencoder is an artificial neural network that learns to efficiently represent input
data through unsupervised learning. Its goal is to restore the original input data with
as little loss as possible. This coincides with our needs. A simple autoencoder refers to
a neural network with only one input layer, one hidden layer, and one output layer [29].
However, the neural network has the same number of neurons in the input and output
layers to try to reconstruct the input. The autoencoder network does not need data labels
but uses the difference between the input and output to guide the network for training to
find the optimal network parameters, so its objective function is shown in Equation (1).
Therefore, it is a kind of unsupervised learning [30]. All types of autoencoders usually
contain two parts, one is the encoder, which is the layer-by-layer learning from the input
layer to the hidden layer, which learns to turn the input into an internal representation. The
other is the decoder, which is layer-by-layer learning from the hidden layer to the output
layer, which learns to reconstruct the input using the internal representation.

θ = argminL
(
X, X

)
= argmin

1
2

N

∑
i=1

∥∥∥X(i) − X(i)
∥∥∥2

(2)

Since a simple autoencoder contains only one hidden layer, it may not be sufficient
in some complex cases. Therefore, multi-layer autoencoders with multiple hidden layers
called stacked autoencoders appeared. It can learn more complex encoded representations.
In this paper, the stacked autoencoder is used for trajectory feature learning, and each trajec-
tory is processed into a row vector in time sequence and input into the stacked autoencoder
network. The stacked autoencoder takes the output of the hidden layer of its previous
autoencoder as the input of its subsequent autoencoder, and the process can be represented
in Figure 3. After integrating the individual autoencoders, the network structure of the
stacked autoencoder is symmetric about the middle hidden layer. The network structure
of a stacked autoencoder with 2L − 1 hidden layers is shown in Figure 4. In practical
applications, the output of the hidden layer of the last autoencoder is usually used, that is,
the output of the middle hidden layer of the entire stacked autoencoder network.
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The practice has shown that too many hidden layers can also cause the stacked
autoencoder to fail to learn useful features. In application, the network hyperparameters
including the number of hidden layers are generally set according to the training data and
training effects and through a large number of experiments. According to the dimension
and length of the specific data, set each parameter to be a set within a certain value range,
and then randomly select N from all possible network hyperparameter combinations. Then,
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the parameter configuration that minimizes the objective function value is the optimal
parameter, which is the network hyperparameter we are looking for.
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2.4. Trajectory Clustering Ensemble Based on the Similarity Matrix

At present, most trajectory clustering uses a single clustering method for clustering.
When other processing remains unchanged, it is difficult to improve the clustering effect by
using a single clustering method. If we want to improve the clustering effect on this basis,
we can use multiple different clustering methods to generate multiple clustering results,
and then combine these clustering results to make full use of the information contained
in each result to obtain cluster ensemble results of higher quality [21]. This approach is
called cluster ensemble. The key and difficult problem of clustering ensemble is how to
properly express and combine the results of each basis cluster. Clustering ensembles can be
roughly classified into similarity-based methods, graph-based methods, relabeling-based
methods, and transformation-based methods [21,22,31]. Among them, the basic idea of
the similarity-based method is to use the clustering results of multiple basis clusters to
obtain a consistent similarity matrix and use the consistent similarity matrix to express the
connection and information between each basis cluster. The method is easy to implement
and aggregate, and can be used to ensemble multiple clustering methods.

Therefore, this paper adopts the clustering ensemble method based on similarity to
ensemble the clustering results of multiple K-means basis clusters. When integrating the
individual clustering results, the data clustering method based on evidence accumulation
was proposed by Fred et al. [23] was introduced. According to the results of each basis
cluster, the corresponding similarity matrix is obtained, and these similarity matrices are
used to generate a consistent similarity matrix, and then the deformation of the consistent
similarity matrix is used as the distance matrix between trajectories. Under a certain
aggregation threshold level, using agglomerative hierarchical clustering to obtain ensemble
clustering results. This process can be represented in Figure 5. The idea of agglomerative
hierarchical clustering is to first treat each sample as a cluster, and then repeatedly merge the
two closest clusters until the iteration termination condition is satisfied or all samples are
in one cluster [32]. There are single connections, full connections, and average connections
for calculating the distance between clusters [33].
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The specific implementation steps of the trajectory clustering ensemble method based
on similarity in this paper are as follows:

Assuming that the input dataset has m trajectories, each trajectory is denoted as Xi.
Then the dataset is denoted as D = {X1, X2, · · · , Xm}.

Step 1: Run the K-means algorithm q times on the data set D, and each time you
can select the same or the different number of parameter clusters k, thereby obtaining
q clustering results

{
λ(c)

}
(c = 1, 2, · · · , q). where λ(c) is a m-dimensional vector

{
λ
(c)
i

}
(i = 1, · · · , m), and each element λi

(c) of λ(c) represents the clustering label for each trajectory.
Step 2: Obtain the corresponding similarity matrix M(c) from each clustering result

λ(c). A consistent similarity matrix coM is obtained from these similarity matrices. The
rules for generating the similarity matrix M(c) according to the result λ(c) of the basis cluster
are as follows: if λ

(c)
i = λ

(c)
j , it means that the clustering categories of the trajectories Xi and

Xj are the same, that is, they are in the same cluster, then the element of the similarity matrix
M(c)(i, j) = 1, otherwise M(c)(i, j) = 0. So each similarity matrix is a m×m binary matrix
whose each element indicates whether each pair of trajectories occurs in the same cluster.
The consistent similarity matrix coM is equal to the average of these similarity matrices,
that is, coM = 1

q ∑
q
c=1 M(c), where the value of every element coM(i, j) of coM is between 0

and 1, indicating that trajectories Xi and Xj have coM(i, j) probability of appearing in the
same cluster in the q results of the q basis clusters. The idea of generating each element in
the consensus similarity matrix here is similar to the principle of majority voting.

Step 3: Take 1− coM(i, j) as the distance between trajectories Xi and Xj, that is, take
disM = 1 − coM as the distance matrix, and use the single-connected agglomerative
hierarchical clustering algorithm (AHC) as the consistent cluster to find consistent clusters
at the threshold level t [23]. Since the value of each element of the matrix coM is between
0 and 1, every element of the matrix disM also has a value between 0 and 1. The specific
meaning of the threshold t is: when the distance between the two closest clusters is less
than t, the two clusters are merged, otherwise they are not merged. The value range of t is
between 0 and 1, and its empirical value is 0.5.

To sum up, there are three parameters that need to be adjusted in the trajectory
clustering ensemble method based on similarity in this paper, one is the number of basis
clusters, one is the number of clusters of each basis cluster, and one is the connection
threshold t. The pseudocode of this method is shown in Algorithm 1. If you want to use
other basis clusters, the basis clusters KMeans can also be replaced by other clustering
methods. The method of adjusting the parameters adopts the method mentioned at the
end of Section 2.1, that is, given the optional value of each parameter, and then randomly
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selects N from all parameter combinations for the experiment, and this N is also the number
of experiments. The parameter combination that minimizes the sum of squared errors
within the cluster SSE (see Section 3.2 for the clustering evaluation index SSE) is the optimal
parameter configuration.

Algorithm 1. Clustering ensemble algorithm based on similarity

Inputs: (1) Data Set D = {X1, X2, · · · , Xm};
(2) The number of basis clusters, q;
(3) Number of clusters per basis cluster,

{
k1, k2, · · · , kq

}
;

(4) Basis Cluster, KMeans(c)(D, kc)(c = 1, 2, · · · , q);
(5) Consistent Cluster, AHC;
(6) The threshold level, t;

Outputs: Cluster ensemble results, λ;
Algorithm:

1. for c = 1, 2, · · · , q:
2. λ(c) = KMeans(c)(D, kc);
3. Generate a basis similarity matrix M(c) of m×m based on λ(c);
4. end for
5. Generate a consistent similarity matrix coM = 1

q ∑
q
c=1 M(c);

6. Take disM = 1− coM as the distance matrix between all trajectories, where disM(i, j) is
the distance between trajectories Xi and Xj;

7. Use a single-linked agglomerative hierarchical clustering algorithm at a threshold level t
to find consistent clustering results λ = AHC(disM, t);

3. Experimental Results and Discussion

In this section, the data set used is briefly explained in Section 3.1, and the results
of preprocessing the data set are introduced. Second, in Section 3.2, the three evaluation
indexes used in this paper to evaluate the clustering results are introduced. On this basis,
the experimental results are given in Section 3.3. Finally, Section 3.4 discusses and analyzes
the parameters used in the method.

3.1. Data Preprocessing

The dataset used in this paper comes from the secondary radar data of Nanjing Lukou
International Airport (ICAO four-character code: ZSNJ). The data range is the trajectory
within a radius of 70 km centered on the airport. The time span of the dataset is from
20 July to 18 August 2019 (30 days in total), with a total of 14,305 trajectories. The scanning
period of the secondary radar is 4 s, that is, the trajectory points are recorded every 4 s.
The information for each trajectory point includes time, flight number, longitude, latitude,
altitude, heading, speed, rate of descent, etc. In clustering, we use the first five attributes
and also use the angle feature constructed in Section 2.2.

The dataset used in this paper is preprocessed according to the data preprocessing
method proposed in Section 2.1. Delete trajectories with a time interval of more than 90 s
between two consecutive points. Count the number of trajectory points (trajectory length)
of each trajectory, as shown in Figure 6. For trajectories whose length is less than 88, delete
them directly. On this basis, all trajectories are sampled to 88 trajectory points.

ZSNJ has 2 runways (4 directions), 5 arrival corridors, and 4 departure corridors. Then,
after dividing the data set according to runways and corridors, the arrival and departure
trajectory data sets should be divided into 20 and 16 small data sets, respectively. However,
there are no or few trajectories at a certain corridor of some runways, so the arrival and
departure trajectories are finally divided into 11 and 13 small datasets, respectively, as
shown in Figure 7. Trajectories in the same color in the figure indicate that they belong
to the same runway and corridor. The basic situation of each small sub-data set after
division is further displayed in Table 1, including the serial number of each sub-data set
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(corresponding to Figure 7), the runway and corridor to which it belongs, the number of
trajectories it has, and the number of clusters it is divided into (The number of clusters
is obtained after clustering. Since the experiment has been carried out, it is shown here.).
Next, we construct angular features according to the angular attribute construction method
proposed in Section 2.2 and then construct a stacked autoencoder network to extract
the main features of the trajectory. Using the network hyperparameter setting method
mentioned at the end of Section 2.3, 400 experiments were designed to select the optimal
hyperparameters. According to the dimension and length of the data, the number of hidden
layers is set to {1, 3, 5, 7, 9}, and the number of neurons in the hidden layer is {330, 220, 110,
55, 11}. Finally, it is determined that the number of hidden layers of the network is 5, and
the number of neurons in each layer is {110, 55, 11, 55, 110}.
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Table 1. Basic information of each sub-dataset.

Arrival/Departure Number of Sub-Data Sets Runway Corridor Number of Trajectories Number of Clusters

Arrival

1 RWY24 LUOGANG 326 1
2 RWY06 LUOGANG 403 3
3 RWY06 BANTAJI 328 2
4 RWY07 LUOGANG 1995 3
5 RWY07 BANTAJI 706 2
6 RWY07 ESBAG 356 1
7 RWY07 KAKIS 578 2
8 RWY25 LUOGANG 1076 3
9 RWY25 BANTAJI 582 3

10 RWY25 ESBAG 333 2
11 RWY25 KAKIS 519 2

Departure

1 RWY24 LUOGANG 1963 3
2 RWY24 BANTAJI 798 3
3 RWY24 ESBAG 240 2
4 RWY24 TESIG 422 3
5 RWY06 LUOGANG 1347 1
6 RWY06 BANTAJI 622 3
7 RWY06 ESBAG 251 2
8 RWY06 TESIG 353 3
9 RWY07 LUOGANG 236 1

10 RWY07 TESIG 204 1
11 RWY25 LUOGANG 242 1
12 RWY25 ESBAG 194 1
13 RWY25 TESIG 231 1
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3.2. Evaluation Index of Clustering Results

Suppose a dataset D containing N trajectories is clustered into K classes, where
Cj(j = 1, 2, · · · , K) represents the j-th cluster, oj represents the center trajectory of the
j-th cluster, and X represents a trajectory in the dataset D. To clarify the quality of the
clustering results, this paper adopts three clustering results evaluation indicators, namely
the intra-cluster error variance SSE, the silhouette coefficient SC, and CH indicators.

The intra-cluster error variance SSE calculates the sum of the Euclidean distances
of all trajectories and their respective center trajectories, measuring the compactness of
the cluster.

SSE =
K

∑
j=1

∑
X∈Cj

dist
(
X, oj

)
(3)

The silhouette coefficient SC measures the quality of clustering from the perspective of
intra-cluster compactness and inter-cluster separation. Generally, the mean of all trajectory
silhouette coefficients is used as the overall silhouette coefficient, and the overall silhouette
coefficient is used to measure the overall quality of the clustering results. The silhouette
coefficient has a value between −1 and 1. The closer its value is to 1, the more reasonable
the clustering of the trajectory X; the closer the value is to −1, the more the trajectory X
should be clustered into other clusters; the value is close to 0, indicating that the trajectory
X is closer to the boundary of the two clusters. For any trajectory X, its silhouette coefficient
SC is defined as:

SC(X) =
b(X)− a(X)

max{a(X), b(X)} (4)
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In the formula (4), a(X) is the average distance between the trajectory X and other
trajectories in the cluster to which it belongs, reflecting the compactness of the cluster to
which X belongs. The smaller the value, the more compact it is. b(X) is the minimum value
of the average distance from X to all other clusters, reflecting the degree of separation from
other clusters. The larger the value, the greater the degree of separation. Assuming that the
trajectory X belongs to the i-th cluster, the calculation formula of b(X) is shown in formula
(5), which

∣∣Cj
∣∣ represents the number of trajectories contained in the j-th cluster.

b(X) = min
Cj :1≤j≤K,j 6=i


∑

X′∈Cj

dist(X, X′)∣∣Cj
∣∣

 (5)

Another clustering result evaluation index, Calinski-Harabaz (CH), uses the ratio
of between-class variance and within-class variance to measure the quality of clustering
results, as shown in formula (6). In formula (6), o is the mean of all the trajectories in the
trajectory data set D, that is, the center trajectory of the entire data set. The numerator of
formula (5) calculates the ratio of the sum of the squares of the distances between the center
trajectory of each cluster and the center trajectory of the entire dataset to (K− 1), which
represents the degree of separation between clusters. The denominator calculates the ratio
of the sum of the squares of the distances between all trajectories and the center trajectory
of their respective clusters to (N − K), which represents the compactness within the class.
Obviously, if the numerator is larger and the denominator is smaller, the larger the score,
the better the clustering.

CH =

K
∑

j=1
dist(oj, o)2/(K− 1)

K
∑

j=1
∑

X∈Cj

dist(X, oj)
2/(N − K)

(6)

3.3. Experimental Results

A total of 24 types of landing trajectories and 25 types of take-off trajectories were
obtained by the clustering ensemble method based on similarity. By simply averaging
the points to calculate the average value of each cluster of trajectories, 24 landing center
trajectories and 25 take-off center trajectories were correspondingly obtained. The results
are shown in Figures 8 and 9. The calculation of the central trajectory here can also adopt
the calculation method of the average route that can tolerate outliers proposed by Pasi
Fränti et al. [34].

In Figure 8, the clustering results of all landing trajectories in the terminal airspace of
Nanjing Lukou Airport can be seen intuitively. Among them, Figure 8a is a two-dimensional
floor plan of the clustering results of all landing trajectories. Trajectories with the same
color in Figure 8a represent trajectories belonging to the same cluster. Flight trajectories
of the same cluster are relatively similar and can be considered to be the same traffic flow
and have the same flight pattern. Combined with Figure 8b, the spatial distribution of each
traffic flow of the terminal area airspace approach trajectory can be obtained. By counting
the number of trajectories contained in each cluster trajectories, as shown in Figure 8c,
the traffic density of each approaching traffic flow can be obtained. From the information
obtained above, the usage of each sector in the terminal airspace of the airport can be
known, so as to provide a direct basis for the optimization of sector division. In addition,
from Figure 8c, it can be found that the number of trajectories contained in a few clusters is
significantly more than the number of trajectories contained in other clusters. By counting
the number of trajectories in the top three clusters, it is found that these trajectories all
land on runways 07 and 25. Therefore, it can be known that runways 07 and 25 are the
main runways for landing. The central trajectories of each cluster trajectories are shown
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in Figure 8d. The red dotted line in Figure 8d represents the standard approach flight
procedure, and the solid lines in other colors represent the central trajectory, which can
also be considered as the prevailing flight trajectory of the aircraft in the terminal area.
As can be seen from Figure 8d, most of the center trajectories are in good agreement with
the standard flight procedure, but some central trajectories have a large deviation from
the standard flight procedure. The reason may be the controller’s control habits, radar
guidance, flow control, special weather, etc., resulting in a flight pattern that is different
from the standard flight procedure. This can provide a strong reference for us to formulate
and modify standard flight procedures, and it is also the significance of trajectory clustering.
It can only use the existing historical data to obtain the inherent laws of aircraft operation,
providing important technical support for the safe and orderly operation of air traffic.
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The clustering results of all takeoff trajectories in the terminal airspace of Nanjing Lukou
Airport are shown in Figure 9. Combining the two-dimensional plane map (Figure 9a) and
the three-dimensional spatial map (Figure 9b) of the clustering results, we can understand
the spatial distribution of various take-off trajectories. Comparing it with the various
landing trajectories, it can be found that the take-off trajectory is more regular. Counting
the number of trajectories in the top three classes, it is found that these trajectories all take
off from runways 06 and 24. Therefore, it can be known that runways 06 and 24 are the
main runways for takeoff. Combining with Figure 9a–c, we can acquire the current usage
of each sector in the airspace and the distribution of each traffic flow of aircraft taking off,
which has direct guiding significance for the reasonable division of airspace sectors and the
control of sector traffic flow. In addition, the center trajectories obtained by cluster analysis
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of flight trajectories can be used to provide a reference for the revision of standard flight
procedures. The center trajectories of each cluster of the take-off trajectory are shown in
Figure 9d. Comparing the trajectories of the center of arrival and departure horizontally,
we can see that the agreement between the prevailing flight trajectories of departing aircraft
and the standard departure flight procedures is higher than that of the prevailing flight
trajectories of arriving aircraft and the standard arrival flight procedures. To a certain
extent, it confirms the conclusion that the take-off trajectory obtained above is more regular
than the landing trajectory.
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To display the clustering results more intuitively, the two-dimensional plan views
of 6 types of approach trajectories and 6 types of departure trajectories are selected for
display, as shown in Figures 10 and 11. Each picture in Figures 10 and 11 shows that
each type of trajectory belongs to a certain corridor and runway. The black dotted line in
Figure 10 represents the standard approach flight procedure plus the standard approach
procedure through the corresponding corridor and runway. The black dashed lines in
Figure 11 represent standard departure flight procedures through the corresponding cor-
ridor openings and runways. Among them, there are two standard flight procedures in
Figure 10d,e, indicating that there are two standard flight procedures for passing through
the corridor and the runway. It can be seen from Figures 10 and 11 that the similarity of
trajectories between various clusters is small, while the similarity of trajectories within the
same cluster is large, which can preliminarily show the effectiveness of the method in this
paper. In addition, comparing the various trajectories with the standard flight procedures
they should follow, it can be found that some trajectories are not strictly following the
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standard flight procedures, and are quite different from the standard flight procedures, as
shown in Figures 10c and 11a. This is also the significance of clustering massive trajectory
data, which is to discover the information contained in the actual historical operation data
of the aircraft. And then we can compare it with the prior knowledge to find the differences
and similarities, to provide the basis for future planning for ATS stakeholders.
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3.4. Parameter Discussion

In order to verify the superiority of the clustering ensemble method, we used the single
K-means clustering algorithm [7] to cluster the dataset used in this paper and calculated
the clustering evaluation index value of the ensembled clustering results and the single
clustering results and the time taken for both, as shown in Tables 2 and 3. It can be seen
from Tables 2 and 3 that the clustering evaluation index values of the ensembled clustering
results are better than the single clustering results. However, ensemble clustering took
10 times more time than single clustering. So, the cost of ensemble is that it needs more time.
However, since trajectory clustering is widely used, for example, it can provide a reference
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for the revision of standard flight procedures, so it does not need to be fast, but requires
more accurate clustering results. Ensemble clustering just satisfies this requirement because
of its relatively high accuracy.

Table 2. Comparison index values of clustering results of ensembled K-means and single K-means
of landings.

Clustering Method
Comparison Indicator

SSE SC SC Times

Single K-means 2.03× 108 0.25 6905.95 69.74s
Ensembled K-means 1.32× 108 0.47 8809..35 710.67s

Table 3. Comparison index values of clustering results of ensembled K-means and single K-means
of takeoffs.

Clustering Method
Comparison Indicator

SSE SC SC Times

Single K-means 1.78× 108 0.35 10737.25 92.50s
Ensembled K-means 1.03× 108 0.55 12503.04 950.53s

In addition, we also found that when faced with some inherently compact trajectory
data, single K-means showed poor results, while ensemble K-means still performed well, as
shown in Figure 12. This figure is the visualization of the single K-means clustering results
and the ensembled K-means clustering results of the trajectory data from the corridor
entrance BANTAJI entering the terminal airspace of Nanjing Lukou Airport and landing
on runway 25. Figure 12a is an overall visualization of this sub-dataset, and it can be seen
that the dataset itself is relatively compact. The results obtained by clustering this dataset
using a single K-means are shown in Figure 12b,d,f. From these three sub-figures, it can
be found that a single K-means is indeed not effective for this type of dataset Clustering,
because the trajectories in Figure 12d,f not only have a small similarity between intra-class
trajectories, but also a large similarity between classes, which is seriously inconsistent with
the goal of clustering. However, it can be solved if the similarity-based ensemble clustering
algorithm proposed in this paper is used, as shown in Figure 12c,e,g. This also shows that
the ensemble clustering method proposed in this paper can identify more diverse data
structures and has better generalization ability.
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Figure 12. (a) Overall visualization of trajectories of runway25, corridor BANTAJI. (b) Cluster 1
trajectories under the single K-means clustering method. (c) Cluster 1 trajectories under ensemble
K-means clustering method. (d) Cluster 0 trajectories under the single K-means clustering method.
(e) Cluster 0 trajectories under ensemble K-means clustering method. (f) Cluster 2 trajectories under
the single K-means clustering method. (g) Cluster 2 trajectories under ensemble K-means clustering
method. Clustering results of landing trajectories of the BANTAJI corridor and Runway 25 under the
single K-means clustering method and ensemble K-means method.
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When using the similarity-based integrated K-means clustering algorithm, it is nec-
essary to comprehensively adjust the threshold, the number of base clusterers and the K
value of each base clusterer according to the parameter selection method mentioned at the
end of Section 3.3 to obtain the best clustering effect.

The meaning of the threshold t is that when the distance between the two clusters is
less than t, the two clusters are merged. If the threshold t is larger, the cost of the connection
is smaller, that is, it is easier to connect the two clusters, so the number of the final clusters
is less. On the contrary, more clusters are formed. Taking the dataset of Runway 25 and
the BANTAJI corridor of Nanjing Lukou Airport as an example, different thresholds are
selected, and the methods of a single connection, full connection, and average connection
are used, respectively, in the ensemble. The change in the number of clusters is shown
in Figure 13. As can be seen from the Figure 13, the number of clusters decreases with
the increase of the threshold t and decreases faster when the threshold t is smaller. When
the threshold t is larger, the change of the number of clusters is smaller. And when the
threshold t reaches 1, the number of clusters also becomes 1. Therefore, when selecting the
range of the threshold t, more values of t could be selected when the threshold t is smaller.

Aerospace 2022, 9, x FOR PEER REVIEW 20 of 22 
 

 

The meaning of the threshold t  is that when the distance between the two clusters 
is less than t , the two clusters are merged. If the threshold t  is larger, the cost of the 
connection is smaller, that is, it is easier to connect the two clusters, so the number of the 
final clusters is less. On the contrary, more clusters are formed. Taking the dataset of Run-
way 25 and the BANTAJI corridor of Nanjing Lukou Airport as an example, different 
thresholds are selected, and the methods of a single connection, full connection, and av-
erage connection are used, respectively, in the ensemble. The change in the number of 
clusters is shown in Figure 13. As can be seen from the Figure 13, the number of clusters 
decreases with the increase of the threshold t  and decreases faster when the threshold t  
is smaller. When the threshold t  is larger, the change of the number of clusters is smaller. 
And when the threshold t  reaches 1, the number of clusters also becomes 1. Therefore, 
when selecting the range of the threshold t , more values of t  could be selected when 
the threshold t  is smaller. 

 
Figure 13. Variation of the number of categories K with the threshold t  under each connection 
method. 

As mentioned in Section 2.4, the value of K of each basis cluster can be fixed or not, 
that is, the same or different K can be selected each time when a single K-means algorithm 
is executed. However, in the actual process of using the algorithm, generally choosing 
different K values will acquire better results. The result obtained by ensemble 20 basis 
clusters and the value of K of each base cluster is different is shown in Figure 12c,e,g (The 
values of K are {2, 3, 4, 5, 6, 7, 8, 9, 3, 4, 5, 6, 7, 8, 9, 10, 3, 4, 5, 3}. And the threshold t has a 
value of 0.35.). The clustering result obtained by integrating 20 basis clusters and the K 
value of each basis cluster is selected as 3 (The threshold t  is 0.45.) is similar to the clus-
tering result obtained by single K-means, as shown in Figure 12b,d,f. The reason is that 
the clustering results that can be obtained with different K values are more diverse, and 
the useful information of each basis cluster will be ensembled during the clustering en-
semble, to obtain higher-quality clustering ensemble results. 

Regarding the number of basis clusters, it is generally necessary to select multiple 
basis clusters, but the number of basis clusters should not be too many to prevent the 
problem of low computational efficiency. 

4. Conclusions 
Massive trajectory data contains inherent information such as the prevailing flight 

patterns of aircraft. At present, the most efficient way to mine this information is to per-
form cluster analysis on trajectories. However, since most of the trajectory clustering al-
gorithms used in the current are the single clustering algorithm, it is difficult to improve 
the clustering effect by this method. Therefore, this paper introduces a trajectory cluster-
ing ensemble method based on a similarity matrix. Firstly, in the data preprocessing stage, 

Figure 13. Variation of the number of categories K with the threshold t under each connection method.

As mentioned in Section 2.4, the value of K of each basis cluster can be fixed or not,
that is, the same or different K can be selected each time when a single K-means algorithm
is executed. However, in the actual process of using the algorithm, generally choosing
different K values will acquire better results. The result obtained by ensemble 20 basis
clusters and the value of K of each base cluster is different is shown in Figure 12c,e,g (The
values of K are {2, 3, 4, 5, 6, 7, 8, 9, 3, 4, 5, 6, 7, 8, 9, 10, 3, 4, 5, 3}. And the threshold t
has a value of 0.35.). The clustering result obtained by integrating 20 basis clusters and
the K value of each basis cluster is selected as 3 (The threshold t is 0.45.) is similar to the
clustering result obtained by single K-means, as shown in Figure 12b,d,f. The reason is that
the clustering results that can be obtained with different K values are more diverse, and the
useful information of each basis cluster will be ensembled during the clustering ensemble,
to obtain higher-quality clustering ensemble results.

Regarding the number of basis clusters, it is generally necessary to select multiple
basis clusters, but the number of basis clusters should not be too many to prevent the
problem of low computational efficiency.
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4. Conclusions

Massive trajectory data contains inherent information such as the prevailing flight
patterns of aircraft. At present, the most efficient way to mine this information is to
perform cluster analysis on trajectories. However, since most of the trajectory clustering
algorithms used in the current are the single clustering algorithm, it is difficult to improve
the clustering effect by this method. Therefore, this paper introduces a trajectory clustering
ensemble method based on a similarity matrix. Firstly, in the data preprocessing stage, the
trajectory dataset is divided according to the runway and corridor to which each trajectory
belongs. To make full use of the information in the trajectory data, an angular feature
that can express the shape of the trajectory is also constructed. Secondly, to reduce the
data dimension, the stacked autoencoding network is used to perform feature learning
on each dataset, and data that can represent the original trajectory with fewer features is
obtained. Next, each dataset is clustered using multiple K-means basis clusters. Finally, the
clustering ensemble method based on a similarity matrix is adopted to ensemble the results
of each basis cluster. Through the experimental verification, it is found that compared with
the single clustering algorithm, higher quality and more robust clustering results can be
obtained by using the trajectory clustering ensemble method based on the similarity matrix
proposed in this paper. The method does not depend on a specific dataset and can handle a
wider variety of dataset types, so it can be used in other terminal areas and generalized to
enroute flight scenarios. In the future, we can continue to study the ensemble of different
clustering methods to explore more efficient ensemble methods.
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