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Abstract: Aimed at the poor performance of guidance algorithms designed based on a linearized
model in active defense under large leading angle deviation, both-way and one-way cooperative
sliding mode guidance algorithms based on the smooth nonsingular terminal sliding mode for
the defense missile are proposed. The relative kinematics and linearized models of the target, the
active defense missile, and the attacking missile are established. In the design process, two smooth
nonsingular terminal sliding mode surfaces are constructed based on zero-effort miss distance and
zero-effort velocity, as well as their integral values. A tracking differentiator is introduced for
excessive initial command deviation to meet the overload constraints of the active missile and the
target. The sensitivity of guidance law to the estimated time-to-go error is reduced, and the target is
allowed to perform an independent evasive maneuver. The effectiveness of the proposed guidance
strategy is verified by numerical simulation and compared to the existing guidance strategies, the
high accuracy, anti-chattering, and strong robustness of the proposed guidance algorithm are verified.

Keywords: smooth nonsingular terminal sliding mode; finite-time convergence; cooperative guidance;
tracking differentiator; active defense

1. Introduction

Since the Gulf War, the seizure of air supremacy has been a key determinant of victory
or defeat in modern warfare. In traditional air combat, when the aircraft is threatened
by an air-to-air missile, the main measures to be taken are evasion maneuvers, deploying
point or surface decoys, and so on. These methods can be summed up as passive defense
measures because their starting point is to find effective evasive means. However, with
the improvement of modern air-to-air missile operational performance and the intelligence
level, passive defense measures are increasingly unable to ensure the safety of aircraft.
Comparatively speaking, the target aircraft, especially a high-value target aircraft, can take
active defense measures; for example, when it is tracked by an attacking missile, it can
launch one or more active defense missiles from its own or its friendly platform to intercept
the attacking missile while performing an evasion maneuver, which is called “three-body
engagement.” Instead of a traditional one-on-one engagement scenario, a target aircraft (the
target) and an active defense missile (the defense missile) are involved in the engagement.

Recently, the three-body engagement problem has received considerable attention.
After the rapid development in recent years, research methods mainly include the line-
of-sight instruction guidance method, the optimal control method, the differential game
method, and so on.

Aerospace 2022, 9, 221. https://doi.org/10.3390/aerospace9040221 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace9040221
https://doi.org/10.3390/aerospace9040221
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0001-8165-8450
https://doi.org/10.3390/aerospace9040221
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace9040221?type=check_update&version=2


Aerospace 2022, 9, 221 2 of 17

Line-of-sight (LOS) guidance is actually the idea of the classic three-point guidance.
From the point of view of the target and the defense missile, in order to protect the target and
intercept the incoming missile, it is natural to keep the defense missile on the LOS between
the missile and target so that the former will be intercepted by the defense missile before
hitting the latter. Yamasaki and Takano [1] used the three-point guidance method to keep
the defense missile on the LOS between the target and the interceptor without considering
the cooperation between the target and the defense missile. Ratnoo and Shima [2] analyzed
the kinematic relationship of LOS guidance under the moving/maneuvering platform, and
the results indicated that the speed and acceleration requirements of the defense missile
are lower than those of the missile, and the cooperative strategy of the target and defense
missile showed better relative control effort performance. Ratnoo and Shima [3] deduced
the normal overload ratio of the defense missile and missile, the launch envelope of the
missile, and the initial conditions under which the missile can evade the defense missile.
Kumar and Mukherjee [4] designed a guidance strategy using sliding mode control, which
is based on the LOS guidance.

The target and the defense missile together on the same side can cooperate with
one another against the incoming missile. Especially in the case that the guidance strat-
egy of the missile is known, based on the optimal control theory and selecting different
optimal performance indexes, an optimal cooperative engagement strategy can be de-
signed, which may reduce the overload requirements of the defense missile. Prokopov
and Shima [5] derived linear-quadratic optimal cooperative strategies for two-way and
one-way cooperation, which did not consider the bounded limit of the control quantity
but added a quadratic index of the control quantity as a constraint based on miss distance
as the performance index. Garcia et al. [6] designed the cooperative guidance law by
solving the two-point boundary value problem (TPBVP), but the resolution process was
time-consuming. Shima [7] took the miss distance of the defense missile as the performance
index, and under the condition that the control quantities of the defense missile and the
target were bounded, the optimal cooperative strategy was solved based on the optimal
control theory. Weiss et al. [8] and Fang et al. [9] set inequality constraint conditions for
the miss distance and selected energy consumption as the optimal performance index,
which is different from the above processing methods. Weiss et al. [10] considered the miss
distance inequality constraint conditions to be met by both the defense missile and the
target and selected the performance index integrated with the energy consumption of both
so as to design a minimum energy control strategy. All of the literature mentioned above is
based on the linearized model. Garcia et al. [11] adopted the nonlinear model and further
considered the response time of the control system. Assuming that both of them have
first-order dynamic characteristics, the optimal evasion strategy of the target was solved
under the condition that both the missile and the defense missile adopt the tracking method.
Although the nonlinear model can be applied to any engagement conditions, it is hardly
impossible to deduce the closed-loop analytical expression of the control strategy because
it involves TPBVP, and therefore numerical methods are needed to solve the problem.

If the guidance strategy of the missile is unknown, it is not possible to apply the
optimal control theory to deal with the guidance law design. Based on the differential game
theory, guidance law design does not need to make any hypotheses regarding the target
maneuver strategy, but it can also make the minimum miss distance if the most unfavorable
guidance law is adopted.

In [12–14], the three-body engagement problem based on differential game theory
was discussed, which was regarded as a dynamic game between one side composed of
the target and the defense missile and one side composed of the missile. Perelman and
Shima [12] studied the three-way game with arbitrary order dynamics based on linear-
quadratic differential game (LQDG) theory. In order to simplify the derivation process,
a terminal projection was adopted to reduce the order of the original state equations. For the
case of ideal dynamic characteristics, the closed-loop analytical expressions of the control
strategies were given, including continuous and discrete forms. Meanwhile, Perelman et al.
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also analyzed the variation trend of the guidance gain coefficient under various limiting
conditions. In order to improve the interception efficiency, Saurav et al. [13] restrained
the interception angle of the defense missile on the basis of [12] and designed an LQDG
guidance law with angle constraint. Considering that the control quantity of the LQDG
guidance law may exceed the boundary, Rubinsky and Gutman [14] designed the bounded
differential game (BDG) guidance law for the missile to escape from the defense missile
and simultaneously hit the target.

Most of the guidance laws mentioned above were designed under the condition that
all of the state information of the three-body is known, while the multi-model filter is
mainly used to obtain the guidance strategy of the missile. Shaferman and Shima [15]
designed a multiple-model adaptive estimator to obtain the guidance strategy of the
incoming homing missile. Fang et al. [16] proposed a static multiple-model filter based
on the square root Kalman filter to solve the problem of active defense and obtained the
adaptive cooperative guidance law of model matching for the target aircraft and the defense
missile, which increased the possibility of the defense missile successfully protecting the
target and intercepting the missile with less control energy.

The guidance strategies mentioned above are mainly based on the linearized model,
which works well with small heading errors but fails with large heading errors. In order
to improve their applicability, nonlinear control techniques, such as sliding-mode control
(SMC), have been adopted to design guidance law [17]. SMC is widely used in missile
guidance law design because of its robustness to modeling errors and unknown external
disturbances. Kumar and Shima [18] proposed a cooperative nonlinear guidance law by
taking the zero-effort miss distance and zero-effort velocity as the sliding mode surfaces,
which reduced the sensitivity of time-to-go. However, the chattering problem inevitably
exists in the first-order sliding mode, which requires measures to suppress chattering at
the cost of the weakening dynamic performance of the algorithm. Ates [19] proposed a
sliding mode guidance law with impact angle constraints and designed a linear sliding
mode surface to make the LOS angle converge to the expected value, but its convergence
time tends to infinity. Terminal sliding mode control (TSMC) ensures that the system
states converge within a finite time by introducing a nonlinear sliding mode surface.
When intercepting highly maneuvering targets, the terminal guidance time is usually
very short; therefore, it is of great significance to design guidance law using TSMC for
maneuver targets. Zhang et al. [20] introduced the traditional TSMC surface in guidance
law design, but the singularity problem occurred owing to the negative exponential term
in the guidance instructions. Therefore, He and Lin [21] designed a nonsingular terminal
sliding mode (NTSM) surface, which can control sliding mode variables to reach the sliding
mode surface within a finite time and can avoid control saturation caused by singular
problems [22–24]. Kumar et al. [25] and Wang et al. [26] designed different NTSM guidance
laws, which avoided singular problems while maintaining the property of finite-time
convergence. Yang et al. [27] solved the singularity problem by designing an integral
sliding mode surface and considered the impact angle constraints. When the state quantity
of the guidance system is far from the equilibrium point, the convergence rate is slow.
For this reason, Song et al. [28] proposed a nonsingular fast TSMC method. In terms
of the control energy and miss range of the defense missile, Zou et al. [29] proposed a
nonsingular-terminal-sliding-mode-based cooperative guidance law. The guidance process
of the defense missile was divided into two stages. In the first stage, a guidance method
based on the LOS was designed, and in the second stage, a guidance law based on the
LOS angular velocity nullifying strategy was proposed, which significantly reduced the
maneuver and control energy required for the defense missile. Zhou et al. [30] addressed
the hit-to-kill problem for a missile with demands for fast finite-time convergence and
anti-chattering based on the smooth nonsingular terminal sliding mode (SNTSM) control
method. In the three-body active defense problem discussed in this paper, the engagement
time is relatively short, and SNTSM is used to design active defense guidance laws for the
target and the defense missile because of its finite-time convergence and anti-chattering.



Aerospace 2022, 9, 221 4 of 17

In actual combat scenarios, all three players have the maximum overload limitation,
especially manned aircraft considering human endurance and an active defense missile
with limited overload due to low efficiency. Saturation will occur if it is not solved in the
design process, which will worsen the dynamic quality, lead to a decline in the control
performance, and even destroy the stability of the system, resulting in system collapse,
a decline in the control performance, and even some unpredictable results. Because of
the fast convergence of NTSM, overload saturation will occur if the error between the
instruction and the actual value is too large in the initial stage. In this paper, a tracking
differentiator (TD) is introduced, whose tracking characteristics are used to reasonably
arrange the transition process of the input signal. A TD is actually a signal processing link.
Zhang et al. [31] proposed a TD-based nonlinear control method for a wind generation
system to follow the power regulation request from the centralized wind farm controller.
Zhang et al. [32] introduced a fault detection method based on an optimized TD, which was
applied to the acceleration sensor of the suspension system of a maglev train. Lou et al. [33]
proposed a third-order differentiator, and the new differentiator provided higher tracking
precision and a smoother transient process. Yan et al. [34] combined a single-output TD
with a basic model-free adaptive controller, which improved the capacity of anti-jamming.
Wang et al. [35] proposed a novel kind of second-order nonlinear TD, which was adopted
to suppress the vibration phenomenon. The contributions of this paper are summarized
as follows.

1. In the design process of the two-way cooperative algorithm, we build a two-dimensional
second-order nonlinear system based on the zero-effort miss distance (ZEM), zero-
effort velocity (ZEV), and their integral values, by which the SNTSM was used to
design a cooperative guidance law. In comparison to the present methods that deal
with this problem, the proposed algorithm is of faster convergence speed, higher
guidance accuracy, stronger robustness, and lower sensitivity to the time-to-go esti-
mation error, which are demonstrated by the theoretical derivation and simulation
experimental results.

2. For the overload saturation phenomenon caused by excessive initial command error,
the tracking differentiator is introduced to arrange the transition process based on
the SNTSM design method, and the experimental simulation results show that the
overload constraint requirements of the defense missile and the target are met.

3. In the one-way cooperative engagement scenario where the target adopts an inde-
pendent evasion maneuver, the one-way cooperative SNTSM guidance strategy is
proposed, which does not require knowledge of the target evasion strategy. The
proposed sliding mode surface convergence rate is faster, the guidance accuracy is
higher, and the overload distribution is more consistent with the principle of en-
ergy management.

The organization of this paper is as follows. Section 2 presents the nonlinear and
linear three-body engagement, as well as the principle of order reduction and zero-effort
transformations. The two-way cooperative SNTSM guidance law with a TD is presented in
Section 3, and Section 4 introduces the SNTSM guidance design in the one-way cooperative
situation. Section 5 validates the effectiveness of the proposed guidance law by simulation
studies, followed by conclusions in Section 6.

2. Model Description
2.1. Nonlinear Engagement Kinematics

A schematic diagram for active defense engagement is shown in Figure 1, where T
is the target aircraft, D is the defense missile (hereafter known as the defender), and M is
the attacking missile (hereafter called the missile). The active defense engagement can be
divided into two groups, namely, the missile-target (M-T) pursuit-evasion problem and
the defender-missile (D-M) pursuit-evasion problem. (xi, yi), i = (T, D, M) represent the
position of the target, defender and missile, respectively; Vi, ai and γi, for i = (T, D, M),
respectively represent the velocity, acceleration, and heading angle of each flight vehicle,
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and the acceleration is perpendicular to the velocity; rMT and rMD are the M-T and D-M
relative distances; λMT and λMD are the LOS of M-T and D-M; yMT and yMD are the M-T
and D-M relative distance along the Y-axis.
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It is assumed that each flight vehicle has first-order dynamic characteristics, that is,
the relationship between acceleration and guidance acceleration command is:

.
ai =

ui − ai
τi

, i = (T, D, M) (1)

where, ui is the guidance acceleration command, and τi is the time constant of the first-
order dynamic characteristics. According to the geometric relation in Figure 1, the relative
kinematic equations of D-M in active defense are:

.
rMD = VM cos(γM − λMD)−VD cos(γD − λMD).
λMD = (VM sin(γM − λMD)−VD sin(γD − λMD))/rMD
..
rMD = −aM sin(γM − λMD) + aD sin(γD − λMD) + rMD

.
λ

2
MD

..
λMD = (aM cos(γM − λMD)− aD cos(γD − λMD)− 2

.
rMD

.
λMD)/rMD

.
aD = −aD/τD+uD/τD
.
γD = aD/VD

(2)

Similarly, the relative kinematic equations of M-T in active defense are:

.
rMT = VM cos(γM − λMT)−VT cos(γT − λMT)
.
λMT = (VM sin(γM − λMT)−VT sin(γT − λMT))/rMT
..
rMT = −aM sin(γM − λMT) + aT sin(γT − λMT) + rMT

.
λ

2
MT

..
λMT = (aM cos(γM − λMT)− aT cos(γT − λMT)− 2

.
rMT

.
λMT)/rMT

.
aT = −aT/τT+uT/τT
.
γT = aT/VT

(3)

2.2. Linear Engagement Kinematics

It is assumed that both D-M and M-T engagement take place near the initial triangular
collision area; that is, the values and variation range of the LOS angles are all small.
Without loss of generality, the initial LOS of M-T engagement is taken as the X-axis, and
the Y-axis is perpendicular to the X-axis. Based on this small-angle assumption, the
kinematic model of active defense can be linearized along the initial LOS. aiN , i = (T, D, M)
represent the acceleration components of each flight vehicle along the Y-axis, and obviously
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aiN = ai cos γi. Take the state variable x = [xT
MT , xT

MD], where xMT = [yMT ,
.
yMT , aM, aT ]

T

and xMD = [yMD,
.
yMD, aD]

T .
Typical intercepting missile guidance laws include proportional guidance (PN), augmented

proportional guidance (APN), and optimal guidance law (OGL), all of which can be ex-
pressed as a function of the navigation coefficient, zero-effort miss distance, and time-to-
go [36]. After arrangement, they can be represented as follows:

uMN = KMT(tMT
go )xMT + Ku(tMT

go )uTN (4)

uMN =
[

k1 k2 kM kT
]
xMT + Ku(tMT

go )uTN (5)

where, tMT
go is the estimated time-to-go for intercepting the target, and the other parameters

can be obtained in an acceptable time by multi-model filtering or other methods [15,16]. In
summary, the linear mathematical description of active defense is given as:

.
x = A(t)x+B(t)[uTN uDN ]

T (6)

where the expression of each matrix is:

A(t) =

[
A11(t) A12(t)

A21(t) A22(t)

]
,

A(t) =



0 1 0 0 0 0 0

0 0 −1 1 0 0 0
k1
τM

k1
τM

kM−1
τM

kT
τM

0 0 0

0 0 0 −1/τT 0 0 0

0 0 1 0 0 1 0

0 0 1 0 0 0 −1

0 0 0 0 0 0 −1/τD


,

B(t) =
[

B1(t) B2(t)
]

=

[
0
0

0
0

ku/τM
0

1/τT
0

0
0

0 0
0 1/τD

]T

.

2.3. Timeline

Under the small-angle linearization hypothesis, the collision time t f and tMT
f of D-M

and M-T engagement can be approximately calculated as:{
t f =

rMD0
VM0 cos(γM0−λMD0)−VD0 cos(γD0−λMD0)

tMT
f = rMT0

VM0 cos(γM0−λMT0)−VT0 cos(γT0−λMT0)

(7)

where, subscript 0 represents the initial moment. Based on this, the time-to-go tgo and tMT
go

of D-M and M-T are respectively defined as:{
tgo = t f − t

tMT
go = tMT

f − t
(8)

In successful active defense, the defender is requested to intercept the missile in
advance. Therefore, t f < tMT

f needs to be met.

2.4. Order Reduction and Zero-Effort Transformations

The physical meaning of ZEM and ZEV in D-M engagement is the terminal miss
distance and the terminal velocity of the defender if, from the current moment t, the
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defender and target do not take any maneuvers and the missile still uses the previous
guidance law to chase the target aircraft, which can be denoted by ZMD and ZvMD through
terminal projection [7], where subscript MD refers to the missile and defender, as shown in
Equation (9). {

ZMD(t) = ΛMDΦ(t f , t)x(t)
ZvMD(t) = ΛvMDΦ(t f , t)x(t)

(9)

where, ΛMD =
[

01×4 1 01×2
]

and ΛvMD =
[

01×5 1 0
]
. Φ(tf, t) refers to the

state transition matrix, as shown.

Φ(t f , t) = Φ(tgo) =



φ11 φ12 φ1M φ1T φ15 φ16 φ1D

φ21 φ22 φ2M φ2T φ25 φ26 φ2D

φ31 φ32 φ3M φ3T φ35 φ36 φ3D

φ41 φ42 φ4M φ4T φ45 φ46 φ4D

φ51 φ52 φ5M φ5T φ55 φ56 φ5D

φ61 φ62 φ6M φ6T φ65 φ66 φ6D

φ71 φ72 φ7M φ7T φ75 φ76 φ7D


,

.
Φ(tgo) = −Φ(t f , t)A(t), Φ(t f , t f ) = I7×7.

The solution of each element in the matrix can be found in [7]. ZMD and ZvMD can be
calculated as:{

ZMD = VλMD tgo −VλMT φ52 − τ2
Dψ(tgo/τD)aDN + φ5MaMN + φ5TaTN

ZvMD = VλMD −VλMT φ62 + τDξ(tgo/τD)aDN + φ6MaMN + φ6TaTN
(10)

where, ψ(µ) = e−u + µ− 1 > 0 ∀µ > 0, ξ(µ) = e−u − 1 > 0 ∀µ > 0.
It can be seen that ZEM is the function of time-to-go, and is influenced by its estimate.

However, it is very difficult to obtain the exact time-to-go in actual combat. Fortunately,
as shown in [37,38], ZEV represents the sensitivity of the miss distance with respect to
the time-to-go error and has a direct effect on the performance of the guidance strategy.
Therefore, it is of great significance to make ZEV tend to zero as soon as possible in guidance
law design.

Under the linearization model, there is a certain error in the calculation of target,
defender, and missile acceleration components perpendicular to the LOS, which leads to
an error in the modeling of the actual acceleration dynamic characteristics, namely:

.
aiN =

uiN − aiN
τi

+ δaiN , i = {T, D, M} (11)

where, ∆aiN , i = {T, D, M} are the total dynamics errors and are supposed to be bounded as:

|δaiN | ≤ ∆aiN , i = {T, D, M} (12)

where, ∆aiN , i = {T, D, M} are finite positive numbers.

3. Two-Way Cooperative SNTSM Guidance Design with TD
3.1. Principle and Stability Proof Smooth Nonsingular Terminal Sliding Mode

A second-order nonlinear system with uncertainties is considered as follows:

..
x = f (x, t) + g(x, t)u + d(x, t) (13)

where,
[

x
.
x
]T is the state vector, f (x, t) and g(x, t) are known functions, u is the control

input, and d(x, t) is the bounded external disturbance satisfying |d(x, t)| ≤ dmax, with a
constant dmax.
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The SNTSM surface [30] is defined as:

s = x + asigτ(
.
x) = x + a

∣∣ .
x
∣∣τsign(

.
x) = 0 (14)

where, a > 0, 1 < τ < 2. If s = 0 is satisfied, x will converge to x = 0 in finite time.

Lemma: If the Lyapunov function V(s) = 1
2 s2 satisfies the inequality:

.
V(s) + αV(s) + βVγ(s) ≤ 0 (15)

where, α, β > 0, 0 < γ < 1, s will converge to zero in finite time. The settling time can be
expressed as:

T ≤ 1
α(1− γ)

ln
αV1−γ(s0) + β

β
(16)

Theorem 1. For the system shown in Equation (13), if the sliding mode in Equation (14) is adopted,
the SNTSM law is expressed as:

u = −
[

f + a−1τ−1sig2−τ(
.
x) + k1s + k2sigµ(s)

]
/g (17)

where, k1 > 0, k2 > 0, 0 < µ < 1, and the system state x can reach the sliding mode surface in
finite time and then converge to zero in finite time.

Theorem 2. Consider the Lyapunov function V1 = 1
2 s2. Differentiating V1 with respect to time

and substituting Equations (14) and (17) into it yields:

.
V1 = s

.
s = aτ

∣∣ .
x
∣∣τ−1s

[
−k1s− k2|s|µsign(s

)
+d
]

(18)

Let k1 = aτ
∣∣ .
x
∣∣τ−1k1, k2 = aτ

∣∣ .
x
∣∣τ−1k2, d = aτ

∣∣ .
x
∣∣τ−1d. Equation (18) can be ex-

pressed as:
.

V1 = −k1s2 − k2|s|µ+1 + sd (19)

Then, the above equation can be written in the following two forms:

.
V1 + 2

(
k1 − d/s

)
V1 + 2

µ+1
2 k2V

µ+1
2

1 = 0 (20)

.
V1+2k1V1 + 2

µ+1
2

(
k2 −

d
sµ+1sign(s)

)
V

µ+1
2

1 = 0 (21)

When synthesizing the previous analysis, the finite time convergent region can be

given as: |s| ≤ Λ = min
{

dmax
k1

,
(

dmax
k2

)1/µ
}

. Furthermore, the state x will converge to the

region |x| ≤ 2Λ in finite time. Therefore, Theorem 1 has been proved completely.

3.2. Two-Way Cooperative SNTSM Guidance Design

In two-way cooperative engagement, SNTSM is used to design guidance laws and
reduce the sensitivity to time-to-go on the premise that the defender and the aircraft know
one another’s states. At this point, the system has two control outputs, uT and uD, to be
designed. The sliding vector s can be defined using two switching variables, s1 and s2, as:

s =
[

s1 s2
]
=
[

e1 + a1sigτ(
.
e1) e2 + a2sigτ(

.
e2)

]T (22)
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where, e =
[

e1 e2
]T , e1 =

∫ t
0

[
Zc

MD(τ)− ZMD(τ)
]
dτ, e2 =

∫ t
0

[
Zc

vMD(τ)− ZvMD(τ)
]
dτ,

.
e1 = Zc

MD − ZMD,
.
e2 = Zc

vMD − ZvMD.
The derivatives of ZMD and ZvMD are calculated as follows:

.
ZMD =

.
VλMD tgo − τ2

Dψ(tgo/τD)
.
aDN −

.
VλMT φ52 + φ5M

.
aMN + φ5T

.
aTN

+
.
tgo
(
VλMD − τ2

Dψ′(tgo/τD)aDN −VλMT φ′52 + φ′5MaMN + φ′5TaTN
) (23)

.
ZvMD =

.
VλMD −

.
VλMT φ62 + τDξ(tgo/τD)

.
aDN + φ6M

.
aMN + φ6T

.
aTN

+
.
tgo
(
−VλMT φ′52 − exp(−tgo/τD)aDN + φ′6MaMN + φ′6TaTN

) (24)

The second derivative of e1 and e2 is:

..
e =

[ ..
e1
..
e2

]
=

 .
Z

c
MD −

.
ZMD

.
Z

c
vMD −

.
ZvMD

 (25)

and can be written as:
..
e = F + Gu + δ

=

[
F1

F2

]
+

[
G11 G12

G21 G22

][
uTN
uDN

]
+

[
δZMD

δZvMD

]
(26)

where,

F1 =
.
Z

c
MD −

rMD
.

VrMD

V2
rMD

 VλMD − aDNτD

{
1− exp

(
− tgo

τD

)}
− φ52(aMN − aTN) + aMNtgo −

(
φ5M
τM

aMN + φ5T
τT

aTN

)
+VrMT

.
λMT +

φ5M(−K2VλMT
+KMaMN+KT aTN)
τM

,

F2 =
.
Z

c
vMD −

rMD
.

VrMD

V2
rMD

 −aDN exp
(
− tgo

τD

)
− φ62(aMN − aTN) + aMN −

(
φ6M
τM

aMN + φ6T
τT

aTN

)
+ VrMT

.
λMTφ62

+
φ6M(−K2VλMT

+KMaMN+KT aTN)
τM

−VrMD

.
λMD

,

G11 = −φ5T/τT , G12 = τDψ
(
tgo/τD

)
, G21 = −φ6T/τT , G22 = −ξ

(
tgo/τD

)
,

δZMD = τ2
Dψ
(
tgo/τD

)
δaDN − φ5MδaMN − φ5TδaTN , δZvMD = −τDξ

(
tgo/τD

)
δaDN − φ6MδaMN − φ6TδaTN .

Through Equation (12), we can attain that
∣∣δZMD

∣∣ and
∣∣δZvMD

∣∣ are bounded by finite
positive numbers ∆ZMD and ∆ZvMD , namely:∣∣δZMD

∣∣ ≤ ∆ZMD ,
∣∣δZvMD

∣∣ ≤ ∆ZvMD (27)

According to Equation (17), we have:[
uTN
uDN

]
= −G−1

[
F + a−1τ−1sig2I−τ

( .
e
)
+Ks + lsigµ(s)

]
(28)

where, a = diag(a1, a2), τ = diag(τ1, τ2), K = diag(k1, k2), l = diag(l1, l2), µ = diag(µ1, µ2),
ai > 0, 1 < τi < 2, ki > 0, li > 0, 0 < µi < 1(i = 1, 2). The actual commands for the target
and the defender can be given as:

u =
[

uT uD
]T

=
[

uTN
cos(γT−λMT)

uDN
cos(γD−λMD)

]
(29)
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3.3. Tracking Differentiator

In the control system here, the error is directly taken as:

e = v− y (30)

where, v is the set input value and y is the system output. The selection method of this
error makes a large initial error; that is, the error definition of Equation (22) is the main
cause of overload saturation. The TD is adopted for arranging the transition process, and
the smooth reference input signal is obtained. Moreover, the differential signal of the set
input value is extracted. The contradiction between rapidity and overshoot can be solved
by selecting reasonable parameters, and the system can obtain strong robustness. The
synthesis function of the time-optimal control system for the discrete second-order system
with TD [39] is as follows:

ν1(k + 1) = ν1(k) + hν2(k)

ν2(k + 1) = ν2(k) + hu

u = fhan(ν1(k)− ν0(k), ν2(k), r, h)

(31)

fhan(x1, x2, r, h) =



d = rh

d0 = hd

y = x1 + hx2

a0 =
√

d2 + 8r|y|

a =

{
x2 +

(a0−d)
2 sign(y), |y| > d0

x2 +
y
h , |y| ≤ d0

fhan =

{
−rsign(a), |a| > d

−r a
d , |a| ≤ d

(32)

where, h is the sampling period, and r is the quickness factor, and they are all mutable
parameters. Signal v1 is the transition value of input signal v0 through the differential
tracker, and v2 is the differential signal of v1. By using DT, the system changes the original
fixed reference instruction into a smooth instruction signal that reaches the specified value
after a finite time.

4. One-Way Cooperative Smooth Nonsingular Terminal Sliding Guidance Design

In practice, there is a situation where the target does not rely on the defender to
carry out the one-on-one engagement strategy, such as the bang–bang maneuver, random
maneuver, or optimal maneuver strategy. At this point, the target does not need any
information on the defender, which constitutes a one-way cooperative guidance problem.
If the target aircraft adopts a certain maneuver strategy uTN(t), the ZEM and ZEV can be
presented as: {

ZOC
MD(t) = ZMD(t) + ΞMD

ZOC
vMD(t) = ZvMD(t) + ΞvMD

(33)

where, ΞMD = ΛMD
∫ t f MD

t Φ(t f MD , t)BT uTN(τ)dτ,

ΞvMD = ΛvMD
∫ t f MD

t Φ(t f MD , t)BT uTN(τ)dτ, and we can attain

.
Z

OC
MD =

.
ZMD − (φ5T/τT)uTN (34)

The switching variable is defined as:

s3 = e3 + a3sigτ(
.
e3) (35)
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where, e3 =
∫ t

0

[
Zc

MD(τ)− ZOC
MD(τ)

]
dτ,

.
e3 = Zc

MD − ZOC
MD. Then,

..
e3 can be given as:

..
e3 =

.
Z

c
MD −

.
Z

OC
MD = F1 + g3uDN + δZOC

MD
(36)

where, g3 = τDψ
(
tgo/τD

)
, δZOC

MD
= δZMD + (φ5T/τT)uTN . If the target maneuver is not

available, uTN in δZOC
MD

can be considered as a bounded uncertainty. In addition, it can be

obtained from Equation (27) that
∣∣∣δZOC

MD

∣∣∣ is bounded by a positive number. The guidance
command for the defender in this case can be obtained as:

uD = −
F1 + a−1

3 τ−1
3 sig2−τ3(e3) + k3s3 + l3sig2−µ3(s3)

g3 cos(γD − λMD)
(37)

where, a3 > 0, 1 < τ3 < 2, 0 < µ3 < 1, k3 > 0, l3 > 0.

5. Simulation Study

The simulation conditions are set as follows: VT = 200 m/s, VM = VD = 300 m/s,
τM = τD = τT = 0.1 s. The proportional navigation guidance coefficient of the defender is
NM

PN = 3. The maximum available overloads of the defender, the target, and the missile
are amax

D = amax
T = 10 g, amax

M = 30 g, respectively. The simulation step size is 1 ms. The
initial position of defender and target is (0 km, 0 km), and the initial position of the missile
is (0 km, 5 km). The proposed guidance algorithm is tested under γT0 = 0◦, γD0 = 10

◦
,

and γM0 = 150
◦
. The blind zone of the seeker is rb = 100 m, and the blind zone guidance

strategy selected here is that the missile guidance instruction remains unchanged after the
seeker enters the blind zone. Some of the elements in the transfer matrix used to calculate
ZEM and ZEV with respect to tgo, are shown in Figure 2, and the other necessary elements
are φ55

(
tgo
)
= 1, φ56

(
tgo
)
= tgo, φ65

(
tgo
)
= 0, φ66

(
tgo
)
= 1. It can be observed that φ5M

and φ6M are smaller overall than (φ5D, φ5T) and (φ6D, φ6T), respectively, which allows a
small gain to counter even high initial heading errors of the missile. Note that all elements
in Figure 2 except φ6M do not change sign during the engagement. Moreover, unlike the
other elements, φ61 and φ6M are not monotonic, which means the peak doesn’t always
occur at the beginning of the engagement.
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5.1. Two-Way Cooperative SNTSM Guidance without a TD

In this section, the guidance strategy given by Equation (29) is denoted by the label
“BCSNT.” Parameters in Equation (28) are set as follows: a1 = a2 = 0.2, τ1 = τ2 = 1.001,
µ1 = µ2 = 0.6, k1= 250, k2 = 200, l1 = 70, and l2 = 50. In order to truly reflect the perfor-
mance of the BCSNT algorithm, the overload limits for three players are not considered
here. The trajectory, overload, switching surfaces, ZEM, and ZEV are shown in Figure 3.
The miss distance is 0.02 m. As can be seen from Figure 3c, the BCSNT algorithm reaches
the switching surfaces in a very short time; thus, the ZEM and ZEV approach zero quickly.
In addition, the trajectory curves are nearly straight lines, but the overload requirement is
too large to be realized. When considering the overload limits, the defender will not hit the
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target. Therefore, the BCSNT algorithm alone can solve the problem of fast convergence,
but it will cause too large of an overload instruction in the initial stage. Therefore, it is
necessary to introduce a TD to arrange the instruction transition process.

Aerospace 2022, 9, x 13 of 18 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 3. Simulation results of the BCSNT. (a) Trajectories; (b) variation curves of the overload; (c) 

variation curves of the switching surface; (d) variation curves of the ZEM and ZEV. 

5.2. Comparation for Two-way Cooperative SNTSM Guidance with TD and Reduced-Sensitivity 

Guidance 

In this section, the two-way cooperative SNTSM guidance with a TD given by Equa-

tions (29) and (31) is denoted by the label “BCSNT-TD.” The other parameters are set as 

per the previous subsection. The quickness factors and sampling period of the TD for &
1

e  

and &
2

e  are 
&
1

200,
e

r 
&
2

50
e

r , and
1 2

20
e e

h h 
& &

ms, respectively. As a comparison, the 

guidance strategy derived in [18] is represented by reduced sensitivity guidance (RSG), 

whose guidance strategy is: 

 

   

1

1

=
cos cos

TN

DN

TN DN

T MT D MD

u

u

u u

   


 

      
 


 
     

G F M s

u

sign

 (38) 

where, M
1

(150,40)diag , and the details about Equation (38) can be found in [18]. The 

discontinuous function  sign s  for the RSG is approximated by the sigmoid function: 

1 1
( ) 2 , 0

21 exp
sgmf






 
    

  
s

s  (39) 

where, the constant   is chosen as 8. 

Figure 3. Simulation results of the BCSNT. (a) Trajectories; (b) variation curves of the overload;
(c) variation curves of the switching surface; (d) variation curves of the ZEM and ZEV.

5.2. Comparation for Two-Way Cooperative SNTSM Guidance with TD and
Reduced-Sensitivity Guidance

In this section, the two-way cooperative SNTSM guidance with a TD given by Equa-
tions (29) and (31) is denoted by the label “BCSNT-TD.” The other parameters are set as
per the previous subsection. The quickness factors and sampling period of the TD for

.
e1

and
.
e2 are r .

e1
= 200, r .

e2
= 50, and h .

e1
= h .

e2
= 20 ms, respectively. As a comparison, the

guidance strategy derived in [18] is represented by reduced sensitivity guidance (RSG),
whose guidance strategy is:

[
uTN
uDN

]
= −G−1[F + M1sign(s)]

u =
[

uTN
cos(γT−λMT)

uDN
cos(γD−λMD)

] (38)

where, M1 = diag(150, 40), and the details about Equation (38) can be found in [18]. The
discontinuous function sign(s) for the RSG is approximated by the sigmoid function:

sgm f (s) = 2
(

1
1 + exp−εs −

1
2

)
, ε > 0 (39)
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where, the constant ε is chosen as 8.
The trajectories, overloads, switching surfaces, ZEM, and ZEV for the BCSNT-TD and

RSG are shown in Figure 4. As presented in Figure 4b, the maximum overload value of the
BCSNT-TD is smaller than that of the RSG, and the occurrence time for maximum overload
is earlier than for the RSG. As the energy of the aircraft gradually attenuates in the passive
section (without the thrust of engines), the maximum available overload it can also provide
gradually decreases, so the earlier demand for large overload conforms to the principle of
energy management, which makes full use of the large maneuverability in the early stages
of the engagement. The miss distances of the BCSNT-TD and RSG are 0.022 m and 0.165 m,
respectively. When combining Figure 4c,d, it can be seen that the BCSNT-TD reaches the
sliding mode surface faster than the RSG.
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The sensitivity of guidance to the tgo estimates are evaluated by additive bias. To do so,
bias errors ranging from 0 to 1 s with 0.1 s interval are introduced in the tgo estimate. The
mean, standard deviation, and root mean square (RMS) values of the miss distance for the
BCSNT-TD and RSG are calculated, as shown in Table 1. We can observe that the statistical
values are small and have negligible variations with respect to tgo errors. The statistical
values of the BCSNT-TD are all smaller than those of the RSG. The BCSNT maximizes the
use of the overload capacity and has high steady-state accuracy, which can be adopted
in engineering practice with the introduction of a TD. BCSNT-TD is of high guidance
precision, meets the overload constraint, and has stronger practicality and robustness.
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Table 1. Statistic values for the BCSNT-TD and RSG.

Guidance Algorithm BCSNT-TD RSG

Mean 0.4401 0.6360
Standard deviation 0.3561 0.4909

RMS 0.5559 0.7897

5.3. Comparation for One-Way Cooperative SNTSM Guidance with a TD, One-Way Cooperative
Guidance, and Proportional Navigation Guidance (PNG)

In this case, the guidance of the target does not depend on the state of the defender. It
is assumed that the target implements a nonlinear bang–bang maneuver, and the switching
time is set to 3 s. In this subsection, one-way cooperative smooth nonsingular terminal
sliding mode guidance with a TD given by Equations (37) and (31) is denoted by the
label “OCSNT-TD.” The other parameters are set as per the first subsection. a3 = 0.009,
τ3 = 1.001, µ3 = 0.6, k3= 10, l3= 10. By contrast, the one-way cooperative guidance
strategy derived in [18] is:

uD =
uDN

cos(γD − λMD)
=

F + M2sign(S)
τDψ

(
tgo/τD

)
cos(γD − λMD)

(40)

The PNG guidance strategy can be expressed as:

uD =
uDN

cos(γD − λMD)
=

yMD ND
PN/t2

go +
.
yMD ND

PN/tgo

cos(γD − λMD)
(41)

Figure 5 shows the trajectories of a three-flight vehicle under the OCSNT-TD, OCG,
and PNG algorithms. It can be found that the OCSNT-TD and OCG guidance algorithms
can accurately hit the interceptor missile, and the final miss distance is 0.09 m and 0.18 m,
respectively. PNG typically eliminates the rotation of LOS, but due to maneuverability
limitations, it can be found from Figure 5b that the defender is always in an overload
saturation state in the terminal phase; as a result, the final miss distance is 44.9 m. It can be
observed that the guidance accuracy of the OCSNT-TD is better than that of OCG, while
PNG fails. The ZEM of the OCSNT-TD converges to zero faster than that of the other two
guidance algorithms, as shown in Figure 5.

Aerospace 2022, 9, x 15 of 18 
 

 

Table 1. Statistic values for the BCSNT-TD and RSG. 

Guidance Algorithm BCSNT-TD RSG 
Mean 0.4401 0.6360 

Standard deviation 0.3561 0.4909 
RMS 0.5559 0.7897 

5.3. Comparation for One-way Cooperative SNTSM Guidance with a TD, One-way Cooperative 
Guidance, and Proportional Navigation Guidance (PNG) 

In this case, the guidance of the target does not depend on the state of the defender. 
It is assumed that the target implements a nonlinear bang–bang maneuver, and the 
switching time is set to 3 s. In this subsection, one-way cooperative smooth nonsingular 
terminal sliding mode guidance with a TD given by Equations (37) and (31) is denoted by 
the label “OCSNT-TD.” The other parameters are set as per the first subsection. =3 0.009a
, τ =3 1.001, μ =3 0.6 , 3 =10k , 3=10.l  By contrast, the one-way cooperative guidance strat-
egy derived in [18] is: 
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The PNG guidance strategy can be expressed as: 
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+
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Figure 5 shows the trajectories of a three-flight vehicle under the OCSNT-TD, OCG, 
and PNG algorithms. It can be found that the OCSNT-TD and OCG guidance algorithms 
can accurately hit the interceptor missile, and the final miss distance is 0.09 m and 0.18 m, 
respectively. PNG typically eliminates the rotation of LOS, but due to maneuverability 
limitations, it can be found from Figure 5b that the defender is always in an overload 
saturation state in the terminal phase; as a result, the final miss distance is 44.9 m. It can 
be observed that the guidance accuracy of the OCSNT-TD is better than that of OCG, while 
PNG fails. The ZEM of the OCSNT-TD converges to zero faster than that of the other two 
guidance algorithms, as shown in Figure 5. 

  
(a) (b) 

Figure 5. Cont.
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The performance of the proposed algorithm is verified by numerical simulations. 
Compared to existing methods, the simulation results show that the proposed algorithm 
has a shorter convergence time for the same maximum overload, higher accuracy, less 
sensitivity to time-to-go, more reasonable overload distribution, and stronger robustness, 
which can be used under the situation of the maneuvering capability of the defense missile 
and when the target is limited. It is easy to see that the method proposed in this paper 
requires no additional information compared to the existing methods, and the numerical 
computation is only slightly increased. 

The exploration of anti-windup techniques, which make the target and the defend 
missile meet their respective overload limits for more flexible parameter settings, and co-
operative guidance laws for imposing a relative intercept angle or applying to the three-
dimensional plane are possible future directions of research. 
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6. Conclusions and Future Discussion

In this paper, we investigate the three-body engagement problem when an aerial target
or its friendly platform launches an active defense missile to intercept an attacking missile,
and we propose two-way and one-way cooperative guidance laws for a defense missile
based on smooth nonsingular terminal sliding mode with a tracking differentiator. The
proposed algorithm is deduced in linear engagement kinematics, and its stability is proven
while the algorithm is applied successfully in a nonlinear engagement frame.

In the process of designing the algorithm, the zero-effort miss distance and zero-effort
velocity, as well as their integral values, are chosen to design the smooth nonsingular termi-
nal sliding mode surface with finite-time convergence, which guarantees a sufficiently small
miss distance and reduces the sensitivity to time-to-go. Meanwhile, the applicability of the
algorithm is enhanced by the transition process arranged by the tracking differentiator.

The performance of the proposed algorithm is verified by numerical simulations.
Compared to existing methods, the simulation results show that the proposed algorithm
has a shorter convergence time for the same maximum overload, higher accuracy, less
sensitivity to time-to-go, more reasonable overload distribution, and stronger robustness,
which can be used under the situation of the maneuvering capability of the defense missile
and when the target is limited. It is easy to see that the method proposed in this paper
requires no additional information compared to the existing methods, and the numerical
computation is only slightly increased.

The exploration of anti-windup techniques, which make the target and the defend
missile meet their respective overload limits for more flexible parameter settings, and
cooperative guidance laws for imposing a relative intercept angle or applying to the three-
dimensional plane are possible future directions of research.
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