
����������
�������

Citation: Liu, X.; Fan, Y.; Li, L.; Yu, X.

A Modal Interpretation for

Aeroelastic Stability Enhancement of

Mistuned Bladed Disks. Aerospace

2022, 9, 265. https://doi.org/

10.3390/aerospace9050265

Academic Editor: Andrea Da-Ronch

Received: 6 April 2022

Accepted: 10 May 2022

Published: 13 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

A Modal Interpretation for Aeroelastic Stability Enhancement
of Mistuned Bladed Disks

Xin Liu 1,2, Yu Fan 1,2,* , Lin Li 1,2 and Xiaoping Yu 3

1 School of Energy and Power Engineering, Beihang University, Beijing 100191, China;
liu_xin_flying@buaa.edu.cn (X.L.); feililin@buaa.edu.cn (L.L.)

2 Beijing Key Laboratory of Aero-Engine Structure and Strength, Beijing 100191, China
3 China Academy of Aerospace Aerodynamics, Beijing 100074, China; xiaopingyu@buaa.edu.cn
* Correspondence: fanyu04@buaa.edu.cn

Abstract: Understanding the mechanism of the aeroelastic stability improvement induced by mis-
tuning is essential for the design of bladed disks in aero-engines. In this paper, a quantitative
interpretation is given. It starts by projecting the mistuned aeroelastic modes into the space spanned
by the tuned modes. In this way, the mistuned aeroelastic damping can be expressed by the super-
position of the tuned damping. Closed-form expressions are found, providing clear interpretations
of several frequently reported trends in the literature. Further, a prediction approach is proposed,
where the analysis of aeroelastic coupling only needs to be performed once, and it is decoupled from
the analysis of the mistuning effect. The advantages are two-fold. First, the design of the mistuning
pattern is accelerated. Second, this allows one to introduce more accurate data or models of aeroelastic
damping. An empirical bladed disk with NASA-ROTOR37 profile is used as an example, and the
alternate, wave, and random patterns are considered.

Keywords: bladed disk; intentional mistuning; aerodynamic damping; modal interpretation

1. Introduction

Avoiding flutter is among the critical tasks in the design phase of bladed disks for
modern turbomachinery. Although bladed disks are preliminarily designed to be tuned
(with identical mechanical properties at each blade sector), in reality they are always
slightly mistuned due to manufacturing error and in-service wear. Despite the risk of
response amplification [1], mistuning is beneficial to the aeroelastic stability of bladed
disks [2,3]. Since the aforementioned intrinsic sources of mistuning are almost random
and uncontrollable, it is commonly suggested to intentionally impose a certain degree of
mistuning to maximize the enhancement of aeroelastic stability. Experimental evidence can
be found in the open literature, where researchers imposed mistuning by milling groove [4],
heavy paint [5], and tip mass [6,7].

The deviation rule of mechanical properties among blade sectors, also known as the
mistuning pattern, plays an important role in the enhancement of aeroelastic stability. The
most frequently investigated mistuning pattern is the one in which the odd and even
numbered blades have different modal frequencies for the same modal shape (e.g., bending
or torsional). This is known as alternate mistuning [1], and its performance is better than
randomly choosing a group of blade frequencies [8–10]. Despite that, Crawley and Hall [11]
pointed out that alternate mistuning is not necessarily the optimal pattern for a given
bladed disk in certain working conditions. The latter can be found by relatively complex
optimization routines [12]. Compared with the optimal pattern, alternate mistuning is
less sensitive to the secondary error induced by implementing the pattern [11]. The
pure wave (sinusoidal) mistuning pattern has also received research attention [13–16].
Despite an increased implementation difficulty compared to alternate mistuning, good
performance can be obtained if the wavenumber of the pure wave pattern is properly
chosen. There is no clear conclusion as to which mistuning pattern is always better than
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the others. As mentioned, the alternate pattern may be a good candidate for the sole
purpose of increasing aeroelastic stability. If we also want to reduce the side effect of
causing vibration amplification, the mistuning pattern is better obtained by an optimization
process that considers multiple objects [3,11,17]. Overall, one of the common challenges for
these techniques is the accurate realization of the required small frequency deviation on
each blade. An electromechanical approach is proposed by the authors of [18] to address
this issue.

There is always a need to understand the link between mistuning and the change of
flutter boundaries. To do that, a dynamic model is required, and the most mature one uses
the linearized aeroelastic force [1]. Namely, the force generated by the deformation of the
blade is assumed to be proportional to the blade displacement, weighted by the aeroelastic
influence coefficients (AICs). Modal aeroelastic damping ratios are used to determine the
statuses of the bladed disk, where a negative value indicates that the system is unstable.
This framework has been used alongside simplified [3,8–11] and high-fidelity [13,19–21]
structural models of bladed disks. In this paper, we will also follow this framework.

Most studies on the mechanism of mistuning for aeroelastic stability enhancement
are based on such a linearized one-way fluid–structure interaction model. In particular,
reduced models are developed for analyzing geometric mistuning and its effect on flutter
boundaries [20,22]. Panovsky et al. [23] proposed a stability parameter based on AICs
of only the reference blade and its two closest neighbours. This parameter gives a clear
picture of the sensitivity of the blade stability to the design parameters. They found that the
reduced frequency is extremely sensitive to the precise location of the torsion axis. Therefore,
they proposed avoiding flutter by controlling the modal shape rather than the reduced
frequency. However, mistuning is not considered in their research. Campobasso et al. [24]
proposed an asymptotic model to access the aeroelastic damping of a rather simplified
structural model, with alternate and random mistuning. Their derivation clearly showed
that mistuning alters the flutter boundaries by coupling otherwise orthogonal modes of
the tuned system. Martel et al. [19,21] proposed a reduced model, termed the asymptotic
mistuning model (AMM), and successfully explained the trend of the smallest and largest
aeroelastic damping with respect to the mistuning strength.

The aforementioned studies imply that we can project the mistuned modal shapes with
aeroelastic effects to the space spanned by the tuned modal shapes, and use the contribution
of the modes with higher aeroelastic damping to qualitatively explain the performance of a
given mistuning pattern. This idea was used in the literature [13,17]. However, such an
interpretation is insufficient at the following two levels. First, a quantitative expression of
the estimated aeroelastic damping is lacking; thus, the accuracy of such an interpretation is
unknown (level 1). Second, it is more favorable to use the mistuned modal shapes without
aeroelastic effects to underlay the interpretation, so as to decouple analysis of the mistuning
and aeroelastic effects (level 2). Namely, we can predict the performance of a mistuning
pattern before the full aeroelastic analysis on the mistuned bladed disk. In this way, the
design of mistuning patterns can be accelerated.

In this paper, a quantitative interpretation for the aeroelastic stability enhancement
of mistuned bladed disks is proposed, to address the aforementioned two levels. Thus,
the conducted work provides a solid basis for the existing research [13,17] to interpolate
their respective results. An empirical bladed disk with NASA-ROTOR37 profile is used as
an example. The alternate, wave, and random patterns are considered.

2. Materials and Methods
2.1. Problem Formulation

The bladed disk shown in Figure 1 is used to illustrate the proposed approach.
It consists of 36 blades with NASA-Rotor37 blade profile and a dummy disk designed
by the authors. The material parameters are as follows: Young’s modulus 2.8× 105 MPa,
mass density 7.8× 10−9 t/mm3, and Poisson’s ratio 0.3. The fluid working conditions un-
der which the aerodynamic influence factors are computed are given in Table 1. Note that
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this blade profile is aeroelastically stable at the design point. Therefore, we choose another
working point with higher pressure ratio. As will be shown later, this ’working point’ is
aeroelastically unstable. Unless otherwise stated, the parameters of this point are used in
this paper.

(a) (b) (c)

Figure 1. Finite element model of the considered bladed disk: (a) overall mesh, (b) blade sector,
(c) periodic boundaries.

Table 1. Fluid working parameters of NASA-ROTOR37 blades.

Parameter Value (Design Point) Value (Unstable)

Number of blades 36 unchanged
Designed speed (rpm) 17,188.7 unchanged

Designed pressure ratio 2.1 2.4
Blade tip speed (m/s) 454 unchanged

Average blade tip clearance (mm) 0.356 unchanged
Aspect ratio 1.1 unchanged

Inlet hub ratio 0.7 unchanged

The modal characteristics of the tuned bladed disk are shown in Figure 2. In this
case, the bladed disk is a perfect cyclic periodic structure; thus, the modal shapes are
also periodic along the circumferential direction [25]. The number of nodal lines along
the circumferential direction for a given modal shape is referred to as the nodal diameter
index (NDI). Note that NDI also represents the number of periods along the circumferential
direction within a modal shape, as shown in Figure 3. Figure 2 is obtained by the following
steps. First, we compute several tens of modes with the lowest modal frequencies. Second,
we compute the NDI of each mode. This can be done by directly setting the NDI value if
one uses the sector model (Figure 1b) with the periodic boundary condition imposed on
the wheel (Figure 1c). Alternatively, if a full-scale model is used (Figure 1a), NDI can be
obtained by DFT analysis of the distribution of displacement at the same blade location. In
this work, we use the first approach based on ANSYS, and the results shown in Figure 3
can be obtained by post-processing. Third, we sort the modes with the same NDI and link
all the modes with the lowest natural frequencies from NDI = 0 to NDI = 18. This gives us
the first modal family shown in Figure 2. Linking all the modes with the second lowest
natural frequencies from NDI = 0 to NDI = 18 yields the second modal family. Likewise,
modal families 3, 4, and 5 are obtained, as shown in Figure 2.
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Figure 2. Natural frequencies of the bladed disk, sorted by nodal diameter index (NDI).

(a) (b)

Figure 3. A pair of double-root modal shapes of the first modal family. The colour represents the
absolute value of the overall displacement (to highlight nodal diameters). The areas marked by ‘−’
are out-of-phase with the areas marked by ’+’. (a) NDI = 3, (b) the repeated mode, NDI = 3.

The considered bladed disk has 36 blades. Thus, we can have modes with NDI ranging
from 0 (all the blades vibrate in-phase) to 18 (every adjacent blades vibrate out-of-phase),
according to the sampling theorem. Except for NDI = 0 and NDI = 18, there is a pair of
double-root modes corresponding to each NDI ranging from 1 to 17. Figure 3 shows the
pair of double-root modes corresponding to NDI = 3 in the first family. They have the
same natural frequencies, and their modal shapes are the same if we rotate Figure 3b by
360/(4×NDI) = 30 degrees along the clockwise direction. We can roughly understand
them as the pair of a sin() and a cos() function with the same frequency in Fourier expansion.
The double-root modes are represented by the same point in Figure 2. In summary, the
number of modes in a modal family is equal to the number of blades N, and in this paper
N = 36.

Modes in the same family have similar blade deformation if the frequency-NDI curve
is flat, as in the 1st, 2nd, and 3rd families in Figure 2. In this case, we can also deduce that
most of the strain energy is on the blades. Otherwise, if a significant proportion of energy
is distributed on the disk, when NDI increases, the disk deforms more dramatically, and
its strain energy will also increase, thus increasing the natural frequencies. Generally, the
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modes on the flat part in a frequency-NDI curve are referred to as the ’blade-dominated’
modes. The 1st, 2nd, and 3rd modal families are dominated by the first bending, first torsion,
and second bending deformations of the blades, as shown in Figure 4a–c, respectively.
The natural frequencies in the 4th family start from the neighbour of the 3rd family to a
value very close to the starting of the 5th family. From NDI = 5 to NDI = 10, the frequency
significantly increases with NDI; this means that the disk is also involved in the modal
vibration. The 4th family presents a typical ‘veering’ phenomenon. We can see that its
modal shape is close to the 3rd family at the beginning (Figure 4c,d), and it will finally
shift to another type of deformation close to the 5th family (Figure 4e,f). More detailed
knowledge of the dynamics of bladed disks can be found in the literature [25–28].

(a) (b) (c)

(d) (e) (f)

Figure 4. Blade deformation of different modal families. The colour represents the absolute value
of the overall displacement. (a) 1st family, NDI = 2; (b) 2nd family, NDI = 2; (c) 3rd family, NDI = 2;
(d) 4th family, NDI = 2; (e) 4th family, NDI = 14; (f) 5th family, NDI = 2.

In this work, we use the aeroelastic stability of the first modal family to illustrate
the proposed approaches. Note that the natural frequency is around 1000 Hz because we
constrain all the degrees-of-freedom (DOFs) on both sides of the disk surface, as shown in
Figure 1b. We intentionally impose this strong boundary condition so that the modes of
this family have a similar frequency, because they are all dominated by the blade bending
deformation as presented and discussed. Thus, we can use a single fluid field analysis with
moving mesh on the blade surface to obtain the required aeroelastic influence coefficients,
as will be shown later. The choice of boundary conditions does not change the findings
and conclusions of this paper.

In the following, mechanical mistuning with different patterns and levels will be
imposed to the bladed disk. The varying of the least modal damping ratio will be used as
the performance criterion of the aeroelastic stability enhancement. Our aims are (1) to find
an interpretation to quantitatively understand the computed results and (2) to find a way
to predict the performance of a mistuning pattern before the full aeroelastic analysis.

2.2. Dynamic Model of the Mistuned Bladed Disk

With the mesh presented in Figure 1, the full dynamic equation of the mistuned bladed
disk can be obtained by finite element method, as follows:

(M + ∆M)ü + Cu̇ + (K + ∆K)u = Fa + Fe (1)
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where u is the displacement vector; K , M, and C are the nominal stiffness, mass, and
structural damping matrices, respectively; ∆M and ∆K are the deviation of stiffness and
mass matrices due to mistuning, respectively; Fe is the excitation force vector; and Fa is the
aerodynamic force vector. In the analysis of aeroelastic stability, the structural damping
and excitation force are neglected, and this gives C = 0 and Fe = 0.

Because all the modes in the first families have nearly the same frequencies (Figure 3),
we can use an approach termed the fundamental model of mistuning (FMM) [29] to reduce
the size of the problem. The basic idea is to use all the tuned modal shapes of the targeting
family as the reduced basis to express the displacement of the bladed disk, namely:

u = Φq = [φ1, φ2, · · · , φN ]q (2)

where N is the overall number of blades and also the number of modes in one modal family;
q is the reduced displacement vector with only N degrees-of-freedom; and φ are the (mass
normalized) modal shapes from the same family, obtained by the following eigenvalue problem:

(−ω2M + K)u = 0 (3)

In this paper, we assemble matrix Φ by the following order:

Φ =
[
φNDI=0, φ+

1 , φ+
2 , · · · , φ+

17, φ18, φ−17, · · · , φ−2 , φ−1
]

(4)

where superscripts + and - refer to double-root modes with the same NDI, and subscript
refers to the NDI of the modal shape. The order of modes in the columns of Φ does not
affect the conclusions, but knowing it is beneficial for interpolating and reproducing the
presented results.

Introducing Equation (2) into (1), and left-multiplying both sides of the equation by
ΦT, the reduced dynamic equation can be obtained:(

R̂ + Λ− λI
)
q = F̂a = ΦTFa (5)

where Λ = diag(ω2
1, ω2

2, . . . , ω2
N), and ω2

i is the eigenvalue associated with φi in the solu-
tions of Equation (3). The cyclic periodicity of each φi (represented by NDI, as illustrated in
Figures 2 and 3) is used, and this leads to:

R̂ = ΦT∆KΦ− λΦT∆MΦ ≈ 2ω2
aveΩ̄ (6)

where ωave is the average frequency of the modal family. Matrix Ω̄ is written as follows:

Ω̄ =


ω̄0 ω̄1 · · · ω̄N−1

ω̄N−1 ω̄0 · · · ω̄N−2
...

...
...

...
ω̄1 ω̄2 · · · ω̄0

 (7)

where coefficients ω̄p for p = 0, 1, 2, . . . , N − 1 are determined by

ω̄p =
1
N

N−1

∑
s=0

e−jsp2π∆ωs (8)

where ∆ωs is the frequency deviation of the blade in sector s and j =
√
−1. Please refer to

the original paper [29] for the detailed derivation.
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Note that the ∆ωs for s = 0, 1, · · · , N − 1 constitute the mistuning pattern. The
alternate, pure wave, and random patterns are given by Equations (9), (10), and (11),
respectively.

∆ωs =

{
A s is even
B s is odd

, s = 0, 1, · · · , N − 1 (9)

∆ωs = Csin
(

Nhs
2π

)
, s = 0, 1, · · · , N − 1 (10)

∆ωs = DH(s), s = 0, 1, · · · , N − 1 (11)

where A, B, C, and D are constants; h is the harmonic index and represents the repetitions
of the pattern along the circumference direction; and H() is the sampling function of the
underlying distribution. In this paper, we only investigate one mistuning pattern at one
time; we do not investigate their combinations.

Vector F̂a represents the fluid force applied on the blades caused by the vibration of
blades (q). Here, aerodynamic influence coefficient (AIC) [30] is employed to express the
aeroelastic force:

F̂a = Lq (12)

where L is the aerodynamic influence coefficient matrix, and it contains complex values.
AIC represents the aeroelastic force acting on a certain blade, induced by the steady-state
deformation of the reference blade (numbered as the 1st blade in this paper), and projected
to the same modal coordinate (the first bending mode in this paper). Specifically, the AIC
of the jth blade is computed by

AICj =
f j(a)

a
=

φTpj(aφ sin(ωnt))
a

(13)

where a is the amplitude of the reference blade following modal shape φ, ωn is the corre-
sponding natural frequency of φ, pj is the vector of force amplitude acting on the jth blade
generated by the deformation of the reference blade, and f j is the projection of pj to modal
shape φ. Note that pj are f j are determined by a, φ, and ωn, but their exact expressions
are not yet found. Here, we use the CFD software ANSYS/CFX to compute pj for a given
blade deformation. The moving grid technique is used to introduce the vibration of the
reference blade. Only the reference blade is deforming according to the targeted modal
shape and frequency. The other blades are not deformed, and their surface pressure will
be obtained by CFD analysis. Initially, CFD analysis yields the steady-state time series of
pressure acting on blades. Then, we convert the pressure field to nodal force vector by
element integration. A DFT analysis is performed on the time series of the force acting on
each node, to extract pj as the amplitude of the harmonic component with frequency ωn.
In this way, we can obtain a row of matrix L by Equation (13). Due to cyclic symmetry, all
the remaining rows of matrix L can be generated by shifting the components in the first
row. This method is relatively mature and details can be found in the literature [16,30]. For
the sake of brevity, we do not dive into details of the technique.

Substituting Equations (5)–(12) leads to a linearized dynamic equation. The free
vibration of the bladed disk with aeroelastic coupling can be accessed by the following
eigenvalue problem: [(

Λ + R̂− L
)
− λI

]
q = 0 (14)

where natural frequencies ωi =
√

λi and modal shapes qi can have complex values, for
i = 1, 2, . . . , N. Generally, L is not symmetric, and the eigenvalues are no longer double
roots. The aeroelastic damping ratio ξ j of the jth mode can be given by

ξ j = −
Im(ωj)

Re(ωj)
(15)
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The system becomes unstable if there are negative values of aerodynamic damping ratio.
Therefore, we will use the minimum value of aerodynamic damping ratio among all the modes,
denoted by ξmin, as an indicator for the aeroelastic stability of the system. Namely,

ξmin = min(ξ1, ξ2, ..., ξN) (16)

If ξmin < 0, the system is unstable. If ξmin increases after some treatment, maybe the
value is still negative, but the system is easier to stabilize by material or structural damping,
so we can also conclude that the aeroelastic stability is improved.

2.3. Interpretation to the Aerodynamic Damping of the Mistuned Bladed Disk

Normally, one should first solve Equation (14) many times, with a different mistuning
pattern each time. Then, the best mistuning pattern can be selected. We have seen in the
literature, and will see in the following sections, that some mistuning patterns can lead
to a significant improvement of aeroelastic stability, while others cannot. However, this
phenomenon cannot be well understood by pure numerical analysis. In this section, we
present an interpretation to understand such a performance difference.

First, we obtain the eigensolutions of the tuned bladed disk by solving Equation (14)
with R̂ = 0, namely: [

(Λ− L)− λa
j I
]
yj = 0 (17)

where λa
j is the jth eigenvalue, and yj is the associated eigenvector. Overall, N linearly

independent eigenvectors will be obtained, and they can be used as a basis to express any
vectors with N components.

Second, we expand the ith eigenvector qi of Equation (14) by a linear combination of
all the yj, written as follows:

qi =
N

∑
j=1

cijyj = [y1, y2, . . . , yN ]ci = Yci (18)

where ci = (ci1, ci2, . . . , ciN)
T is the array of coefficients. In this way, we can have

cH
i ci =

N

∑
j=1
|cij|2 = 1 (19)

if eigenvectors are normalized by qH
i qi = 1 and yH

i yi = 1. Equation (18) also provides a
way to compute the projection coefficients ci. When the tuned modal basis Y is known by
Equation (17), ci is then obtained by solving a linear equation with the right-hand side of
the given mistuned modal shape qi. Iterating i from 1 to N, all the mistuned modes can be
projected to the space spanned by the tuned modal basis.

Third, let us recall from Equation (14) that qi and its associated eigenvalue λi have the
following relationship:

λi = qH
i
(
Λ + R̂− L

)
qi (20)

Likewise, Equation (17) endows yi and its associated eigenvalue λa
i with the following

relationship:
λa

i = yH
i (Λ− L)yi (21)

Substituting Equation (18) into (20), and using Equation (21), we can get

λi = cH
i YH(Λ + R̂− L

)
Yci

≈ cH
i diag(λa

1, λa
2, . . . , λa

N)ci
(22)

where R̂ is neglected, as it is much smaller than Λ and L.
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Eventually, we rewrite Equation (22) into

λi ≈
N

∑
j=1

(
λa

j |cij|2
)

(23)

This equation shows that each mistuned aeroelastic eigenvalue is the linear superposition
of all the tuned eigenvalues, and the weight coefficients are determined by projecting the
associated mistuned eigenvector (modal shape) to the space spanned by all the tuned eigenvec-
tors (Equation (18)). On this basis, we can further extend the equation to the following levels:
(1) interpreting the mechanism of aeroelastic stability enhancement induced by mistuning; and
(2) predicting the aeroelastic stability enhancement of a given mistuning pattern.

2.3.1. Level 1: Interpret the Mistuned Aeroelastic Damping

Eigenvalues λ of the bladed disk are complex numbers when the aeroelastic effect
is considered. The aeroelastic damping ratio, as the fraction between the imaginary and
real parts of

√
λ, varies from 0.1% to 3%, as frequently reported in the literature [6,7,16,17].

This means that the imaginary part of λ is much smaller than the real part. Accordingly,
we can find some approximated expressions:

Re
(√

λ
)
≈
√

Re(λ) (24)

Im
(√

λ
)
≈ Im(λ)

2
√

Re(λ)
(25)

According to Equation (15), the aeroelastic damping can be approximated:

ξ = − Im(
√

λ)

Re(
√

λ)
≈ − Im(λ)

2Re(λ)
(26)

Introducing Equations (15)–(23), we can have a good approximation of the aeroelastic
damping ratio ξi associated with λi:

ξi ≈ −
Im(λi)

2Re(λi)
=

N

∑
j=1

[
Re(λa

j )

Re(λi)
ξa

j |cij|2
]

(27)

where

ξa
j = −

Im(ωa
j )

Re(ωa
j )
≈ −

Im(λa
i )

2Re(λa
i )

(28)

is the aeroelastic damping ratio associated with λa
i . Normally, slight mistuning will not

introduce significant deviation of natural frequencies; therefore, we can let Re(λa
j ) ≈ Re(λj),

and Equation (27) becomes

ξ j ≈
N

∑
j=1

(
ξa

j |cij|2
)

(29)

Equation (29) shows that each mistuned aeroelastic damping is also the linear super-
position of all the tuned damping ratios, and the weight coefficients are determined by
projecting the associated mistuned eigenvector (modal shape) to the space spanned by all
the tuned eigenvectors (Equation (18)). This is the first contribution of this paper.

2.3.2. Level 2: Evaluate a Given Mistuned Pattern

With the method presented in the previous section, the aeroelastic damping ratio
of each mode from a mistuned bladed disk can be fully understood by expanding the
modal shape (Equation (18)) and superposing the tuned damping ratios according to the
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expanding weights (Equation (29)). The premise is that we have already obtained the
mistuned aeroelastic modes. In this regard, it can only be called an interpretation approach.

It is worthy to investigate whether we can use the mistuned modal shapes with-
out aeroelastic effects to estimate the aeroelastic damping. If applicable, the analysis of
bladed disks with mistuning and aeroelastic effects can be done separately. The aeroelastic
damping results ξa

j can come from numerical models with higher accuracy or experiments.
Moreover, the full aeroelastic analysis on the mistuned bladed disk is avoided, and the
design of mistuning pattern can be accelerated.

To do so, we can first solve the following eigenvalue problem:[(
Λ + R̂

)
− λm

i I
]
zi = 0 (30)

where λm
i is the ith eigenvalue, and zi is the associated eigenvector. Overall, N pairs of

solutions will be obtained, and each corresponds to a natural frequency and the associated
modal shape of the mistuned bladed disk without aeroelastic effects. We can also project zi
into the space spanned by N eigenvectors of Equation (17), which is written as follows:

zi =
N

∑
j=1

dijyj = [y1, y2, . . . , yN ]di = Ydi (31)

With qi unknown, we can use zi as an approximation to proceed with the derivation from
Equations (21) to (29). Eventually, we can use dij to replace cij in Equation (29), namely:

ξ j ≈
N

∑
j=1

(
ξa

j |dij|2
)

(32)

This equation provides a way to predict the aeroelastic enhancement of a given
mistuning pattern prior to the full aeroelastic analysis. This is the second contribution of
this paper. We will discuss its accuracy in the following sections.

3. Results
3.1. Aeroelastic Damping of the Tuned Blade Disk

The aeroelastic damping of the tuned blade disk is obtained by solving Equation (17).
To do so, matrix L, containing the aerodynamic influence coefficients (AICs), should
be computed in advance. AICs computed with amplitude a = 0.2 mm, a = 0.5 mm,
and a = 1.0 mm are compared in Figure 5, where both conditions shown in Table 1 are
computed. Results show that AICs are nearly independent with the amplitude of blade in
the computing routine; thus, the linear relationship between the modal displacement q and
aeroelastic force F̂a is verified. The blade with larger distance to the reference (1st) blade
has smaller aerodynamic force, and this is expected. Because of the blade torsion, the AICs
are not symmetric with respect to blade index 1. For example, the AIC of blade 2 is not
equal to that of blade 36. This means that L is not a symmetric matrix and the eigenvalues
with aeroelastic effects are no longer double roots. In the following analysis, the AICs
obtained with modal amplitude 1.0 mm at the unstable working point will be used.

The aerodynamic damping is computed and shown in Figure 6. The modes still have
similar frequencies around 1080–1094 Hz, which are also close to the results shown in
Figure 2. However, the corresponding aeroelastic damping is significantly different, and
unstable modes with negative aeroelastic damping can be found (with NDI 14–21). These
observations indicate that matrix L does not significantly change the overall stiffness of
the system but mainly affects the damping properties. These results also support the
assumption we made in Equation (22).
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(a) (b)

Figure 5. Aerodynamic influence coefficients computed with different blade amplitude a (please refer
to Equation (13) for more details). Both conditions shown in Table 1 are computed. (a) Design point,
(b) unstable point.

(a) (b)

Figure 6. Aerodynamic damping ratios of the tuned bladed disk. The mapping between the modal
index and NDI is shown in Equation (4). (a) Sorted by frequency, (b) sorted by modal index.

3.2. Interpreting the Aeroelastic Damping of Mistuned Bladed Disk

With the results presented in the previous section, we can now use the proposed
method to understand the aeroelastic damping of a mistuned blade disk. First, let us
consider mistuning of the wave and alternate patterns. Note that the alternate pattern is
equivalent to the wave pattern with h = N/2 = 18, as illustrated in Figure 7.

The results of the h = 6 wave pattern are shown in Figure 8a, where two groups of data
are compared. The first group is the data directly obtained by solving the full aeroelastic
problem shown in Equation (14). The other group of results (labelled ’Appro Data’) is
obtained by (1) expanding the modal shapes with Equation (18), and (2) reconstructing
the damping ratio by superposing the tuned results according to Equation (29). These two
groups of results are very close to each other, verifying the correctness of the derivations
shown in Section 2.3. Compared with Figure 6b, the least aeroelastic damping has been
improved from around −0.4% to −0.2%. This can be interpreted by expanding the least
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damped mode into the tuned modal space, as shown in Figure 8b. The least damped mode
is mainly contributed by the tuned mode with NDI = 19, whose aeroelastic damping ratio
is around −0.4%. However, the mistuned mode also has contributions from modes with
NDI 13 (damping ratio 0%) and 25 (damping ratio 0.2%). Their contributions eventually
improve the damping of the mistuned mode.

(a) (b)

Figure 7. Illustration of some mistuning patterns. (a) Wave with h = 6, (b) alternate, also wave with
h = 18.

(a) (b)

Figure 8. Interpreting the aeroelastic damping with h = 6 wave mistuning. The mistuning modes are
sorted by natural frequencies in ascending order. The mapping between the tuned modal index and
NDI is shown in Equation (4). (a) Damping ratio reconstructed by Equation (29), (b) the weight of
tuned modes to the least damping mistuning mode.

Results of the alternate pattern are shown in Figure 9, organized in the same way
as Figure 8. Good agreements can also be observed in Figure 9a. Figure 9b indicates
that the least damped mode now has the secondary contribution from tuned mode with
NDI = 1, whose damping ratio is 0.6% (Figure 6b). Thus, the least aeroelastic damping is
improved further.

Figure 10 summarizes the least aeroelastic damping ratio of wave patterns with all
the h values. Once again, good agreements are observed. This verifies that the proposed
method is applicable for the wave and alternate patterns.
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(a) (b)

Figure 9. Interpreting the aeroelastic damping with alternate (also h = 18 wave) mistuning. The
mistuning modes are sorted by natural frequencies in ascending order. The mapping between
the tuned modal index and NDI is shown in Equation (4). (a) Damping ratio reconstructed by
Equation (29), (b) the weight of tuned modes to the least damping mistuning mode.

Figure 10. Reconstructing the least aeroelastic damping with wave mistuning, from h = 0 to h = 18.

Let us continue to verify the proposed approach with the random pattern. The results
are summarized in Figure 11, where random mistunings with standard deviations of 0.3%,
0.5%, and 0.8% are considered. For each case, 1000 samples are generated from uniform
distribution with zero mean and the given standard deviation. For each sample, we extract
its least aeroelastic damping by two means. One is the data directly obtained by solving
the full aeroelastic problem shown in Equation (14). The other data (labeled ’Appro Data’)
is obtained by (1) expanding the modal shapes with Equation (18), and (2) reconstructing
the damping ratio by superposing the tuned results according to Equation (29). Eventually,
we divide the results into 40 intervals and count their appearance frequency. We also
choose 30 out of 1000 samples to provide point-to-point comparisons, as shown in Figure 12.
Good agreements can be observed in both figures. This verifies that the proposed method is
also applicable for the random (arbitrary) patterns. We can further understand the samples
with higher aeroelastic stability by the same method presented in Figures 8b and 9b. It
can also be confirmed that a higher aeroelastic damping is always associated with more
contributions of the tuned modes with higher damping ratio. For the sake of brevity, these
results for the random mistuning are omitted.
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Figure 11. Reconstructing the frequency graph of aeroelastic damping with random mistuning, with
standard deviation 0.3%, 0.5%, and 0.8%. Each time, 1000 samples are computed.

(a) (b)

Figure 12. Reconstructing the least aeroelastic damping with random mistuning, with 30 of
1000 samples shown for each case. (a) Standard deviation 0.2%, (b) standard deviation 0.8%.

3.3. Predicting the Aeroelastic Enhancement of a Given Mistuning Pattern

As presented in Section 2.3.2, we can also use Equations (31) and (32) to predict the
enhancement of aeroelastic stability of a given mistuning pattern. Figure 13a compares
the predicted results with the accurate data, showing a dramatic point-to-point difference.
This is due to the approximation made in Equation 32, by replacing the damped eigenvector
by the undamped one. However, the least damping ratio is well predicted, and this is
the critical performance indicator of a mistuning pattern. We compare the predicted least
damping ratios of the wave pattern with h = 1 to h = 18 (alternate pattern) with the accurate
data in Figure 13b. Despite a minor error, good agreements can be found in the overall
trend from h = 1 to h = 17. This means that the correlation in terms of the least damping
ratio found in Figure 13a is not a coincidence. The prediction fails only for the alternate
mistuning (h = 18), which has the best performance in our investigation. This is not to say
that we failed to find the ’final’ answer to designing an intentionally mistuned bladed disk.
On one hand, mistuning can improve the aeroelastic damping. On the other hand, it may
lead to severe vibration amplification. In this regard, the designer should also conduct
analysis on the forced response, and make a compromised decision for the final mistuning
pattern. At this level, the designer needs to know the least aeroelastic damping of each
mistuning pattern, and this can be well predicted by the proposed method with ease.
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We also consider random mistuning and conduct statistical analysis. Figure 14a
compares the frequency graphs of the predicted results with the accurate data, at several
standard deviation levels, each with 20,000 samples. At lower mistuning strength, the
predicted data has significant error, but this error is reduced when mistuning strength
becomes higher. In addition, Equations (31) and (32) fail to provide a point-to-point
prediction, as shown in Figure 14b. At the design phase, it is more important to know
the mathematical expectation, namely the mean value of each frequency graph. In this
regard, the predicted results have satisfying accuracy and constitute useful references to
the designers.

(a) (b)

Figure 13. Predicted aerodynamic damping with wave and alternate patterns. The results labeled
’Pred Data’ are computed from Equations (31) and (32). (a) Damping ratio when h = 6, (b) least
aeroelastic damping from h = 1 to h = 18.

(a) (b)

Figure 14. Predicted aerodynamic damping with random patterns of standard deviation 0.5%, 0.8%,
and 2%. The results labeled ’Pred Data’ are computed from Equations (31) and (32). (a) Frequency graph,
(b) least aeroelastic damping of 30 samples with standard deviation 2%.
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4. Discussion

With the results presented from Figure 8 to Figure 11, the accuracy of Equations (18)
and (29), which underlie the proposed interpretation approach, is validated. Here, we
provide some further remarks. Let us recall that the sum of |cij|2 is constrained to 1,
as shown in (19). Therefore, we can have the following interpolations concerning the
mechanism of aeroelastic stability enhancement induced by mistuning:

1. Mistuning cannot increase and would rather decrease the largest aeroelastic damping
ratio. It can be demonstrated that max(λj) = λa

k if the kth tuned mode has the largest
aeroelastic damping ratio. This happens only when |cik| = 1 and |cij| = 0, j 6= k.
It is unlikely to perfectly satisfy this condition if mistuning is presented. However,
when the mistuning strength is slight, it is more likely to have mistuned modal shapes
dominated by the kth tuned mode, namely 1 ≈ |cik| � |cij|, j 6= k. In this case, the
difference between max(λj) and λa

k is minor. However, with the increase of mistuning
strength, the mistuned modes tend to have a more significant contribution from
multiple tuned modes. In this case, the difference between max(λj) and λa

k will also
be enlarged.

2. Mistuning cannot further decrease the smallest aeroelastic damping ratio; thus, it is
always beneficial to the aeroelastic stability. It can be demonstrated that min(λj) = λa

l
if the lth tuned mode has the smallest aeroelastic damping ratio. This happens only
when |cil | = 1 and |cij| = 0, j 6= l. As noted earlier, min(λj) will always be larger
than λa

l with the presence of mistuning, and this gap is enlarged by the increase of
mistuning strength. This remark is illustrated by comparing Figures 8a and 9a with
Figure 6b.

3. A mistuned mode has higher aeroelastic damping ratio than another, only if its modal
has more contribution from the tuned modes with higher aeroelastic damping ratio.
The best mistuning pattern is the one who tends to produce modal shapes constructed
by the tuned modes with relatively high aeroelastic damping ratio. This remark is
illustrated by comparing Figures 8b and 9b with Figure 6b.

Such trends are also frequently reported in the literature [14–16,18,31] by numerical
analysis. Now, we can confirm that they are general.

5. Conclusions

(1) The aeroelastic damping ratio of a mode in the mistuned bladed disk can be inter-
preted as follows: it is determined by the contribution of each tuned mode in the
associated modal shape. Derivations are given in detail, and the accuracy is validated
by numerical investigation. The proposed interpretation is applicable for various
mistuning patterns, including the alternate, wave, and random patterns.

(2) Several general conclusions are drawn, confirming the frequently reported trends
in the literature [14–16,18,31]. First, mistuning cannot increase and would rather
decrease the largest aeroelastic damping ratio. Second, mistuning cannot further
decrease the smallest aeroelastic damping ratio; thus, it is always beneficial to the
aeroelastic stability. Third, a mistuned mode has higher aeroelastic damping ratio
than another only if its modal has more contribution from the tuned modes with
higher aeroelastic damping ratio.

(3) A prediction method is also proposed, providing an acceptable approximation of
the least aeroelastic damping of a given mistuning pattern. This is done with the
mistuning and aeroelastic effects analyzed separately. The advantages are two-fold.
First, the design of mistuning pattern is accelerated. Second, this allows one to
introduce more accurate data or models of aeroelastic damping.
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