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Abstract: This paper proposed a polynomial representation-based method for orbit determination
(OD) of spacecraft with the unknown maneuver. Different from the conventional maneuvering
OD approaches that rely on specific orbit dynamic equation, the proposed method needs no pri-
ori information of the unknown maneuvering model. The polynomials are used to represent the
unknown maneuver. A transformation is made for the polynomials to improve the convergence
and robustness. The Extended Kalman Filter (EKF) is used to process incoming observation data by
compensating the unknown maneuver using the polynomials. The proposed method is successfully
applicated into the OD problem of spacecraft with trigonometric maneuver. Numerical simulations
show that the eighth-order polynomials are accurate enough to represent a trigonometric maneuver.
Moreover, Monte Carlo simulations show that the position errors are smaller than 1 km, and the
maneuver estimated errors are no more than 0.1 mm/s2 using the eighth-order polynomials. The
proposed method is accurate and efficient, and has potential applications for tracking maneuvering
space target.

Keywords: orbit determination; maneuvering tracking; extended Kalman filter; polynomial
representation

1. Introduction

Orbit determination (OD) is an important task in space missions, as knowing the state of the
spacecraft is the basis of the subsequent operations such as the guidance and control [1–3]. One
of the hard issues of OD is tracking a spacecraft with unknown maneuvering accelerations [4,5].
These unknown maneuvers can be caused by an uncooperative orbit control [6], structural
deployment [7], collisions [8] and space environment changes [9,10]. The unknown maneuver
incurs severe uncertainty into the state model [9]. Without compensating the uncertainty, the
state model is inaccurate, and thus the OD performance is degraded [11].

The state-of-the-art techniques for maneuvering spacecraft OD can be classified into
the following three catalogues: OD reinitiating, maneuver reconstruction and filter-based
methods. The first kind of methods are to reinitiate an OD process once a maneuver is
detected [6,12]. These methods disregard the pre-maneuver solutions and measurements,
and determine a new orbit for the target [13]. The OD reinitiating methods rely on the
detection of the maneuver and usually have poor performance in accuracy. The maneuver
reconstruction methods estimate both the orbit and the maneuver using the measurement
pre and post the maneuver [14,15]. The main procedures of the maneuver reconstruction
are establishing the equations and then solving them with all the measurements included.
They can provide more accurate solutions while involve much more complexity and
computational burden, and are impossible for real-time applications [16,17].
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The filter-based methods establish models to fit the unknown maneuver [18–20]. These
models are involved in the filtering process to compensate the uncertainty caused by the
unknown maneuver [21]. The filter-based methods also estimate both the orbit and the
maneuver. Compared with the maneuver reconstruction methods, the filter-based methods
have one distinguished feature. The maneuver reconstruction method is usually a post-
processing. The filter-based methods fit the post-maneuver information into the existing
pre-maneuver orbit. After the compensated model is established, the filter algorithm
can be used to solve the maneuvering OD problem step by step, which is a real-time
tracking process. A number of technologies have been developed for the filter-based
methods. Zhai et al. developed a variable structure estimator (VSE) based approach for
tracking uncooperative spacecraft with unknown maneuvers [22,23]. The VSE is used
to estimate the unknown maneuver and is fed to an extended Kalman filter (EKF) as
a compensation. Ko and Scheeres proposed a real time tracking method based on the
Thrust-Fourier-coefficient (TFC) event representation [9]. The TFC event representation is
employed to explicitly estimate the unknown control. Maybeck and Hentz investigated a
moving-bank multiple model adaptive estimated filter for tracking maneuvering target [24].
The multiple model methods use a bank of Kalman filters with different maneuvering
models [25]. Each maneuvering model corresponds to a particular maneuvering dynamic.
Moreover, motivated by the fast development of the artificial intelligence, some deep
learning techniques have been used for solving problems related to the maneuvering object
OD, such as the maneuver detection [26], maneuver classification [27] and maneuvering
spacecraft orbit prediction [28,29].

Compared with the maneuver reconstruction methods, the filter-based methods have
much lower computational burden [9,30,31]. Moreover, the filter-based method does not
rely on maneuver detection, and has better accuracy than the OD reinitiating approaches.
The only defect of the current filter-based methods is that they are based on particular
assumptions on the maneuvering model. For example, to use the TFC event representation,
the unknown maneuver should be periodic [9]. When the assumptions do not match the
real maneuver, the performance of these methods will degrade [32]. Thus, a motivation is
generated that, it is necessary to investigate a general mathematical representation that can
approximate any form of the unknown maneuver. In this way, the filter-based methods can
be released from the specific assumptions.

The proposed polynomial representation-based method in this paper falls into the
filter-based methods. Different from other filter-based methods, it does not need any
assumptions or priori information about the unknown maneuver. The polynomials with
respect to time are firstly established to fit the unknown maneuver. The polynomial
representation is expected to have the ability to cope with any unknown maneuvers. A
transformation is made for these polynomials to eliminate the sensitivity of the high-order
terms of time. In this way, the numerical singularity related to the high-order polynomial
terms is avoided, and the convergence and robustness of the OD system are improved. The
polynomial representation is expected to accurately fit any kinds of the maneuver, and has
a fast convergence. The EKF process is then fused with the polynomial representation to
estimate the maneuvering orbit. The performance of the proposed methods is validated
across different maneuvering cases.

The rest of this paper is arranged as follows. The state and the measurement models
are given in Section 2. Section 3.1 firstly details the polynomial representation for fitting
unknown maneuver. The EKF process combined with the polynomial representation
is introduced in the subsequent subsection. Observability analysis is implemented in
Section 4. Numerical simulations are performed in Section 5, and conclusions are discussed
in Section 6.
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2. Problem Formulation
2.1. State Model

Consider a space-based maneuvering spacecraft tracking problem. In this scenario,
two spacecraft, a target and an observer, are involved. The inter-spacecraft relative
range/velocity measurement is used based on the radio. The ratio measurement is chosen
to validate the performance of the proposed method in an owe-observation condition.

An Earth-centered dynamic with unknown maneuver is shown as follows: [9,33]:
ṙT = vT

v̇T = − µe

‖rT‖3 rT + µs

(
rs − rT

‖rs − rT‖3 −
rs

‖rs‖3

)
+ µm

(
rm − rT

‖rm − rT‖3 −
rm

‖rm‖3

)
+ aJ2(rT)︸ ︷︷ ︸

f (rT)

+ac (1)

where xT = [rT ; vT ] = [xT , yT , zT , ẋT , ẏT , żT ]
T denotes the state of the maneuvering target;

µe, µs and µm are the gravitational constant of the Earth, the Sun and the Moon, respectively;
rs and rm label positions of the Sun and Moon relative to the Earth; aJ2(·) is the perturbation
acceleration of J2; f (·) contains all the modeled parts of the dynamics and ac is the unknown
maneuvering acceleration.

Assume that the dynamics of the observer spacecraft is known and is given as:{
ṙO = vO
v̇O = f (rO)

(2)

where xO = [rO; vO] = [xO, yO, zO, ẋO, ẏO, żO]
T is the state of the observer.

2.2. Measurement Model

The inter-spacecraft range/velocity measurement is written as [34]:

z = h(xT) + ε =

[
ρ + ερ

ρ̇ + ερ

]
=

[
‖rO − rT‖+ ερ

(vO−vT)
T(rO−rT)

‖rO−rT‖
+ ερ

]
(3)

where h(xT) denotes the measurement function; ρ and ρ̇, respectively, label the inter-
spacecraft range and the velocity; ε =

[
ερ, ερ̇

]T is the Gaussian-distributed measure-
ment noise.

The goal of the maneuvering spacecraft OD is to estimate the state of the target xT .
Combine Equation (3) with Equation (1), and the OD system is given as:{

ẋT = [vT ; f (xT) + ac]
z = h(xT) + ε

(4)

3. Orbit Determination Using Polynomial Representation
3.1. Polynomial Representation for Unknown Maneuver

Let ax(t), ay(t) and az(t) denote the components of the unknown maneuvering ac-
celeration along the x-axis, y-axis and z-axis, respectively. The unknown maneuvering
acceleration can be approximated by a polynomial. The corresponding polynomial repre-
sentation is proposed as follows:

ax(t) = ∑∞
i=0 px,i

( t
T
)i
= px,0 + px,1

t
T + px,2

( t
T
)2

+ · · ·+ px,i
( t

T
)i
+ · · ·

ay(t) = ∑∞
i=0 py,i

( t
T
)i
= py,0 + py,1

t
T + py,2

( t
T
)2

+ · · ·+ py,i
( t

T
)i
+ · · ·

az(t) = ∑∞
i=0 pz,i

( t
T
)i
= pz,0 + pz,1

t
T + pz,2

( t
T
)2

+ · · ·+ pz,i
( t

T
)i
+ · · ·

(5)

where px,i, py,i and pz,i are the coefficients of the i-th order terms; T is a user-defined
normalized period. In Equation (5), the time t is normalized by T to reduce the sensitivity
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of polynomials to the high-order coefficients. Obviously, higher-order polynomials provide
more precise approximations, and the convergence of the estimation algorithm will be
better. However, high-order polynomials contain many coefficients, which make the
computational overhead unacceptable. Thus, to balance the accuracy, convergence and the
time cost of the algorithm, it is necessary compare the performance of the polynomials with
different orders. The comparisons and the discussion are shown in Section 5.1.

There are two possible ways to fuse the polynomial representation into the OD system.
The first way is to directly use the Equation (5) and the OD system estimates both the orbit
and the coefficients px,i, py,i and pz,i. In this case, ṗx,i = ṗy,i = ṗz,i = 0. However, to the
authors’ best knowledge, the OD system will be hard to converge if Equation (5) is directly
employed to compensate the unknown maneuver. It is because the coefficients px,i, py,i
and pz,i in Equation (5) are equally important to the OD system and therefore an accurate
OD can be obtained only when all these coefficients converge. Moreover, for cases where
t is very large, the high-order term of t is large. Thus, the coefficients of the high-order
terms should be very small, which put forward the requirement of highly precise numerical
calculation. To improve the convergence and robustness, the second way is employed, and
a transformation is made, which is described as below. First, define the auxiliary variables
as follows:

aα,0 = ∑∞
i=0 pα,i

( t
T
)i
= pα,0 + pα,1

t
T + pα,2

( t
T
)2

+ · · ·+ pα,i
( t

T
)i
+ · · ·

aα,1 =
[
∑∞

i=0 pα,i
( t

T
)i
]′

= 1
T ∑∞

i=1 ipα,i
( t

T
)i−1

= pα,1
1
T + 2pα,2

t
T2 + · · ·+ 1

T ipα,i
( t

T
)i−1

+ · · ·

aα,2 =
[
∑∞

i=0 pα,i
( t

T
)i
]′′

= 1
T ∑∞

i=2 i(i− 1)pα,i
( t

T
)i−2

= 2pα,2
1
T + 6pα,3

t
T2 · · ·+ 1

T i(i− 1)pα,i
( t

T
)i−2

+ · · ·
· · ·

aα,k =
[
∑∞

i=0 pα,i
( t

T
)i
](k)

= 1
T ∑∞

i=k

(
∏i

m=i−k+1 m
)

pα,i
( t

T
)i−k

= 1
T

(
∏k

m=1 m
)

pα,k +
(

∏k+1
m=2 m

)
pα,k+1

t
T2 + · · ·

· · ·

(6)

where α ∈ {x, y, z} denotes the subscript.

Let ak =
[

ax,k, ay,k, az,k

]T
, and Equation (6) can be simplified as:

ac = a0
ȧ0 = a1
ȧ1 = a2
· · ·
ȧk = ak+1
· · ·

(7)

In this way, the states representing the unknown maneuver are replaced by the coeffi-
cients ak+1, ak, a1 and a0. Two advantages can benefit from the transformation. Firstly, the
coefficients ak+1, ak, a1 and a0 can gradually converge, which enhances the convergence
of the OD system. Secondly, the influence of the time t is eliminated from the polynomial
representation, and thus the numerical singular is avoided.

3.2. Extended Kalman Filter with Polynomial Representation

Use the polynomials up to k-th order and the state to be estimated is written as:

X = [rT ; vT ; a0; a1; · · · ; ak] (8)
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The state model of the OD system is then given by:

Ẋ =



ṙT
v̇T
ȧ0
ȧ1
ȧ2
· · ·
ȧk


=



vT
f (ṙT) + a0
a1
a2
a3
· · ·
03×1


(9)

and the measurement model is given as:

z = h(X) + ε = h(xT) + ε =

[
ρ + ερ

ρ̇ + ε ρ̇

]
(10)

The state transition matrix (STM) of the state model (9) is partitioned as:

Φ(t0, t) =
∂X(t)
∂X(t0)

=

[
Φxx(t0, t) Φxa(t0, t)
Φax(t0, t) Φaa(t0, t)

]
(11)

The differential equation of the STM can be expressed as:

Φ̇(t0, t) = A(t)Φ(t0, t) =
[

Axx(t) Axa(t)
Aax(t) Aaa(t)

][
Φxx(t0, t) Φxa(t0, t)
Φax(t0, t) Φaa(t0, t)

]
(12)

where A(t) is the Jacobian matrix of the state model:

Axx(t) =
∂ f (xT(t))

∂xT(t)
∈ R6×6 (13)

Axa(t) =
[

03×3 03×(3k)
I3 03×(3k)

]
∈ R6×(3k+3) (14)

Aax(t) = 0(3k+3)×6 ∈ R(3k+3)×6 (15)

Aaa(t) =


03×3 I3 03×3 · · · 03×3
03×3 03×3 I3 · · · 03×3

...
...

...
. . .

...
03×3 03×3 03×3 · · · I3
03×3 03×3 03×3 · · · 03×3

 ∈ R(3k+3)×(3k+3) (16)

According to Equations (8)–(16), the process of the EKF is formulated as follows.

3.2.1. Time Update

• Given the estimated state X̂ i−1 and covariance matrix Pi−1 at ti−1.
• Calculate the predicted states X̂ i|i−1.

X̂ i|i−1 = F(X̂ i−1) (17)

where F(·) is the discrete form of the state model in Equation (9).
• Calculate the predicted covariance matrix Pi|i−1.

Pi|i−1 = ΦiPi−1ΦT
i (18)
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3.2.2. Measurement Update

• Calculate the predicted measurement ẑi|i−1.

ẑi|i−1 = h(X̂ i|i−1) (19)

• Calculate the predicted associated covariance Pxz ,i|i−1, Pzz,i|i−1.

Pxz ,i|i−1 = Pi|i−1HT
i

Pzz,i|i−1 = H iPi−1HT
i + Ri

(20)

where Ri is the covariance matrix of the measurement noise, H i is the Jacobian matrix
of the measurement model:

H i =
∂h(X)

∂X

∣∣∣∣
X=X̂ ii−1

(21)

• On the receipt of the measurement zi, calculate the estimated state X̂ i and covariance
matrix Pi at ti.

Ki = Pxz,i|i−1P−1
zz,i|i−1

X̂ i = X̂ i|i−1 + Ki

(
zi − ẑi|i−1

)
Pi = Pi|i−1 − KiPzz,i|i−1KT

i

(22)

4. Observability Analysis
4.1. Observability Matrix

The OD using relative range/velocity measurements is inherently an owe-observation
system. Moreover, the polynomial representations incur additional elements that are to be
estimated. Thus, it is necessary to perform observability analysis to investigate whether
the OD system is observable.

The observability matrix (OM) is used to measure the feasibility of an OD system [35–37].
Note that the OM is a way that evaluates the local observability, which is valid upon linearization
of the system. A theoretical analysis can be conducted based on the OM to show the observable
states or state combinations. The observations can be related to the states with a partial
differential matrix Hi at a future time t, as shown in Equation (21).

The matrix H i is mapped to the initial epoch t0 through the STM as [35]:

H̃ i = H iΦ(ti, t0) (23)

By propagating from time epoch t0 to ti−1, measurements are collected sequentially,
and each of H̃k(i = 1, 2, · · · , i− 1) is derived according to Equation (23). Then, the OM N
is given by [35]:

N =


H̃0
H̃1
...

H̃ i−2
H̃ i−1

 (24)

If the OM has a full rank, i.e., the columns of matrix N are linearly independent with
each other, the whole system is observable and all states can be estimated by a navigation
filter. Furthermore, the invertibility of the OM, which is characterized by its singular values,
is related to the degree of the observability of an OD system. In this paper, the condition
number (CN) of OM is employed to numerically evaluate the degree of the observability.
Denoting the largest and smallest singular values of the OM as σmax(N) and σmin(N), the
CN is equal to the ratio σmax(N)/σmin(N) (note that the CN could also be computed by
cond(N) = ‖N‖ · ‖N−1‖), which is interpreted as a relative index of observability of the
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best observable state relative to the worst observable state. Smaller CN usually implies
better observability.

4.2. Observability Analysis Results

The nominal orbit elements of the target and observer are listed in Table 1, where a, e,
n, i, ω and Ω label the semimajor axis, eccentricity, true anomaly, inclination, argument of
periapsis and longitude of the ascending node, respectively. The initial epoch is set to be 8
August 2022. The orbits within 24 h are illustrated in Figure 1. The orbit is colored by red
at the beginning and gradually changes to blue at the end.

Table 1. Nominal orbit elements of the target and the observer.

a/km e i/deg Ω/deg ω/deg n/deg

Target 8871.14 0.05 45 94.8 199.0 305.87
Observer 6871.14 0.01 45.5 29.93 132.9 252.26

Figure 1. Illustration of the nominal orbits of the target and the observer. The orbit is colored by red
at the beginning and gradually changes to blue at the end. The grey lines represent the projection of
the nominal orbit.

The observability analysis results are shown in Figures 2–5. The upper stacked subplot
illustrates the rank of OM, where the red and blue lines represent the unobservable and
observable period, respectively. Moreover, the CN of the OM, as well as its logarithmic
value, are respectively shown by the orange and dark blue lines in the lower stacked
subplot in Figures 2–5. It can be seen that all the cases are observable. The OD system using
the zeroth-order polynomials are easiest to be observable, with only 800 s required. The
required period for the OD system using the eighth-order polynomials to be observable is
the longest, which is more than 24 h.
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Figure 2. Observability analysis results of the zeroth-order polynomial.
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Figure 3. Observability analysis results of the first-order polynomial.

0 5 10 15 20

5

10

15

20

25

10 12 14 16 18 20 22 24

0

1

2

3
10

-11

-30

-28

-26

Figure 4. Observability analysis results of the sixth-order polynomial.
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Figure 5. Observability analysis results of the eighth-order polynomial.

5. Performance Analysis

In this section, numerical simulations are implemented to validate the performance of
the proposed method. Cases with and without maneuvers, are considered. The maneuver-
ing case is to investigate the performance of the polynomials in compensating the unknown
maneuver. Moreover, the non-maneuvering case is used to test whether the noise-induced
errors is identified as the unknown maneuver by polynomial models.

5.1. Maneuvering Case

The nominal orbit elements of the target and observer are the same as those in
Section 4.2, which are listed in Table 1. The maneuvering acceleration of the target is
set as: The maneuver acceleration of the target is set as:

ac =

 ax
ay
az

 =

 5 + 10 sin
( t

T π
)

10 + 20 cos
( t

T π
)

−5− 10 sin
( t

T π
)
mm/s2 (25)

where T = 43, 200 s is the normalized time.
The total navigation period is set to be 24 h, with a 100 s measurement interval. The

initial position and velocity estimated errors are given as 10 km and 1 m/s per axis. The
standard derivations (STD) of the inter-spacecraft range and the velocity measurement are
set to be 1 m and 1 mm/s, respectively.

Obviously, it is not possible for a polynomial to approximate the sines and cosines on
the entire numerical axis. The polynomial is used to represented the ‘unknown’ maneuver
in a particular time interval. For time epochs that extend this interval, the OD process can
continue by reinitialize a polynomial representation.

The simulation results are shown in Figures 6–11. The OD results of the case without
using the polynomials are illustrated in Figure 6. The results using the zeroth-order
polynomials, the first-order polynomials, the sixth-order polynomials and the eighth-order
polynomials are shown in Figures 7–10, respectively.



Aerospace 2022, 9, 257 10 of 18

0 10 20

0

100

200

300

0 10 20

-100

0

100

0 10 20

-100

0

100

0 10 20

0

100

200

0 10 20

-50

0

50

100

150

0 10 20

-100

0

100

Figure 6. OD results without using the polynomials. The blue lines represent the estimated errors.

It can be seen that the case without using polynomials has the largest estimated errors,
with the position errors larger than 300 km and the velocity larger than 200 m/s. For
case using the zeroth-order polynomials and the first-order polynomials, the unknown
maneuvers are not approximated accurately and their navigation performances are poor.
As shown in Figures 7 and 8, the position estimated errors are around 50 km.
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Figure 7. OD results using the zeroth-order polynomials. (a) State estimated errors. (b) Maneuver
estimated comparison (the blue lines denote the real maneuvering acceleration and the red dashed
lines represent the estimated maneuvering acceleration).
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Figure 8. OD results using the first-order polynomials. (a) State estimated errors. (b) Maneuver
estimated comparison (the blue lines denote the real maneuvering acceleration and the red dashed
lines represent the estimated maneuvering acceleration).

As illustrated in Figure 9, the navigation performance using the sixth-order polyno-
mials is greatly enhanced compared with the above three cases. The position estimated
errors in the first 15 h are less than 2 km while in the last 4 h the position errors are around
5 km. It is because the approximation accuracy in the last few hours degrades. As shown
in Figure 9b, the unknown acceleration in the first 20 h are fitted well by the sixth-order
polynomials. However, for the maneuvering acceleration along z-axis, the fitting errors are
obvious when t > 20 h, which makes the corresponding estimation errors become larger.

As shown in Figure 10, the eighth-order polynomials can well fit the unknown ma-
neuver. The position and velocity estimated errors are illustrated in Figure 10a and the
maneuver estimated errors are shown in Figure 11. The state estimated errors converge
after 2 h observation. The unknown maneuver estimated errors converge within 1 h, which
is faster than the position and velocity state. It can be found that the eighth-order polyno-
mials can provide accurate OD solutions with the position estimated errors no more than
1 km. What’s more, as shown in Figure 11, the maneuver estimated errors are smaller than
0.1 mm/s2.

To further compare the OD accuracy using different orders of polynomials, the Root
Mean Squared Error (RMSE) of each case is listed Table 2. The smaller the RMSE, the better
the OD performance. The case without the maneuvering compensation has the largest
RMSE, with the position and velocity estimated RMSEs larger than 40 km and 30 m/s,
respectively. The OD accuracy of the method using the first-order polynomials are close to
that of the method using the zeroth-order polynomials. The position and velocity RMSEs
of the methods using the sixth-order and eighth-order polynomials are better than 1 km
and 0.5 m/s. The eighth-order polynomials have the smallest RMSEs. The higher-order
polynomials have more accurate OD solutions, while incur higher burden.
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Figure 9. OD results using the sixth-order polynomials. (a) State estimated errors. (b) Maneuver
estimated comparison (the blue lines denote the real maneuvering acceleration and the red dashed
lines represent the estimated maneuvering acceleration).
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Figure 10. OD results using the eighth-order polynomials. (a) State estimated errors. (b) Maneuver
estimated comparison (the blue lines denote the real maneuvering acceleration and the red dashed
lines represent the estimated maneuvering acceleration).
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Figure 11. Maneuver estimated errors using the eighth-order polynomials.

Table 2. Estimated RMSE of different cases.

Position (km) Velocity (m/s)
x y z x y z

Case without polynomials 42.9745 41.0717 45.2176 37.5253 29.8473 38.3986
First-order polynomials 18.7515 38.5372 33.1376 21.1524 22.7494 25.2830
Sixth-order polynomials 0.8887 0.7339 0.6962 0.3923 0.3587 0.2428

Eighth-order polynomials 0.8247 0.4135 0.4614 0.2751 0.2305 0.2104
Ninth-order polynomials 0.8572 0.4014 0.4641 0.2774 0.2375 0.2028
Tenth-order polynomials 0.8572 0.4014 0.4640 0.2774 0.2375 0.2028

What’s more, the time consumption of the one-step run time using different polyno-
mials are shown in Table 3. It can be that though increasing polynomial order enhances
the performance, it brings higher computational burden. Thus, a tradeoff between the OD
accuracy and the time cost should be considered. As shown in Table 2, compared with the
eighth-order polynomials, the OD accuracy enhancement of the ninth-order polynomials
and the tenth-order polynomials are not obvious. However, the computational overhead
of the ninth-order polynomials and the tenth-order polynomials are much larger than the
eighth-order polynomials. Thus, in this case, the eighth-order polynomial is the best choice.
Thus, for a real-world application, it is necessary to do some numerical simulations to make
a tradeoff between the accuracy and the cost.

Table 3. Comparison of the one-step run time.

One-Step Run Time (s) Mean Value Maximum Minimum

Zeroth-order polynomials 0.0405 0.1731 0.0214
First-order polynomials 0.0495 0.2083 0.0261
Sixth-order polynomials 0.1143 0.3482 0.0598

Eighth-order polynomials 0.1405 0.5584 0.0733
Ninth-order polynomials 0.1852 0.6222 0.0841
Tenth-order polynomials 0.2015 0.6507 0.0911

Finally, the Monte Carlo (MC) simulations are performed to validate the OD accuracy
of the method using eighth-order polynomials under initial estimation uncertainty. The
estimation errors of 300 runs of MC simulations are shown in Figure 12. The 3-STD (3σ)
bounds of the estimation errors are depicted by the red lines in Figure 12 and the detailed
values of the STDs are listed in Table 4. The convergence ratios, which can be calculated
using Equation (30), are also shown in Table 4. It can be seen that, the convergence ratios of
the method using eighth-order polynomials are higher than 99.8%.

convergence ratio =
Initial STDs − Final STDs

Initial STDs
× 100% (26)
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Figure 12. Monte Carlo simulations results using the eighth-order polynomials.

Table 4. Convergence ratios of the method using the eighth-order polynomials.

x-Axis y-Axis z-Axis

Position (km)
Initial STDs 10.5165 10.4778 9.2985
Final STDs 0.0042 0.0045 0.0013

Convergence ratio, % 99.9597 99.9562 99.9850

Velocity (m/s)
Initial STDs 0.9874 0.9388 1.0395
Final STDs 0.0048 0.0013 0.0006

Convergence ratio, % 99.5121 99.8581 99.9360

Acceleration (mm/s2)
Initial STDs 1.2727 7.5294 1.3175
Final STDs 0.0007 0.0026 0.0021

Convergence ratio, % 99.9424 99.9652 99.8353

5.2. Non-Maneuvering Case

In this subsection, a non-maneuvering case is simulated. The defect of the previous
maneuvering tracking methods is that they rely on priori information or predefined models
about the unknown maneuver. Their performances degrade in the non-maneuvering
period as the noise-induced errors are usually identified as the unknown maneuver and
are compensated by the filter. Therefore, in the following, the non-maneuvering case is
tested to show the advantages of not relying on priori information.

The method using the eighth-order polynomials is used to solve the OD problem.
The OD results are illustrated in Figures 13 and 14. It can be seen that the estimation
errors converge to zero after around 5-h observation. The maneuver estimated errors are
around 0.1 mm/s2, indicating that the measurement noised-induced errors are not wrongly
compensated by the polynomials.



Aerospace 2022, 9, 257 15 of 18

(a) (b)

Figure 13. OD results of the non-maneuvering case. (a) State estimated errors. (b) Maneuver
estimated comparison (the blue lines denote the real maneuvering acceleration and the red dashed
lines represent the estimated maneuvering acceleration).

Figure 14. Maneuver estimated errors of the non-maneuvering case.

Moreover, MC simulations are implemented to show the accuracies of the proposed
method in solving the non-maneuvering OD problem. The corresponding results are
shown in Figure 15 and Table 5. It can be seen that the convergence ratios of the position,
the velocity and the unknown maneuvering acceleration are 99.8%, 99.2% and 99.3%,
respectively. The convergence ratios are 0.2% lower than the maneuvering case, and no
obvious performance degradation is found.

Table 5. Convergence ratios of the non-maneuvering case.

x-Axis y-Axis z-Axis

Position (km)
Initial STDs 10.5201 10.5118 9.5303
Final STDs 0.0121 0.0197 0.0123

Convergence ratio, % 99.8846 99.8116 99.8706

Velocity (m/s)
Initial STDs 0.9956 0.9425 1.0383
Final STDs 0.0077 0.0059 0.0061

Convergence ratio, % 99.2178 99.3675 99.4073

Acceleration (mm/s2)
Initial STDs 1.2749 7.3985 1.3145
Final STDs 0.0021 0.0110 0.0088

Convergence ratio, % 99.8303 99.8500 99.3248
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Figure 15. Monte Carlo simulations results of the non-maneuvering case.

6. Conclusions

This paper proposed a polynomial representation-based method for maneuvering
spacecraft orbit determination (OD). The OD performance of the proposed method is tested
by applying it over different cases. Numerical simulations show that the method can
well track the maneuvering spacecraft. It is found that the extended Kalman filter (EKF)
using sixth-order polynomials are enough to provide valid OD solutions. Higher-order
polynomials bring more accurate estimations. Moreover, the proposed method can also
be applied into non-maneuvering cases and the noise-induced errors will not be wrongly
compensated by the polynomial representation. In the future, the performance of the
proposed method in dealing with impulsive maneuvers should be further investigated.
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