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Abstract: The vibration of flexible structures in spacecraft, such as large space deployable reflectors,
solar panels and large antenna structure, has a great impact on the normal operation of spacecraft.
Accurate vibration control is necessary, and the control of angular displacement is a difficulty of
accurate control. In the traditional control method, the mode space control has a good effect on
suppressing low-order modes, but there is control overflow. The effect of traveling wave control
on low-order modes is worse than the former, but it has the characteristics of broadband control.
It can better control high-order modes and reduce control overflow. In view of the advantages
and disadvantages of the two control methods, based on Timoshenko beam theory, this paper uses
vector mode function to analyze the modal of spacecraft cantilever beam structure, establishes the
system dynamic equation, and puts forward an optimized traveling wave control method. As a
numerical example, three strategies of independent mode space control, traditional traveling wave
control and optimized traveling wave control are used to control the active vibration of beam angle.
By comparing the numerical results of the three methods, it can be seen that the optimal control
method proposed in this paper not only effectively suppresses the vibration, but also improves the
robustness of the system, reflecting good control performance. An innovation of this paper is that the
Timoshenko beam model is adopted, which considers the influence of transverse shear deformation
and moment of inertia on displacement and improves the accuracy of calculation, which is important
for spacecraft accessory structures with high requirements for angle control. Another innovation is
that the optimized traveling wave control method is exquisite in mathematical processing and has
good results in global and local vibration control, which is not available in other methods.

Keywords: Timoshenko beam; modal space control; optimized traveling wave method; angular
displacement control

1. Introduction

Flexible cantilever structures are often used in spacecraft structures, such as large
antenna structures, large space deployable reflectors and solar panels. In the space environ-
ment, the damping is small, and the damping of the flexible structure itself is also small.
When it is excited or disturbed by work, such as attitude adjustment and docking, orbit
change and solar wind, if the vibration is not controlled, the vibration will last for a long
time, which will affect the normal work of the structure and even reduce the service life of
the structures [1–6].
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At present, Euler–Bernoulli beam theory is mainly used in vibration control of beam
structure, while Timoshenko beam theory is seldom used for the control difficulties in
mathematics. The Euler–Bernoulli classical beam theory has some limitations in struc-
tural dynamic analysis, especially in some composite structures. Because the influence
of transverse shear deformation and moment of inertia is considered, the analytical re-
sults of Timoshenko beam theory are closer to engineering practice [7,8]. Therefore, the
Timoshenko beam theory begins to be applied in structural dynamics analysis. Based on
Timoshenko beam theory and elastic wave theory, Carvalho and Zindeluk [9] studied the
active control of bending waves in infinite Timoshenko beams. Halkyard and Mace [10]
studied the bending vibration feedback adaptive control of beam structures by using wave
control method. EL-Khatib et al. [11] used a tuned vibration absorber to study the bending
wave suppression in a beam. Hu et al. [12] concerned with the control of flexural waves
in a beam using a tuned vibration absorber. Su and Ma [13,14] compared three analy-
sis methods: Laplace transform, ray and normal mode to study the dynamic transient
response of cantilever Timoshenko beam under impact force. Cardoso [15] blended the
Euler–Bernoulli beam theory with idealized transverse shear flows to study a new beam
element for aircraft structural analysis. Xing and Liu [16] studied the dynamic modeling
and adaptive boundary control of a three-dimensional Timoshenko beam to realize vibra-
tion suppression. Ishaquddin et al. [17] studied the flexure and torsion locking phenomena
in out-of-plane deformation of the Timoshenko curved beam element. Endo et al. [18]
studied a contact-force control problem for a flexible Timoshenko arm. Mei [19] studied a
hybrid approach to active control of bending vibrations in beams based on the advanced
Timoshenko theory. Pham et al. [20] developed a novel dynamic model of a variable-length
Timoshenko beam attached to a translating base. The stability of the closed-loop system
under the proposed boundary control law was analyzed. Eshag et al. [21] studied a global
sliding mode boundary control method for the Timoshenko beam reduction of the vibration
induced by rotation boundary disturbance, uncertainties and distributed disturbance. By
using exponential reaching law, the chattering phenomena is avoided. Fleischmann and
Könözsy [22] developed an explicit finite difference numerical method to approximately
solve the bending equation of non-uniform fourth-order Euler–Bernoulli beams. The equa-
tion has velocity-dependent damping and second-order moments of area, and mass and
elastic modulus distribution varying with beam spacing. The method is grid convergent
and numerically stable. According to literature studies [9–24], it can be seen that the finite
element method has become an important theoretical analysis method because it can deal
with complex objects and has many general programs. However, the finite element method
is more suitable for low-frequency vibration. For medium- and high-frequency vibration,
many elements must be divided to accurately describe the vibration characteristics of the
system, which will lead to large numerical errors and a sharp increase in the amount of
calculation, and the overflow problem will inevitably be encountered when considering vi-
bration control. In addition, enough grid elements must be divided to describe the dynamic
characteristics of the structure, the grid of the element is continuously encrypted, and the
accumulated error will increase. High requirements for computer hardware configuration
are also needed. The modal space control method is to analyze the vibration of the structure
from the perspective of the modal. The essence of modal analysis is coordinate transfor-
mation. It transforms the coupled motion equations in physical coordinates into modal
coordinates for decoupling; thus, as to solve the modal parameters of the system. The above
traditional numerical methods can deal with the response of structural vibration well in the
low frequency band. However, there are limitations in the medium- and high-frequency
bands. With the increase in analysis frequency, it will face many problems, such as the
problem of dense and overlapping structural modes.

In this paper, based on Timoshenko beam theory, the vibration control of the cantilever
beam is studied by using the optimal traveling wave control method. First, based on
Timoshenko beam theory, the modal analysis of the cantilever beam structure commonly
used in spacecraft is carried out by using vector vibration mode function, and the system
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dynamic equation is established. Then, based on the Timoshenko beam theory and the
overall motion of the structure, the modal space control method is used to design the global
vibration control of the structure. The traveling wave control is used to control the vibration
energy flow in the specified area of the structure. According to the local characteristics of the
structure, the wave control method is used to absorb the energy carried by the propagating
wave in the structural vibration, and the reflection coefficient and transmission coefficient
of the wave in the Timoshenko beam when the control torque is applied are obtained.
Finally, combined with the advantages of modal space control method, we optimize the
traveling wave control method and design an optimized waveform controller to control
the rotation angle of the beam. The control results show that the optimized traveling wave
control method is better than the traditional traveling wave control method or mode space
control method, it and improves the robustness of the system.

2. Structural Dynamic Characteristics of Timoshenko Beam

In engineering practice, it is assumed that the cross-section size of the beam is small
compared with its length, thus neglecting the influence of shear deformation and beam
section rotation, which is suitable for most members. However, when the ratio of height
to span is high or when the composite members are widely used in structures, the effects
of shear deformation and cross-section rotation should be taken into account, which have
great influence on the higher frequency and mode shape. At this time, Timoshenko beam
theory needs to be used. The cantilever Timoshenko beam structure studied in this paper is
shown in Figure 1.
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Figure 1. Schematic diagram of wave control in the cantilever Timoshenko beam.

It is assumed that the rotation angle of the cross section produced by the bending
moment M is ψ. If there is no shear deformation, the cross section is perpendicular to the
elastic axis, and Ψ equals the slope of the elastic axis. When shear deformation is taken into
account, the rotation angle generated by shear force is γ. The actual cross section angle is
α = ∂w/∂x; then, we can obtain:

α = ψ− γ (1)

The angle ψ and γ meet the following relationship:{
∂ψ
∂x = M

EI
γ = − Q

κGA
(2)

where, E, I, κ, G, A respectively represent the elastic modulus, the moment of inertia of
the beam section, the shear conversion coefficient, the shear modulus and the section area,
and I = Ah2

12 , G = E
1+ν , κ = π2

12 , in which h, ν are respectively the section height and the
Poisson’s ratio of the material.



Aerospace 2022, 9, 259 4 of 16

Respectively, ρ, q, m denoted the mass density, transverse load and bending moment
of the beam. Considering the equilibrium of the beam element, the following equilibrium
equations can be obtained.{

−Qdx + ∂M
∂x dx− ρI ∂2ψ

∂t2 dx + mdx = 0
− ∂Q

∂x dx− ρA ∂2w
∂t2 dx + qdx = 0

(3)

Substituting Equation (2) into Equation (3), we can obtain:{
D ∂2ψ

∂x2 + C ∂w
∂x − Cψ + m = ρI ∂2w

∂t2

C ∂2w
∂x2 − C ∂ψ

∂x + q = ρA ∂2w
∂t2

(4)

The bending moment and shear force in a beam are expressed as: M = D ∂ψ
∂x = D

(
ρ

GA
∂2w
∂t2 − ∂2w

∂x2

)
Q = −C

(
∂w
∂x − ψ

) (5)

where D = EI is the bending stiffness of beams, C = κGA, G is the shear modulus.
Equation (4) can be written in matrix form as follows:

M
∂2Φ

∂t2 −K
∂2Φ

∂x2 + CEΦ = F(x, t) (6)

where Φ =
[

w ψ
]

is the generalized displacement, w, ψ are the deflection of beam and
angle of rotation, respectively; M is the generalized mass; t is the time; F(x, t) = [ q m ];
F(x, t) is the external disturbance dynamic vector, and the expression of M, K, E is

M =

[
ρA 0
0 ρI

]
, K =

[
C 0
0 D

]
, E =

[
0 ∂/∂x

−∂/∂x 1

]
In order to analyze the frequency characteristics of the beam and consider the free

vibration state of the beam, the following equations can be obtained by decoupling the
displacement w and the rotation angle ψ in Equation (4):

D
∂4w
∂x4 + ρA

∂2w
∂t2 − ρI

∂4w
∂x2∂t2 −

ρAD
C

∂4w
∂x2∂t2 +

ρ2 AI
C

∂4w
∂t4 = 0 (7)

Equation (7) above shows two degrees of freedom of the Timoshenko beam: the free
vibration characteristics w of deflection and rotation angle ψ are exactly the same, that is, the
modes of corresponding order, both of which have the same frequency ω and wave number
k. In Equation (7), the first and second items denote the basic conditions of vibration, the
third and fourth items denote the effect of the cross section moment of inertia and shear
deformation, respectively, and the last item denotes the coupling effect of moment of inertia
and shear deformation.

3. The Simulation Results and Discussions in the Deorbiting Process

For flexible structures, the low frequency modes are dense; thus, it is difficult to design
the controller directly by physical coordinates. In the modal space, the vibration control of
the structural system can be transformed into a small number of modal coordinate vibration
controls. The response of the structure can be expressed as the sum of infinite modes:

Φ(x, t) =
N

∑
i=1

ϕi(x)qi(t) (8)
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where ϕi(x) is the ith-order mode function, qi(t) is the ith-order modal coordinates, and N
is number of modal truncation.

By deriving Equation (4) from time variables and space variables, the following
equation can be obtained at the left end of Equation (4) as:

M ∂2Φ
∂t2 = M

N
∑

i=1
ϕi(x) ∂2qi(t)

∂t2

K ∂2Φ
∂x2 − CEΦ =

N
∑

i=1
[K ∂2ϕi(x)

∂x2 −CEϕi(x)]qi(t)
(9)

Substituting Equation (9) into Equation (6), we can obtain:

M
N

∑
i=1

ϕi(x)
∂2qi(t)

∂t2 −
N

∑
i=1

[K
∂2ϕi(x)

∂x2 −CEϕi(x)]qi(t) = F(x, t) (10)

where ϕi(x) is the modal vibration function and should satisfy the homogeneous differen-
tial equation as follows:

[K
∂2ϕi(x)

∂x2 − CEϕi(x)] + ω2
i Mϕi(x) = 0 (11)

Then, the frequency characteristics of the system are analyzed. Assuming Φ =

Re[ei(kx−ωt)[ 1 1
]T
]
↔

AB, and substituting into (7) to obtain:

k4 −
(

ρI
D

ω2 +
ρA
C

ω2
)

k2 +
ρA
D

ω2
(

ρI
C

ω2 − 1
)
= 0 (12)

where k0 =
(
ρAω2/D

)1/4 is the elastic traveling wave number of classical Euler beam and
k is the wave number of the modal vibration function ϕ(x).

When the vibration frequency of the beam is ω ≥ ωc, the elastic wave number is
k2

i ≥ 0(i = 1, 2), which indicates that there are two pairs of propagating waves in the
structural beam, and the phase velocity is c = ω/k. When the vibration frequency of the
beam is ω < ωc, the elastic wave numbers are k2

1 > 0 and k2
2 < 0, which indicate that there

are a pair of propagating waves and a pair of attenuation waves in the structural beam.
Where ωc =

√
C/ρI denotes the transition critical frequency of the extended state and the

local state. Because the structure vibration can be regarded as the superposition of multiple
reflection of the elastic wave mode, the propagation wave can form the whole vibration of
the finite region of the structure, while the attenuation wave forms the localized vibration
in the finite area of the structure. Thus, in the beam, a main vibration mode function is
determined when a set of wave numbers k1 and k2 corresponding to the natural frequencies
are determined.

ϕi(x) =
[

wi
ψi

]
=

[
a1
b1

]
cos(k1x) +

[
a2
b2

]
sin(k1x) +

[
a3
b3

]
cos(k2x) +

[
a4
b4

]
sin(k2x) (13)

To study the cantilever beam, use the modal coordinate equation of the beam.

..
qi(t) + ω2

i qi(t) = fi(t), i = 1, 2, · · ·N (14)

where q(t) = [q1(t), q2(t), · · · , qN(t)]
T , fi(t) = 1

mi

∫ l
0 ϕi

TF(x, t)dx is the external distur-
bance force.

The essence of independent modal control is to reconfigure the poles of the vibration
system by state feedback; thus, the state space description of the system is established first.
Assuming the modal control force is ui(t) = 1

mi

∫ l
0 ϕi

TU(x, t)dx, for the vibration system:

..
qi(t) + ω2

i qi(t) = fi(t) + ui(t), i = 1, 2, · · ·N (15)
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Considering the control of the pth-order mode, and introducing the state vector

X(t) = [XC(t)
...XR(t)], where XC = [qT(t),

.
qT

(t)]
T
2p×1, the controlled partial state equation

of the system is expressed as follows:

.
XC(t) = ACXC(t) + BCu(t) + DCfC(t) (16)

where

AC =

[
0 I
−ω2 0

]
2p×2p

, BC = DC =

[
0
I

]
2p×p

, ω2 = diag[ω2
i ]p×p

In Equation (16), the 0 and I are a zero matrix and a unit matrix, respectively; u(t),
f (t) are the modal control force and the modal disturbance force, respectively. When the
controllability matrix rank([B AB]) = 2p, based on the linear system theory, we know that
the state of the system is completely controllable, and the pole can be arranged arbitrarily.
Introducing the state feedback, the control force u(t) is given as follows:

u(t) = −GXC(t) = −
[

g h
][ q

.
q

]
(17)

The closed-loop dynamic equation of the system (15) is as follows:

.
XC(t) = (AC − BCG)XC(t) + DCfC(t) (18)

According to Equation (18), the characteristic structure of the original vibration system
can be changed arbitrarily by adjusting the feedback gain G.

Considering point force control input U(x, t) =
p
∑

i=1
ũi(t)δ(x− xi), point force distur-

bance input, F(x, t) =
n
∑

i=1
f̃i(t)δ(x− xi) in physical coordinates, where p, n are respectively

the number of controlled modes and the number of disturbance forces, and the jth-order
mode control force uj(t) and disturbance force fj(t) are expressed as follows:

uj(t) = 1
mj

p
∑

i=1

l∫
0
ϕj(x)ũi(t)δ(x− xi) =

1
mj

p
∑

i=1
ϕj(xi)ũi(t)

fj(t) = 1
mj

n
∑

i=1

l∫
0
ϕj(x)̃fi(t)δ(x− xi) =

1
mj

n
∑

i=1
ϕj(xi )̃fi(t)

(19)

where the control input force vector is ũ =
[
ũx1(t) ũx2(t) . . . , ũxp(t)

]T , and the disturbance

input force vector is f̃ =
[

f̃x1(t) f̃x2(t) · · · f̃xn(t)
]T

. Thus, the transformation rela-
tions of the force vectors between the modal coordinates and the physical coordinates are
written as follows

u = Ψcũ, Ψc =


ϕ1(x1) ϕ1(x2) · · · ϕ1

(
xp
)

ϕ2(x1) · · · ϕ2
(

xp
)

...
...

...
ϕp(x1) · · · ϕp

(
xp
)


p×p

,fd = Ψd f̃, Ψd =


ϕ1(x1) ϕ1(x2) · · · ϕ1(xn)
ϕ2(x1) · · · ϕ2(xn)

...
...

...
ϕp(x1) · · · ϕp(xn)


p×n

(20)

There is no corresponding relation between the position coordinates xi of the above two
equations, that is, the position of the control force and the disturbance force is not necessarily
the same; and the selected position coordinates should at least ensure Ψc, Ψd invertible.
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Substituting Equation (20) with Equation (15), the state equation of the controlled part
can be obtained as follows: .

XC(t)=ÃCXC(t)+B̃C f̃(t) (21)

where

ÃC =

[
0 I

−
(
ω2 + g

)
−h

]
2p×2p

, B̃C =

[
0

ΨdC

]
2p×n

where g, h are the generalized displacement gain of the modal control and the generalized
velocity gain matrix, respectively. It is obvious that the modal structure of the system is
reconstructed by state feedback, and the modal damping and stiffness of the system are
improved effectively.

The state equation of the part of the uncontrolled mode should be:

.
XR(t)=ÃRXR(t)+B̃R f̃(t) (22)

where

ÃR =

[
0 I
−ω2 0

]
2(N−p)×2(N−p)

, B̃R =

[
0

ΨdR

]
2(N−p)×n

The deflection w(x0, t) at the position coordinate x0 is selected as the output of the
system, and the following results can be obtained from Equation (8);

w(x0, t) = wC(x0, t) + wR(x0, t) =
p

∑
i=1

ϕi(x0)qi(t) +
N

∑
i=p+1

ϕi(x0)qi(t) (23)

The final output of the system is:

w(x0, t) = CX (24)

where 
C =

[
ΨT

0C
... 0

... ΨT
0R

... 0
]

1×2N
Ψ0C = [ϕ1(x0)ϕ2(x0) · · ·ϕr(x0)]

T
1×p

Ψ0R = [ϕr(x0)ϕr+1(x0) · · ·ϕN(x0)]
T
1×(N−p)

Equations (21), (23) and (26) constitute a complete state space description of partially
controlled vibration systems. It is clear that the controlled and uncontrolled modes are
independent of each other.

4. Rotating Angle Traveling Wave Control of Timoshenko Beam

Vibration in structure is essentially the propagation of elastic wave in structure. An
elastic wave can be regarded as the representation of vibration propagation in a continuous
medium. When an elastic wave propagates in a bounded structure and various waveforms
are superimposed and stable, its external performance is often regarded as a vibration.
Structural vibration is a special form of wave expression, which can be regarded as the
result of the superposition of traveling waves satisfying certain conditions. Therefore, the
vibration of the structure can be regarded as the propagation, reflection and transmission of
the elastic disturbance in the structure, and the whole structure shows a wave characteristic.
Therefore, the dynamic response and vibration control of a missile structure can be studied
from the perspective of a traveling wave. The vibration in the structure can be described
by the superposition of wave modes. The active control method of a traveling wave is to
control the energy propagation in the structure, that is, to reduce the transmission from
one part of the structure to the other, or to absorb the energy carried by the traveling wave.
In wave control, the control law is the transfer relation between the input and output of
the controller. It can be divided into time domain design method and frequency domain
design method. The control force can be a point force or a point moment. The frequency
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domain design method is used here. In this paper, a wave controller is designed to control
the rotation angle of the beam, and the wave control torque is applied when the rotation
angle is controlled.

There are two methods to describe vibration: modal mode description and wave
description. In essence, the former belongs to standing wave expression, while the latter is
traveling wave expression. Considering the free vibration of the Timoshenko beam, the
time factor exp(−iωt) is omitted:

Φ = A1
− exp(−ik1x)+A2

+ exp(ik1x)+A3
− exp(−k2x)+A4

+ exp(k2x) (25)

In the above equation, + and − represent the positive and negative propagation
waves, respectively. The modes with spatial factors exp(−ik1x) and exp(ik1x) represent
the propagating waves carrying energy, while the modes with spatial factors exp(−ik2x)
and exp(ik2x) represent the local vibrational modes that do not carry energy. The purpose
of wave control is to dissipate and absorb the energy in the propagating wave. When there
are no discontinuous points in the infinite beam structure, the above elastic waves will
propagate to infinity, and the local vibration modes will decay quickly.

Considering the existence of excitation force in beam structure (shear discontinuity
point), according to the traveling wave theory, the reflection and transmission of the elastic
wave will occur at the discontinuous incidence. Assuming that a sequence of forward
propagating waves is incident at x = 0, resulting in reflected, transmitted and near-field
waves, the displacement of the beam at x ≤ 0 and x ≥ 0 is as follows

ϕ−(x) =
[

w−
ψ−

]
=

[
a+

b+

]
exp(ik1x) +

[
a−

b−

]
exp(−ik1x) +

[
a−N
b−N

]
exp(k2x)

ϕ+(x) =
[

w+

ψ+

]
=

[
c+

d+

]
exp(ik1x) +

[
c+N
d+N

]
exp(−k2x)

(26)

In the feedback wave control, the sensor and actuator are located in a certain area of
the structure to control the propagation of elastic wave. In this case, the control force is a
discontinuous point. In the frequency domain feedback wave control, the applied wave
control moment is taken as

T(ω) = −H(ω)Ψ(ω) (27)

According to the conditions of generalized displacement continuity and generalized
force equilibrium, the function of beam satisfies at x = 0

w−(0) = w+(0)
ψ−(0) = ψ+(0)
M+(0)−M−(0) = Hψ+

Q+(0) = Q−(0)

(28)

In Equation (28), H is the transfer function of the wave controller, and the symbols −
and + represent the corresponding mechanical quantities of the beam at x ≤ 0 and x ≥ 0,
respectively.

According to the expressions of bending and shear forces, Equation (28) can be
written as

[
1
ik1

]
b+ +

[
1 1
−ik1 k2

]
B− =

[
1 1

ik1 +
H
D

H
D − k2

]
D+[

k2
1

ik3
1

]
b+ +

[
k2

1 −k2
2

−ik3
1 −k3

2

]
B− =

[
k2

1 −k2
2

HρJω2

D2 + ik3
1

HρJω2

D2 + k3
2

]
D+

(29)

where

B− =

[
b−

b−N

]
=

[
r1
r2

]
b+, D+ =

[
d+

d+N

]
=

[
t1
t2

]
b+
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Denoted as H = H
Dk1

, ρJω2

D =
k4

0h2

12 , the following equation can be obtained: 1 + r1 + r2 = t1 + t2, i− ir1 +
k2
k1

r2 =
(
i + H

)
t1 −

(
k2
k1
− H

)
t2

1 + r1 + r2 = t1 + t2, i− ir1 +
k2
k1

r2 =
(
i + H

)
t1 −

(
k2
k1
− H

)
t2

(30)

It is the same as the method of the wave controller designed to control the lateral
displacement, denoted as H(ω) = (1 + i)ωg. The energy reflected and transmitted by unit
incident energy is E(g) = |r1|2 + |t1|2. The maximum energy dissipation in discontinuous
structure is taken as the performance index of optimal control, and the optimal control law
H(ω) is determined.

E(g) = (288k2
1k2

2 + 288k4
2 + 24gh2k4

0k1k2ω− 288gk3
1k2ω + g2h4k8

0ω2 − 24g2h2k4
0k2

1ω2

+144g2k4
1ω2 + 24g2h2k4

0k2
2ω2 − 144g2k2

1k2
2ω2 + 144g2k4

2ω2)/(288k2
1k2

2
+288k4

2 + 24gh2k4
0k1k2ω− 288gk3

1k2ω + 24gh2k4
0k2

2ω + 288gk4
2ω + g2h4k8

0ω2

−24g2h2k4
0k2

1ω2 + 144g2k4
1ω2 + 24g2h2k4

0k2
2ω2 − 144g2k2

1k2
2ω2 + 144g2k4

2ω2)

(31)

When E(g) reaches the minimum, the feedback gain is

g =
a
b

(32)

where
a = 12

√
2
√

h2k4
0k2

1k2
2 + h2k4

0k4
2 + 12k2

1k4
2 + 12k6

2, b =
√

g1 + g2

g1 = h6k12
0 ω2 − 24h4k8

0k2
1ω2 + 144h2k4

0k4
1ω2 + 36h4k8

0k2
2ω2 − 432h2k4

0k2
1k2

2ω2

g2 = 1728k4
1k2

2ω2 + 432h2k4
0k4

2ω2 − 1728k2
1k4

2ω2 + 1728k6
2ω2

The corresponding reflection and transmission coefficients of incident waves are
expressed as follows, respectively:

r1 = −
(

gh2k4
0k2ω + 12gk3

2ω
)
i/{(k1 − k2i) [(−12 + 12i) k1k2

−(12 + 12i)k2
2 − gh2k4

0ω + 12gk2
1ω + 12gk1k2ωi− 12gk2

2ω
]}

t1 = [(−12 + 12i) k2
1k2 − (12− 12i)k3

2 − gh2k4
0k1ω + 12gk3

1ω
]
/{(k1 − k2i)

[(−12 + 12i) k1k2 − (12 + 12i)k2
2 − gh2k4

0ω + 12gk2
1ω + 12gk1k2ωi− 12gk2

2ω
]} (33)

If the wave control moment is applied at the point x = xw, the tuning PD control
becomes:

mw(x, t) = −[c1w(x, t) + c2
.

w(x, t)]δ(x− xw) (34)

At this time, wave control Equation (34) is applied to the original vibration system,
and the matrix form of the motion equation of the system is written as follows:

Mw
..
q + Cw

.
q + Kwq = f (35)

where f = [ f1 f2 · · · fn ]
T , fi(t) = 1

mi

∫ l
0 ϕi

TF(x, t)dx, Mw, Cw, Kw are mass ma-
trix, damping matrix and stiffness matrix, respectively, and the expressions of them are
as follows:

Mw = I, Cw = c2Ψw, Kw = ω2 + c1Ψw (36)

where

Ψw =


ϕ1(xw)ϕ1(xw) ϕ1(xw)ϕ2(xw) · · · ϕ1(xw)ϕN(xw)
ϕ2(xw)ϕ1(xw) · · · ϕ2(xw)ϕN(xw)
...

...
...

ϕN(xw)ϕ1(xw) · · · ϕN(xw)ϕN(xw)


N×N
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It is important to note that c1, c2 will also be a matrix, not a number, in subsequent
programming calculations. For ease of use in optimized control, we can also write Ψw in
block form:

Ψw =

[
ΨCC ΨCR
ΨRC ΨRR

]
(37)

When there is no wave control force, the mass array M is N × N identity matrix, C is
the N× N zero matrix, K is diagonal matrix with the square of natural frequency. However,
the wave control moment is coupled with the vibration modes of the uncontrolled original
system, and the mode of the wave control system changes as a result.

Introducing the state vector X(t) = [qT(t) :
.
qT

(t)]
T

, Equation (39) is written in the
form of a state space:

.
X(t) = AX(t) + Bf (38)

where the coefficient matrix is:

A =

[
0 I

−Mw
−1Kw −Mw

−1Cw

]
, B =

[
0

Mw
−1Ψd

]
, Ψd =


ϕ1(x1) ϕ1(x2) · · · ϕ1(xm)
ϕ2(x1) · · · ϕ2(xm)

...
...

...
ϕN(x1) · · · ϕN(xm)


N×m

5. Traveling Wave/Modal Optimized Control of Timoshenko Beam Rotation Angle

The optimized control method of the independent mode and traveling wave is used
in this paper. First, the former pth-order mode is controlled by independent modal space
control, and the partially controlled vibration system is obtained. The modal dynamic
equation of the system is as follows:

Mm
..
q + Cm

.
q + Kmq = f (39)

where

Mm = I, Cm =

[
h 0
0 0

]
, Km =

[
ω2

c + g 0
0 ω2

R

]
Applying wave control force to the system, combined with (35) and (36), the modal

dynamics equation of the system is as follows:

Mh
..
q + Ch

.
q + Khq = f (40)

where

Mh=I, Ch =

[ (
h + c2ΨCC

)
c2ΨCR

c2ΨRC c2ΨRR

]
, Kh =

[
ω2

C + g + c1ΨCC c1ΨCR
c1ΨRC ω2

R + c1ΨRR

]

Introducing the state vector X(t)=[qT(t):
.
qT

(t)]
T

, and the equation of the state is:

.
X(t)=ÃX(t)+B̃f (41)

where

A =

[
0 I
−Mh

−1Kh −Mh
−1Ch

]
, B =

[
0

Mh
−1Ψd

]
, Ψd =


ϕ1(x1) ϕ1(x2) · · · ϕ1(xm)
ϕ2(x1) · · · ϕ2(xm)

...
...

...
ϕN(x1) · · · ϕN(xm)


N×m
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6. Numerical Example and Analysis and Discussion

Using the independent modal space method and optimized control method, the
dynamic response of the structural beam subjected to control force is investigated. Taking
the characteristic length as the length of the beam l, the following dimensionless quantities:
Poisson ratio ν = 0.30; high to length ratio h/l = 0.1; damping factor before control
ζ = 1.0 × 10−4; ωi

2/ω0
2 = (k0iL)

4/(k01L)4; k0i is the elastic traveling wave number
corresponding to the ith-order natural frequency. Table 1 shows the first 10 dimensionless
natural frequencies of the Timoshenko beam.

Table 1. The first 10 dimensionless frequency of the Timoshenko beam.

Order of Mode 1 2 3 4 5 6 7 8 9 10

natural frequency 1.00 6.02 15.99 29.35 45.34 63.34 82.98 104.02 126.30 149.59

Figures 2–7 show the frequency response of the structure before and after the control
with three different control methods under different parameters. In Figures 2–7, the
horizontal coordinates are dimensionless frequency values, while the vertical coordinates
are the common logarithmic values of the frequency response. In Figures 2–4, the position
of disturbance action is xd = 0.15l. Figure 2 shows the frequency response before and after
modal control; the positions of mode control force applied are xm1 = 0.215l, xm2 = 0.525l,
xm3 = 0.775l, xm4 = 1.0l; the first four modes are controlled, and the measuring position of
the dynamic response is xs = 0.265l, where the occurrence point of the maximum value
of the total deflection of the first 10 modes is. Figure 3 shows the frequency response of
the structure before and after the control when the position of the wave control force is
xw = 0.40l. Figure 4 describes the frequency response of the structure before and after the
traveling wave/modal-optimized control.
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In Figures 5–7, the position of disturbance action is xd = 0.10l. Figure 5 shows the
frequency response before and after modal control. The positions of the modal control
force applied are xm1 = 0.215l, xm2 = 0.525l, xm3 = 0.775l, xm4 = 1.0l, the first four modes
are controlled, and the measuring position of dynamic response is xs = 0.295l, where the
occurrence point of the maximum value of the total deflection of the first 10 modes is.
Figure 6 shows the frequency response of the structure before and after the control when
the position of the wave control force is xw = 0.30l, and Figure 7 describes the frequency
response of the structure before and after the travelling wave/modal-optimized control.

When applying the wave control force, the node of the first 10 mode vibrations should
be avoided as much as possible. The frequency responses of the single-use wave control,
independent mode space control and the optimized traveling wave control, including the
controlled and uncontrolled frequency response, are compared. In the approximation of
the optimized control method, the controller is tuned to the optimum at the fifth mode. In
the case of the independent modal space control, the first four-order damping factor of the
structure is increased to 0.1 by using the pole assignment method. Through the analysis,
we can obtain the discussion as follows:

Figures 2 and 5 show that modal control has good control effect on low-order modes
of structure, and it has good independence and has little effect on other modes; thus, the
rapid change of the uncontrolled modal response still exists.

Figures 3 and 6 show the frequency response of the structure before and after the use
of the wave controller. The response of the structure before the control is sharp, but the
wave control can be regarded as adding damping to the structure, absorbing the energy in
the structure, and the sharp response is weakened. The figure also shows that the modal
characteristics of the whole structure have changed after the wave control; that is, the
natural vibration frequency has changed. Finally, we can see that the position of the wave
controller is different for the control effect of each mode frequency.

Figures 4 and 7 show the frequency response of the structure before and after using
wave control and independent mode space control. It reflects the excellent control effect of
the optimized control. Because the optimized control combines the characteristics of the
former two methods, that is, the wave control can control the response at higher frequencies
better, and the independent modal space control can effectively control the first four modes.
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It makes up for the poor control effect of wave control at low frequency. Therefore, the
performance of using one of the above controls alone is improved.

7. Conclusions

(1) In this paper, the active vibration control of the Timoshenko beam structure is in-
vestigated in a more comprehensive way. First, considering the influence of section
rotation and shear deformation, the vibration equation of the Timoshenko beam is
established, and the modal and wave analysis are employed. The finite dimensional
system dynamic equation is obtained by modal expansion. Then, we adopt three
different control methods: traditional mode space control method, traditional trav-
eling wave control method and optimized traveling wave control method. As a
numerical example, three strategies of independent mode space control, traditional
traveling wave control and optimized traveling wave control are used to control the
active vibration of the beam angle. By comparing the numerical results of the three
methods, it can be seen that: the traditional mode space control method has good
effect on the low-frequency control, but it is easy to overflow because of omitting the
high-order modes.

(2) Traveling wave control can effectively control the high-order modes of the system,
while the effect of low-order mode control is far less than that of modal control. In
addition, the application position of wave control torque has important influence on
the control result.

(3) Using the optimized traveling wave control method and Timoshenko beam theory,
the dispersion relationship of waves in structural vibration is determined, and the
wave numbers of propagating waves and attenuation waves in the Timoshenko beam
are given. The problem of solving the natural frequency and mode of the cantilever
Timoshenko beam is effectively solved. The optimized traveling wave control method
involves using the traveling wave control outside the modal nodes of each order,
coupled with the global mode space control method. The optimized traveling wave
control method not only effectively suppresses the main low-order modes, but also
suppresses the high-order modes by wave control, effectively reduces the control
overflow and enhances the robustness of the system.

In this paper, the Timoshenko beam model, which considers the influence of transverse
shear deformation and moment of inertia on displacement, improves the accuracy of
calculation. It is important for spacecraft accessory structures with high requirements for
angle control. In terms of vibration control results, not only the vibration is well suppressed,
but also the robustness of the system is improved by using the optimal traveling wave
control method proposed in this paper. The optimized traveling wave control method is
exquisite in mathematical processing and has good results in global and local vibration
control, which is not available in other methods. Therefore, the optimized control method
shows better vibration active control performance than any traditional control method.
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