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Abstract: Due to the harsh working environment, Near-Space Hypersonic Vehicles (NSHVs) have the
characteristics of frequent faults, which seriously affect flight safety. However, most researches focus
on active fault-tolerant control for actuator faults. In order to fill the gap of active fault-tolerant control
for sensor faults, this paper presents an Active Fault-Tolerant Control (AFTC) strategy for NSHVs
based on Active Disturbance Rejection Control (ADRC) combined with fault diagnosis and evaluation.
With the proposed AFTC strategy, both sensor faults and actuator faults can be compensated within
0.5 s. Wavelet packet decomposition and Kernel Extreme Learning Machine (KELM) are associated to
ensure the high accuracy and real-time ability of fault diagnosis. Simulation results show that the
proposed fault diagnosis method can significantly reduce the divergence of diagnosis results by up
to 98%. The fault information is used to generate tolerant compensation, which is combined with
the ADRC to achieve AFTC. Statistical results indicate that AFTC has significantly lower static error
than ADRC. The proposed AFTC method endows NSHVs with the ability to complete missions even
when various types of faults appear. Its advantages are demonstrated in comparison with other fault
diagnosis and tolerant control methods.

Keywords: active fault-tolerant control; active disturbance rejection control; sensor fault; actuator
fault

1. Introduction

In recent years, Near-Space Hypersonic Vehicles (NSHVs) have become the central
issue in aerospace. However, due to the severe near-space flight environment, NSHVs
are prone to various types of small faults with concurrency [1,2]. Moreover, in the dy-
namic closed-loop system, small faults are easily amplified into significant faults, leading
to serious consequences. The existence of the closed-loop control strategy causes fault
deterioration, which can mask early features [3]. Therefore, the design of a high-quality
fault-tolerant control strategy is urgently needed and becomes a new hotspot [4,5].

Fault-tolerant control methods for complex nonlinear systems are divided into Passive
Fault-Tolerant Control (PFTC) and Active Fault-Tolerant Control (AFTC) [6]. A PFTC
system is designed by experts, which can accommodate prescribed faults using its ro-
bustness, without the knowledge of faults [7,8]. Active Disturbance Rejection Control
(ADRC) is widely used in PFTC for its simple structure and outstanding performance in
anti-disturbance and actuator fault tolerance. Zhang et al. [9] designed a double closed-loop
ADRC for the quadrotor UAV, and the total disturbances are estimated and compensated
by ESO which can improve the anti-disturbance ability.

On the contrary, an AFTC strategy requires the fault information to reconstruct the
controller. The fault information is provided by an onboard fault diagnosis and evaluation
unit. Compared with PFTC, the addition of fault information makes AFTC more adaptable,
and makes it possible to solve sensor faults. And that’s why AFTC has become a new
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research focus [5,10–12]. Xu et al. [13] developed an adaptive fault-tolerant control method
for hypersonic vehicles considering unexpected elevator faults, uncertain parameters, and
external disturbances. Wu et al. [14] used a fault diagnosis unit, based on the long short-
term memory neural network, to diagnose actuator faults, and the fault tolerance was
realized both in the control allocation and control layers. However, the papers above focus
on the actuator faults, but neglect fault tolerance for sensor faults. For the severe flight
environment, actuator faults and sensor faults are common for NSHVs. Therefore, both of
these faults are considered in this paper.

For NSHVs, both PFTC and AFTC have been widely studied. The former needs the
system to be strong enough in face of faults, but cannot well handle significant faults. The
latter has higher fault tolerance ability for obvious faults. However, study on the AFTC
concentrates mainly on actuator faults, relying on the correct sensors’ feedback. Table 1
shows the capabilities of different control methods. It’s evident that sensor faults should
also be taken into consideration for AFTC [15–17].

An AFTC system usually consists of three parts: a PFTC unit, a fault diagnosis
and evaluation unit, and a controller reconstruction unit [18,19]. The use of PFTC is to
track the control instruction and implement passive fault tolerance before the controller
is reconstructed when there are faults. The key point of fault diagnosis and evaluation
unit is to get information about faults. To some extent, the accuracy of fault diagnosis
and evaluation decides the effect of AFTC. Thus, different methods have been researched
explosively. Currently, the widely used methods are mainly divided into two categories,
namely model-based methods and data-driven methods [20]. Model-based methods rely
on the mathematical of models, which are unsuitable for complex nonlinear systems such
as NSHVs. Meanwhile, in data-driven methods, machine-learning methods are generally
used, such as neural networks or classifiers. The advantage is that accurate models are not
required, which are more beneficial for complex systems [21]. To achieve AFTC, the fault
diagnosis and evaluation unit should gives types and severity of faults to the subsequent
controller. Meanwhile, it should have the capability of real-time computing. Considering
noises and various types of faults, higher requirements are put forward for fault diagnosis.

Table 1. Capability of different control methods.

Method Anti-Interference Actuator Fault
Tolerance

Sensor Fault
Tolerance

PFTC X partly
Previous AFTC X X
AFTC proposed X X X

Above all, although plenty of researches have focused on Fault Tolerant Control (FTC)
or fault diagnosis, there are still some problems that need to be solved: (1) most of the
PFTC-adopted researches are helpful for actuator faults depending on the correct sensors’
feedback, but cannot handle sensor faults [17,22,23]; (2) plenty of researchers focus on faults
classification, ignoring the requirement of faults identification [24,25]. Motivated by the
aforementioned challenges and demands, this paper proposes a novel Active Disturbance
Rejection Control and Kernel Extreme Learning Machine (ADRC-KELM) based AFTC
scheme for NSHVs with actuator faults and sensor faults.

The main contribution of this paper is to introduce a novel method for fault diagnosis,
evaluation and AFTC algorithm for NSHVs. The introduction of sliding window and KELM
enables faults diagnosis less than 0.5 s. Furthermore, the joint time-frequency analysis
makes fault identification possible. Finally, the AFTC endows NSHVs with the ability to
complete missions in the face of multiple faults.

The remainder of this paper is organized as follows. In Section 2, model of NSHVs,
the Reaction Control System (RCS), and an ADRC controller are proposed. Details of
ADRC-KELM based AFTC are addressed in Section 3. In Section 4, results of various
simulations are illustrated and analyzed. Finally, Section 5 draws the conclusion.
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2. Nonlinear Model of NSHV with Closed-Loop Faults

In this section, a nonlinear model is provided. The nonlinear model established
under ideal conditions lays the foundation for flight simulation experiments. The PFTC
is established for disturbance rejection and uncertainty suppression. Main ideas and
implementation of the AFTC method are briefly described in Figure 1.

Faults size

Faults type

Occurence time

Database from 

simulation

Fault injection

Train KELM

WPT feature 

extraction

Data during the 

flight

Sliding window

KELM

LSM

parameters 

passing

offline

online

Figure 1. Flowchart of the AFTC.

The AFTC method is composed of two parts: online and offline. The task of the offline
part is to train KELM for obtaining an efficient classifier. First, simulation results of different
states constitute the database. Then Wavelet Packet Transformation (WPT) is used to extract
features to train the KELM. For the online part, a sliding window is adopted to realize
real-time fault diagnosis. And the trained parameters are passed to classify faults. Finally,
joint time-frequency analysis of the residual signal is employed to identify fault sizes.

As shown in Figure 2a, the studied NSHV has delta wings, foldable horizontal canards,
a vertical tail, and the RCS. Due to the low atmospheric density, the aerodynamic rudder
surface efficiency is insufficient, which makes it difficult to meet the control requirements.
Therefore, RCS is adopted to complete attitude control.

Figure 2b depicts the inertia coordinate oxoyozo , body coordinate oxbybzb. Without
loss of generality, only the longitudinal channel of the aircraft is considered. The reentry
process of the NSHV can be modeled by the following equations:

ẋ = v cos γ
ż = −v sin γ

v̇ =
(−D−mg sin γ−Ty sin α)

m
γ̇ =

Y+Ty cos α−mg cos γ
mv

α̇ = ωy − γ̇

ω̇ =
lTy
Iyy

, (1)

where x, z denote the position of the NSHV in the inertia coordinate system. v is the velocity.
γ, α denote the trajectory inclination angle and the angle of attack, respectively. m is the
mass of NSHV, which is regarded as a constant. g indicates the gravitational acceleration.
D, Ty, Y are the aerodynamic drag, propulsion, and aerodynamic force, respectively. wy
represents the pitch angular rate. Iy denotes the moment of inertia for the y coordinate axes.
l means the distance from the RCS to the center of mass. More details are cited from [1].
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As shown in Figure 2(a), the studied NSHV has delta wings, foldable horizontal
canards, a vertical tail, and the RCS. Due to the low atmospheric density, the aerody-
namic rudder surface efficiency is insufficient, which makes it difficult to meet the control
requirements. Therefore, RCS is adopted to complete attitude control.

Figure 2. (a) Schematic drawing of NSHV; (b) the inertia and body coordinate.

2.1. NSHV Passive Fault-Tolerant Control

The construction of ADRC is designed as Figure 3. The Extended State Observer (ESO)
can be regarded as a reference model, which is established as follow:

e = z1 − θ

ż1 = z2 − β1e
ż2 = z3 − β2e + bu
ż3 = −β3e

, (2)

where z1, z2, z3 are observations of ESO, which are angle of attack, its differential, and
the total disturbance. e is the residual signal. β1, β2, β3 are the tunable parameters with
different values, which are generally determined by the bandwidth of the observer and can
affect tracking performance [26]. The Tracking Differentiator (TD) is defined as follows:{

a1(k + 1) = a1(k) + Tsa2(k)
a2(k + 1) = a2(k)− Ts((

a1(k)
T2

c
− a∗(k)) + 2a2(k)

Tc
)

, (3)

where a1(k), a1(k + 1) denote the estimated angle values of the current time and next
time, respectively. a2(k), a2(k + 1) are the derivatives of a1(k), a1(k + 1), respectively. a∗(k)
represents the desired signal. Ts and Tc are the sampling time and the time constant,
respectively. The larger Ts, the better noise filtering [27].

HV

Model

Actuator

Model

ESO

TD PID
r +

-

+

-

E u0

z3

z1,z2

1/b

u 

Figure 3. The construction of ADRC. r is the desired angle of attack.

2.2. Description and Modeling of Actuator Faults and Sensor Faults

During the stage of reentry, for the low atmospheric density, RCS is necessary for
attitude control. Actuators directly decide the performance of control. That’s why FTC
for actuators is widely studied. But for sensor faults, most researchers regard them as
interference terms and their causes are ignored. Building on previous work, the fault
mechanisms are summarized [3,28,29].

Stuck fault: The output maintains a certain value and no longer changes. For RCS,
once the adjust venturi tubes are stuck, the thrust maintains a constant value. For sensors,
it is usually caused by unstable signal transmission.
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Gain variation fault: The output deviates from the desired value. Usually, gain is
multiplied by the desired value. For RCS, this fault is mainly caused by the change of throat
diameter due to ablation. For sensors, temperature change and parts aging usually cause a
slight variation or static error.

Outlier data fault: This kind of fault is a short-term fault. When it occurs, the output
changes suddenly and returns to normal quickly without lasting effect, which is unique for
sensor faults. This occurs when there is communication interference or other disturbances.

Above all, the faults are summarized as follows:

O f ,s = O(t) + f als(O(t), ts)
O f ,g = O(t) + f alg(O(t), Kg, tg)
O f ,o = O(t) + f alo(O(t), δ, to)

, (4)

where O(t) is the output of sensors or actuators. O f ,s, O f ,g, O f ,o are outputs under the stuck
fault, the gain variation fault, and the outlier data fault, respectively. ts, tg, to are the time of
faults occur. Kg, δ are fault sizes, and f al(·) is the fault model.

3. Construction of ADRC Based AFTC

Due to the existence of ESO, noise and disturbance are tolerated, to some extent. But
when sensor faults occur, the PFTC cannot handle them. The information about sensor
faults is needed for controller reconstruction to achieve AFTC. Thus, it is urgent to carry
out fault identification to diagnose and identify sensor faults online.

3.1. Fault Diagnosis and Identification
3.1.1. Fault Diagnosis by WPT and KELM

According to (2), ESO can be regarded as a reference model. Therefore, the residual
between the observation of ESO and the output of NSHV contains the fault information.
Efficient feature extraction is beneficial for fault diagnosis and evaluation. However, in the
stage of reentry, NSHVs are affected by the severe environment. Considering maneuver
and disturbance, the signal is characterized as a non-stationary signal. WPT is adopted to
extract features, for wavelet transform’s unique advantages in processing non-stationary
signals and its time-frequency feature processing ability. Sliding-window based feature
extraction is adopted in view of real-time fault diagnosis. Figure 4a illustrates the structure
of real-time fault identification.
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Figure 4. (a) Sliding-window based feature extraction; (b) structure of ELM.

Then, a classifier is used to classify sensor faults. Extreme Learning Machine (ELM)
is a single hidden layer forward neural network, which has the advantage of calculation
speed and accuracy. Figure 4b depicts the structure.
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The output of ELM is O =
m
∑

i=1
βig(WiXi + bi), where g(·) is the activation function,

Wi is the weight, bi is the bias, and βi is the output weight. The output can be represented
by the matrix O = Hβ, where H, β are the hidden layer’s output, and the output weights,
respectively.

For ELM, once the Wi, bi is given, the β can be calculated by β̂ = H+T, where H+ is
the Moore-Penrose pseudoinverse of H, T is the target output. Usually, a positive value
I/C is added, where C is a user-defined parameter for calculating the output weights. Then
the formula is rewritten as β̂ = HT(I/C + HHT)−1T. The output of ELM is y(x) = h(x)β̂,
where h(x) is the hidden layer [30].

Further, KELM is raised to overcome the dimension disaster.

ΩELM = HHT : ΩELMi,j = h(xi) · (xj) = K(xi, xj), (5)

where K(xi, xj) is a kernel function. In this paper, the Radial Basis Function (RBF) kernel is
used. Finally, the output of KELM is obtained [31]:

f (x) =

 K(x, x1)
...

K(x, xN)


T

(I/C + ΩELM)−1T (6)

In this paper, the inputs of KELM are the features extracted by WPT and the outputs
are types of sensor faults.

3.1.2. Joint Time-Frequency Analysis Based Fault Identification

Energy is extracted by WPT from the residual, and its expression is:

‖ f ‖2 =
∫
| f (x)|2dx (7)

In the low-frequency bands, the energy reflects the size of the sensor faults. Meanwhile,
in the high-frequency ones, the energy is affected by sensor noise and the sensor faults.
Least Square Method (LSM) is widely used in data fitting, for its simplicity and efficiency.
And considering that the noise is concentrated in the high-frequency bands, it’s more
accurate to use the energy in low-frequency bands to fit the size of sensor faults.

3.2. Policy of Controller Reconstruction

So far, Fault Diagnosis and Evaluation (FDE) is achieved by the proposed fault diag-
nosis method. And the whole AFTC structure is illustrated in Figure 5.

The AFTC is designed as:

αAFTC(t) =


α(t), 0 ≤ t ≤ t f

α(t), t f ≤ t ≤ td

α(t) + ∆FDE, td ≤ t

, (8)

where t f , td are the time when faults occur and the time when the FDE unit determines the
faults, respectively. α(t) is the output of the sensor. ∆FDE is the amount of compensation
for sensor faults.
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Fault size
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LSM

Fault size
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Figure 5. The structure of AFTC

4. Simulation Results

To verify the effectiveness of the proposed AFTC method, simulations under the
standard condition and fault conditions are presented. The mid-term of reentry segment of
NSHVs is selected. In this stage, the NSHV adopts a large angle of attack for decelerating.
The simulation conditions are H = 33.5 km, v = 15 Ma, α = 45◦, q = 0, and the angle of
attack decreases to α = 35◦, 2 s later, and the random noise µ = 0.5◦ is added to the data of
the sensor. When the conditions are determined, the response is shown in the Figure 6.
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Figure 6. Angle of attack under fault-free.

The simulation shows that the NSHV can normally track the command with a raise
time of 0.32 s, and the designed ESO observes the sensor output correctly under the fault-
free condition. The sensor and actuator faults may occur at any time in the reentry process.
To simplify the training process, faults are injected at 1.5 s during the simulation.

4.1. Simulations with Actuator Faults

According to the introduction of actuator faults model above, the gain variation fault
Kg = 0.9 and the stuck fault are injected separately.

It can be seen from Figure 7a,b that the designed PFTC has strong adaptability to the
actuator gain variation fault. The steady-state time is only 0.2 s longer than the fault-free
state. Meanwhile, the actuator stuck fault can be solved by redundant actuators, which is
out of the range of this paper.
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Figure 7. (a) Angle of attack under the gain variation fault; (b) angle of attack under the stuck fault.

4.2. Simulations with Sensor Faults

The angle of attack of sensor fault states is compared with that of the fault-free state.
The results of the stuck fault, gain variation faults and the outlier data fault are shown in
Figure 8a, Figure 8b and Figure 8c, respectively.
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Figure 8. (a) Angle of attack under the stuck fault; (b) angle of attack under the gain variation fault;
(c) angle of attack under the outlier data fault (the maximum outputs of the outlier data are 90◦).

The results show that the designed PFTC cannot handle sensor faults, although it has
better performance in actuator faults. The NSHV cannot follow flight instructions properly
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because of the presence of faulty sensors. Sensor faults can reduce the flight quality and
even seriously imperil the safety of NSHV.

4.3. Simulations of the Proposed Fault Diagnosis Method

As our previous work showed, the energy distributions of diverse faults in different
bands are various [3]. The energy caused by faults of different sizes shows a positive
correlation with fault sizes, which can also get from the definition of energy (7).

For online FDE, a sliding window is adopted, with a 0.5 s sliding window and 0.4 s
step time. The simulation result is shown in Figure 9a, where the labels 0, 1, 2, and 3
respectively represent the fault-free state, the stuck fault, the gain validation fault, and the
outlier data fault.
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Figure 9. (a) Results of fault diagnosis using the method proposed; (b) results of fault diagnosis using
the contrast method.

To verify effectiveness of the proposed method, feature extraction and classification
performed on the sensor output directly are adopted as the contrast method. It can be seen
from results in Figure 9b that the contrast algorithm has greater uncertainty, especially
in the fault-free state. This is because in the proposed method, the ESO estimates the
total disturbance and counteracts the external interference, which is beneficial to improve
the accuracy.

The distribution of multiple simulations is displayed in Figure 10a,b and Table 2. The
Mean Squared Error (MSE) results show that except the outlier data fault, the proposed
algorithm reduces the distribution of diagnostic results by up to 98%. The lower MSE
indicates that the proposed method is more reliable. Although the MSE of the outlier data
fault is slightly larger, the results of both methods are good enough in the diagnosis of the
outlier data fault.

Furthermore, in terms of AFTC, it is necessary to know not only types of sensor faults
but also sizes of faults. Energy in the low-frequency bands reflects sizes of the sensor fault.
Under gain variation faults, as shown in Figure 11a, there is a quadratic correlation between
the energy in the first band and gains, and the coefficients are calculated by LSM.

Table 2. Distribution of results.

Fault Type MSE Using the Proposed
Method

MSE Using the Contrast
Method

fault-free state 0.00021 0.01092
stuck fault 0.00022 0.00471

gain validation fault 0.0114 0.01536
outlier data fault 0.00026 0.00016
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Figure 10. (a) Distribution of results using the method proposed; (b) distribution of results using the
contrast method.
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Figure 11. (a) Energy in the first band under different gain variation faults; (b) the relationship
between the energy and the gain, considering the fault direction.

It should be noticed that the energy is symmetrically distributed, which is determined
by the definition of residual energy. It can be solved by joint time-frequency analysis of the
residual signal. Then, the energy can be redefined as:

E = sign(Kg − 1)(p1K2
g + p2Kg + p3) + 2(Kg < 1) · (p1 + p2 + p3), (9)

where Kg is the gain of the gain variation fault, p1, p2, p3 are the coefficients calculated by
LSM. The result is shown in Figure 11b.

According to (9), the gains can be solved by the energy:

x =
−p2 + ξ(r)sqrt(p2

2 − 4p1 p3)

2p1
, (10)

where ξ(r) is the sign of the residual signal. Above all, the fault identification with diagnosis
delay less then 0.5 s is realized.

4.4. Simulations of AFTC

Once sensor faults occur during the flight, the fault diagnosis and identification
unit generates information about the faults. According to the information, the strategy
reconstruction is carried out by the AFTC proposed. The simulation results of different
gain variation faults are described in Figure 11b and Table 3.
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It can be seen that, when sensor faults occur, the PFTC strategy cannot counteract the
wrong measurements. However, the NSHV adopted the proposed AFTC strategy can still
follow the command correctly. The control command can be tracked correctly 0.4s after the
fault occurs.

As the Figure 12b illustrates, under the stuck fault, the output of ESO is used as
feedback to achieve security control to some extent. Compared with the PFTC strategy, the
AFTC strategy has a stronger fault tolerant ability to the stuck fault. Command tracking
can be maintained after the fault occurs, although it slowly diverges.
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Figure 12. (a) Comparison of PFTC and AFTC under the gain variation faults; (b) comparison of
PFTC and AFTC under the stuck fault.

Table 3. Comparison of the control effects of PFTC and AFTC.

Fault Size Static Error Using PFTC (◦) Static Error Using AFTC (◦)

k = 0.85 6.28 0.49
k = 0.9 3.76 −0.33

k = 0.95 1.71 −0.2
k = 1 0 0

k = 1.05 −1.82 0.14
k = 1.1 −3.31 −0.14

5. Conclusions

In this paper, a novel AFTC control strategy is proposed for NSHVs with actuator
and sensor faults. An ADRC controller is adopted for command tracking and uncertainty
compensation. To obtain accurate and real-time fault information, an estimation unit using
ESO combined with KELM is presented. The ESO in ADRC is creatively used to generate
residual signals to extract the features of different faults. Then, joint time-frequency analysis
is adopted to estimate the sizes of faults. Combined ADRC with controller reconstruction
strategy, AFTC is finally achieved. Actuator and sensor faults are discussed and analyzed
to verify the effectiveness of the proposed reconfigurable control method. Simulation
results show that the introduction of sliding window and KELM realizes real-time fault
diagnosis, and the joint time-frequency analysis method makes fault identification possible.
Finally, the NSHV adopted the proposed method can track the command precisely under
the actuator and sensor faults. This paper provides new ideas for advanced active fault-
tolerant control, especially for sensor faults.
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Abbreviations
The following abbreviations are used in this manuscript:

AFTC Active Fault-Tolerant Control
NSHV Near-Space Hypersonic Vehicle
ADRC Active Disturbance Rejection Control
KELM Kernel Extreme Learning Machine
PFTC Passive Fault-Tolerant Control
AFTC Active Fault-Tolerant Control
FTC Fault Tolerant Control
RCS Reaction Control System
WPT ThenWavelet Packet Transformation
ESO Extended State Observer
TD Tracking Differentiator
RBF Radial Basis Function
LSM Least Square Method
FDE Fault Diagnosis and Evaluation
MSE Mean Squared Error
Symbols
x horizontal position, m
z vertical position, m
v velocity, m/s
γ trajectory inclination angle, rad
α angle of attack, rad
m mass of NSHV, kg
g gravitational acceleration, m/s2

D aerodynamic drag, N
Ty propulsion, N
Y aerodynamic force, N
wy pitch angular rate, rad/s
Iy moment of inertia for the y coordinate axes, kg ·m2

l distance from the RCS to the center of mass, m
e residual signal, rad
z1 observation of the angle of attack, rad
z2 observation of angular velocity of attack, rad/s
z3 observation of total disturbance
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β1, β2, β3 tunable parameters
a1(k) estimated angle values of the current time, rad
a1(k + 1) estimated angle values of the next time, rad
a2(k) derivative of a1(k), rad/s
a2(k + 1) derivative of a1(k + 1), rad/s
a∗(k) desired signal, rad
Ts sampling time, s
Tc time constant, s
O(t) output of sensors or actuators
O f ,s output under the stuck fault
O f ,g output under the gain variation fault
O f ,o output under the outlier data fault
ts time of stuck fault occur, s
tg time of gain variation fault occur, s
to time of outlier data fault occur, s
Kg gain variation fault size
δ outlier data fault size
f al(·) the fault model
O output of ELM
m number of neurons
β the output weights
g(·) activation function
Wi weights of neurons
bi biases of neurons
Xi inputs of ELM
H hidden layer’s output
H+ Moore-Penrose pseudoinverse of H
T target output
C user-defined parameter
K(·) kernal function
αAFTC Control instruction of AFTC
α(t) output of the sensor
∆FDE amount of compensation
t f time of fault occur
td time when the fault is diagnosed
p1, p2, p3 coefficients calculated by LSM
ξ(r) sign of the residual signal
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